Q-Learning algorithms in a hotelling model
dc.contributor.Mentor | Quesada, Lucía | |
dc.creator.Autor | Porto, Lucila | |
dc.date.accessioned | 2022-11-09T15:30:35Z | |
dc.date.available | 2022-11-09T15:30:35Z | |
dc.date.issued | 2022-11 | |
dc.description | Fil: Porto, Lucila. Universidad de San Andrés. Departamento de Economía; Argentina. | |
dc.description.abstract | What if Q-Learning algorithms set not only prices but also the degree of differentiation between them? In this paper, I tackle this question by analyzing the competition between two Q-Learning algorithms in a Hotelling setting. I find that most of the simulations converge to a Nash Equilibrium where the algorithms are playing non-competitive strategies. In most simulations, they optimally learn not to differentiate each other and to set a supra-competitive price. An underlying deviation and punishment scheme sustains this implicit agreement. The results are robust to the enlargement of the action space and the introduction of relocalization costs. | |
dc.description.abstract | Keywords: Algorithmic Collusion, Reinforcement Learning, Q-Learning, Hotelling. | |
dc.format | application/pdf | |
dc.identifier.citation | Porto, L. (2022). Q-Learning algorithms in a hotelling model. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. http://hdl.handle.net/10908/22800 | |
dc.identifier.uri | http://hdl.handle.net/10908/22800 | |
dc.language | eng | |
dc.publisher | Universidad de San Andrés. Departamento de Economía | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Q-Learning algorithms in a hotelling model | |
dc.type | Tesis | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | info:ar-repo/semantics/tesis de maestría | |
dc.type | info:eu-repo/semantics/updatedVersion |
Files
Original bundle
Loading...
- Name:
- [P][W] T. M. Eco. Porto, Lucila.pdf
- Size:
- 2.28 MB
- Format:
- Adobe Portable Document Format
- Description: