Evaluating efficiency gains in the Linear Probability Model
dc.contributor.Mentor | Sosa Escudero, Walter | |
dc.creator.Autor | Pacheco, Tomás Daniel | |
dc.date.accessioned | 2025-10-13T17:45:27Z | |
dc.date.available | 2025-10-13T17:45:27Z | |
dc.date.issued | 2025-09 | |
dc.description | Fil: Pacheco, Tomás Daniel. Universidad de San Andrés. Departamento de Economía; Argentina. | |
dc.description.abstract | This paper evaluates the efficiency gains of the Adaptive Least Squares (ALS) estimator proposed by Romano and Wolf (2017) in the context of Linear Probability Models (LPM), where heteroskedasticity is inherent to the model. Using empirical applications and Monte Carlo simulations, we compare ALS to OLS and Probit estimators under three strategies for handling predicted probabilities outside the (0, 1) interval: bounding, sigmoid transformation, and trimming. The results show that efficiency gains from ALS are not systematic and depend on the correction method, with the bounding approach yielding the most substantial improvements. | |
dc.format | application/pdf | |
dc.identifier.uri | https://repositorio.udesa.edu.ar/handle/10908/25824 | |
dc.language | eng | |
dc.publisher | Universidad de San Andrés. Departamento de Economía | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Evaluating efficiency gains in the Linear Probability Model | |
dc.type | Tesis | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | info:ar-repo/semantics/tesis de maestría | |
dc.type | info:eu-repo/semantics/updatedVersion |
Files
Original bundle
Loading...
- Name:
- [P][W] T. M. Eco. Pacheco, Tomás Daniel.pdf
- Size:
- 2.44 MB
- Format:
- Adobe Portable Document Format
- Description: