Evaluating efficiency gains in the Linear Probability Model

dc.contributor.MentorSosa Escudero, Walter
dc.creator.AutorPacheco, Tomás Daniel
dc.date.accessioned2025-10-13T17:45:27Z
dc.date.available2025-10-13T17:45:27Z
dc.date.issued2025-09
dc.descriptionFil: Pacheco, Tomás Daniel. Universidad de San Andrés. Departamento de Economía; Argentina.
dc.description.abstractThis paper evaluates the efficiency gains of the Adaptive Least Squares (ALS) estimator proposed by Romano and Wolf (2017) in the context of Linear Probability Models (LPM), where heteroskedasticity is inherent to the model. Using empirical applications and Monte Carlo simulations, we compare ALS to OLS and Probit estimators under three strategies for handling predicted probabilities outside the (0, 1) interval: bounding, sigmoid transformation, and trimming. The results show that efficiency gains from ALS are not systematic and depend on the correction method, with the bounding approach yielding the most substantial improvements.
dc.formatapplication/pdf
dc.identifier.urihttps://repositorio.udesa.edu.ar/handle/10908/25824
dc.languageeng
dc.publisherUniversidad de San Andrés. Departamento de Economía
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleEvaluating efficiency gains in the Linear Probability Model
dc.typeTesis
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:ar-repo/semantics/tesis de maestría
dc.typeinfo:eu-repo/semantics/updatedVersion
Files
Original bundle
Loading...
Thumbnail Image
Name:
[P][W] T. M. Eco. Pacheco, Tomás Daniel.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
Description: