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ABSTRACT 
Puffs are localized Ca2+ signals that arise in oocytes in response to inositol 1,4,5-
trisphosphate (IP3). They are analogous to the sparks of myocytes and are believed to be the 
result of the liberation of Ca2+ from the endoplasmic reticulum through the coordinated 
opening of IP3-receptor/channels clustered at a functional release site.  In this paper we 
analyze sequences of puffs that occur at the same site to help elucidate the mechanisms 
underlying puff dynamics.  In particular, we show a dependence of the inter-puff time on the 
amplitude of the preceding puff, and of the amplitude of the following puff on the preceding 
interval.  These relationships can be accounted for by an inhibitory role of the Ca2+ that is 
liberated during puffs. We construct a stochastic model for a cluster of IP3-receptor/ channels 
that quantitatively replicates the observed behavior, and determine that the characteristic time 
for a channel to escape from the inhibitory state is of the order of seconds. 
 
INTRODUCTION 
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ligand-gated intracellular Ca2+ 
release channel that plays a central role in modulating cytoplasmic Ca2+ concentration and 
provides a link between cell surface receptors and Ca2+ release from intracellular stores. In 
addition to their regulation by IP3, IP3R´s show a biphasic modulation by cytosolic Ca2+; for 
relatively low [Ca2+] the channel open probability increases with [Ca2+], whereas it reduces at 
high [Ca2+] (1,2,3,4,5). 
 
The spatio-temporal properties of signals arising through IP3R's have been extensively 
characterized by optical imaging in Xenopus laevis oocytes (6). These studies have revealed a 
hierarchical organization of release events, ranging from [Ca2+] liberation from single IP3R's 
(“blips”), through the concerted opening of several IP3R's within a cluster (“puffs”) to global 
waves involving cluster-cluster interactions via [Ca2+]-induced [Ca2+] liberation (7). Puffs 
have also been observed in many other cell types (8,9,10,11), and appear to represent 
ubiquitous “elementary events” of intracellular [Ca2+] signaling, which can both have local 
signaling functions in their own right, and serve as building blocks from which global signals 
are constructed. 
 
It is, therefore, important to understand the mechanisms underlying the generation and 
modulation of puffs.  However, several aspects of puff dynamics still await clarification; 
most importantly, the mechanisms of puff termination and subsequent recovery of 
excitability.  Given that Ca2+ is both a ligand of the IP3R that affects its open probability and 
is the main ion carrier that flows through its pore, the Ca2+ ions that are released in the 
cytosol during a puff are expected to modulate the dynamics of a puff. Ca2+ release through a 
single IP3R in a cluster may thus induce the regenerative opening of neighboring channels, 
which subsequently close because of the inhibitory effect of high local Ca2+ levels attained 
during the puff. Additional processes, however may also affect puff termination; including 
the local depletion of luminal Ca2+ (an effect that is present in the case of sparks (12,13)), or 
the effect of counter-ions (14). 
 



In this paper we examine the effects of cytosolic Ca2+ on puff dynamics by investigating the 
distributions of intervals between successive puffs occurring at a given site. Experimental 
data were obtained by fluorescence imaging of puffs evoked in Xenopus laevis oocytes by 
continuous photorelease of IP3, and were analyzed to look for correlations between puff 
amplitudes and inter-puff intervals. We find strong dependences between puff size and inter-
puff interval which can be explained in terms of an inhibitory role of Ca2+ binding to a 
cytosolic site on the IP3R. Furthermore, by analyzing a simple model that reproduces the 
observed distributions we determine that the characteristic time for Ca2+ binding to this site is 
of the order of seconds. 
 
MATERIALS AND METHODS 
Experimental procedure 
Preparation of Xenopus oocytes 
Xenopus laevis were anesthetized by immersion in 0.17% MS-222 for 15 min and sacrificed 
by decapitation in adherence with protocols approved by the UC Irvine Institutional Animal 
Care and Use Committee.  Oocytes (stage V - VI) were manually plucked and collagenase-
treated (0.5mg.ml-1 for 30 min) before storage in Barth’s solution (composition in mM: NaCl, 
88; KCl, 1; NaHCO3, 2.4; MgSO4, 0.82; Ca(NO3)2, 0.33; CaCl2, 0.41; HEPES, 5; pH 7.4) 
containing 0.1mg.ml-1 gentamicin at 17 oC for 1–7 days before use. Intracellular 
microinjections were performed using a Drummond microinjector to load oocytes with 
Oregon Green 488 BAPTA 1 (OG-1) together with caged IP3 (D-myo-inositol 1,4,5-
trisphosphate, P4(5)-(1-(2-nitrophenyl)ethyl) ester) and EGTA to respective final intracellular 
concentrations of 40, 4, and 270µM; assuming 1 µl cytosolic volume. 
 
Confocal laser scanning microscopy 
Confocal Ca2+ images were obtained using a custom-built line-scan confocal scanner 
interfaced to an Olympus IX70 inverted microscope (15).  Recordings were made at room 
temperature, imaging in the animal hemisphere of oocytes bathed in normal Ringer’s solution 
(composition in mM: NaCl2, 120; KCl, 2; CaCl2, 1.8; HEPES, 5; pH 7.3).  The laser spot of a 
488 nm Argon ion laser was focused with a 40X oil immersion objective (NA 1.35) and 
scanned every 8 ms along a 100 µm line. Emitted fluorescence was detected at wavelengths > 
510nm through a confocal pinhole providing lateral and axial resolutions of about 0.3 and 
0.5µm, respectively.  The scan line was focused at the level of the pigment granules and 
images were collected through a cover glass forming the base of the recording chamber.  IP3 
was photo-released from a caged precursor by delivering UV light, focused uniformly 
throughout a 200 µm spot surrounding the image scan line. After imaging resting 
fluorescence for 2s, the UV light was turned on continually throughout the remainder of the 
record (1 min), with the rate of photorelease of IP3 controlled by a continuously variable 
neutral density filter.  
 
Data processing and pooling 
Fig. 1 A shows a typical experimental record in which fluorescence ratio changes, ∆F(x,t)/F0, 
are depicted using a color-code on a time-space plot (t,x). Here ∆F(x,t)≡F(x,t)-F0 and 
F0≡<F(x,t<0)>t,  where the average is performed at each spatial point, x, over a certain 
number (ca. 50) of times prior to IP3 photorelease. The relative fluorescence is used in order 
to compensate for local inhomogeneities of the oocyte or of the dye distribution (16). EGTA 
was added to the injection solution (270 µM final cytosolic concentration) to functionally 
uncouple Ca2+ release sites, resulting in discrete puffs without propagating Ca2+ waves (17). 
For example, the linescan image in Fig. 1 A illustrates puffs generated at numerous sites, and 
Fig. 1 B shows the corresponding fluorescence ratios measured at five sites.  The 



fluorescence ratio is directly related to the amount of Ca2+ -bound dye, [CaD] (16), but owing 
to the restricted time and space resolution of the imaging system such records can only 
provide information on the average concentration over a finite volume.  When the dye is not 
saturated (which is the case in these experiments: ∆F(x,t)/F0<< maximal change of ~10 in 
saturating [ Ca2+]) the spatio-temporal distribution of [CaD] should correspond about linearly 
to free  Ca2+. 
 
Analyses were done on fluorescence profiles like those in Fig. 1 B from 46 different puff 
sites. We computed the local temporal average and the standard deviation of the fluorescence 
signal at a site using windows of the order of  2s (i.e., of the order of the inter-puff time and 
much longer than a typical puff duration) and identified the onset of a puff when the 
instantaneous fluorescence ratio exceeded the average value of the corresponding window by 
3 standard deviations. The amplitude of the event, A, was taken as the maximum fluorescence 
ratio (∆F(x,t)/F0) during the puff. 
 
Ideally, we would like to work with very long records showing many release events at the 
same site. However, that was impracticable because of movement artifacts and eventual 
rundown of puffs. Instead, we grouped data from different release sites; typically with around 
13 events observed at a given site. Because of the wide variation in puff amplitudes between 
different sites (possibly reflecting differences in numbers of channels per cluster) we 
classified release sites according to the size of the largest event observed at each. Fig. 2 
shows the maximum puff amplitudes recorded from each of the 46 sites analyzed. We 
arbitrarily defined two groups of “small” (filled circles) and “large” clusters (crosses); 
representing a compromise between size of the resultant data sets and “homogeneity” of the 
clusters properties. All analyses presented here were based on events from the small cluster 
group (18 release sites and 232 puffs). Similar results regarding the dependence between puff 
amplitude and inter-puff times were obtained when the analysis was restricted to the group of 
large clusters (see Table 1).   
 
Statistical tests and parameter fitting 
Results are presented as frequency histograms of occurrence of certain subsets of events (e.g., 
puffs with amplitude within a certain range, etc). The corresponding distribution of 
frequencies of the variable of interest (e.g., amplitude or inter-puff time), Pn(x), was used to 
compute the (cumulative) empirical distribution function, F(X)=�-∞X dxPn(x). In order to 
compare two stochastic processes, we compare the distribution functions of some of the 
stochastic variables that characterize the processes. In the case of the experiments, it is the 
empirical distribution function that is obtained from the variable of interest.  In the case of the 
model we analyze in this paper, we compute it as in the experimental case, using the results 
that come from extensive numerical simulations of the stochasic process. Once we have two 
distribution functions that we wish to compare, F1 and F2 , we compute the Kolmogorov  
statistics, 

            T≡ supx�F1(x)-F2(x)�                 (1) 
Statistical significance (p-values) of differences between distributions was determined from 
lookup tables (18).  
 
In this paper we present a stochastic model that reproduces the experimental observations. To 
determine parameter values for the model, we initially divided the parameter space with a 
relatively coarse grid, performed stochastic simulations for each set of parameter values in 
the grid and computed the cumulative distribution function, Fsim , for the inter-puff time. This 
was compared with the experimentally determined one, Fexp , and the initial parameter values 



were rejected if a Kolomogorov test determined that the simulated and experimental values 
were different (p-value<0.05). Once we attained a subset of parameter values for which Fsim 
and Fexp were not significantly different, we refined the grid of parameter values and 
iteratively repeated this procedure. 
 
RESULTS 
Analysis of experimental data 
Fig.3 shows histograms of puff amplitude, A, and inter-puff time, τ, for the set of events 
analyzed in this paper ( i.e., the set of small events defined in Fig. 2). The amplitude 
distribution is asymmetric and has a maximum around 0.1 with standard deviation, σ=0.032. 
The inter-puff time distribution resembles a log-normal or Gamma distribution and has a 
maximum around 1.5s with standard deviation, σ=1.37s. This distribution is similar to the 
one obtained in (6) using pooled data from three puff sites.  
 
We analyze now the existence of dependencies between puff amplitude and inter-puff time.  
A scatter plot of the amplitude of the n-th event, An  vs. the time elapsed from the preceding 
event at the same site, τn-1≡ tn-tn-1 (with tn the time at which the n-th event occurs),  did not 
reveal any structure (data not shown).  However, various conditional distributions do display 
differences, reflecting the existence of dependences between puff amplitude and inter-puff 
time. We show in Fig. 4 the distributions of event amplitudes, An, grouped according to 
whether the elapsed time from the previous event at the same site, τn-1, was smaller than the 
first quantile, q1, of the inter-puff time distribution (τn-1<q1=1.4s: panel A) or was larger than  
the third quantile, q3 (τn-1>q3=3.27s: panel B). The conditional distributions are different: for 
“small” τn-1 the next puff, on average, has a smaller amplitude than for “large” values of τn-1 . 
 
Fig. 5 shows the corresponding distributions of inter-puff times, τn = tn+1-tn, conditional on 
whether the amplitude of the preceding puff, An, was “small” (An < q1=0.092) or “large” (An > 
q3=0.134). We again observe differences in both distributions: for small, An, the distribution 
of intervals following those puffs clusters around τn ∼1s, whereas for large, An the distribution 
peaks near τn∼3s and has a larger dispersion. 
 
To further explore the relationships between puff amplitude and inter-puff time, we computed 
the corresponding conditional distribution functions, using two different definitions of 
“large” and “small” previous inter-puff time, τn-1 or amplitude, An.  Namely, we first included 
in the sets of small or large inter-puff times, τn-1, only the 17% with the smallest values and 
the 17% with the largest values, respectively. We show the distribution functions of 
subsequent amplitudes, An, obtained in this way in Fig. 6 A (curve 1 for the set of small 
previous inter-puff times, τn-1, and curve 4 for the set of large previous inter-puff times). The 
total number of events is 40 for each set in this case. We then divided the total set of previous 
inter-puff times in two halves: 50% of the data (116 events) in each set.  We show the 
corresponding distribution functions of subsequent amplitudes in Fig. 6 A (curve 2 for the 
new set of small previous inter-puff times and curve 3 for the new set of large previous inter-
puff times). A similar analysis was done for the cumulative distribution function of inter-puff 
times, τn (Fig. 6 B). These data show that the amplitude (inter-puff time) distributions 
conditioned to large or small previous inter-puff times (amplitudes) are different, and that the 
differences are more pronounced as the maximum inter-puff time (amplitude) value in the set 
of small times (amplitudes) becomes more different from the minimum inter-puff time 
(amplitude) value in the set of large values. 
 



Table 1 summarizes the dependencies between puff amplitude and inter-puff times obtained 
for the group of large clusters (crosses in Fig.2).  In this case, the equal distribution 
hypothesis is always rejected.  

 An / τn-1 τn / An 

17% T=0.511, p-value<0.001 T=0.316,p-value=0.023 
25% T=0.437, p-value<0.001 T=0.303, p-value=0.004 
50% T=0.274, p-value<0.001 T=0.237, p-value=0.002 

   Table 1. Kolmogorov test for the conditional distributions of the group of “large” clusters 
(crosses in Fig. 2). 
  
Mechanisms underlying correlated puff behavior 
The results of Figs. 3 and 4 reveal an inhibitory effect following a puff. Namely, inter-puff 
intervals tend to be longer following large puffs; and puffs tend to be smaller following short 
intervals. Several possible mechanisms may underlie these correlations. One is that the high 
cytosolic [Ca2+] attained during a puff inhibits channels within the cluster, so that the 
amplitude and probability of occurrence of a subsequent puff recover with a time course 
reflecting the recovery of channels from an inhibited state. Other processes that might affect 
the inter-puff time include local depletion of Ca2+ in the ER lumen leading to decreased 
single channel current (19) and/or affect the channel open probability (20); or the effect of 
counter-ions that might affect Ca2+ dynamics on both the cytosolic and luminal sides (14,21). 
Under our experimental conditions we expect local luminal [Ca2+] depletion to be small (see 
e.g. (17,19,22)). In this paper we therefore explore whether the observed behavior can be 
accounted for by an inhibitory effect of the cytosolic [Ca2+] on the channels within a cluster. 
 
An idealized model in terms of individual channels 
We developed an idealized cluster model containing a finite number of channels, N, with IP3 
bound. Given that most of the time IP3 is bound to its corresponding site, even for relatively 
low values of [IP3] (see Discussion), for simplicity, we neglect fluctuations in N due to IP3 
binding and unbinding. That would only introduce some statistical noise. Each of these N 
channels can exist in two main states: inhibited or uninhibited. Unihibited channels may be 
open (during a release event) or closed (during the inter-puff time). Since we are interested in 
understanding the inter-puff time distribution, not the kinetics of the puffs themselves, we 
assume that a release event (i.e. channel open time) is instantaneous. If a channel is in the 
inhibited state it has to wait a time that is exponentially distributed with mean value 1/λ2 to 
become unihibited. An inhibited channel cannot open. An unhibited channel opens with 
probability per unit time, λ1, if all the other channels of the cluster are closed and opens with 
probability one if any other channel in the cluster opens; i.e. if one channel opens, calcium-
induced calcium release (CICR) causes all the uninhibited channels of the cluster to open 
simultaneously. Several assumptions are implicit in this model. First, a sudden increase in the 
local cytosolic [Ca2+] induces channel opening of IP3R's with IP3 bound before it can induce 
inhibition, in agreement with experimental data showing faster binding to activating site(s) on 
IP3R's than to inhibitory sites (see  e.g., (23)). Second, the amount of Ca2+ released during a 
puff is enough to open all uninhibited channels of the cluster with IP3 bound. This appears 
reasonable, given that cytosolic [Ca2+] averaged over the region of a cluster reaches values of 
the order of 10µM during a small puff (24).  The probability, λ1, on the other hand, is related 
to the probability that the necessary ions bind to one channel in the cluster inducing its 
opening. Clearly, this depends on the concentrations of agonists (IP3 and Ca2+) and although 
[IP3] can be assumed to remain constant during the experiment, the cytosolic [Ca2+] changes 
dramatically during a puff. We assume that cytosolic [Ca2+] returns close to its basal level 
relatively soon after the puff ends (in part, due to the presence of EGTA in the experiments 



we are looking at, which “balkanizes” Ca2+ signals(25)). Indeed, numerical simulations of 
how free cytosolic [Ca2+] varies upon Ca2+ release from the ER with a current of 0.05pA 
show that [Ca2+] averaged over a (20nm) 3 region around the channel's mouth drops from ~ 
40µM to less than 100nM in less than 1ms following channel closure (26) (see also (19)). 
This time is much shorter than the typical inter-puff time. Thus, the assumption that the 
cytosolic [Ca2+] is around the basal level ([Ca2+]~50nM) in between puffs is realistic. In the 
model, an unhibited channel may become inhibited in a puff with a probability, pinh, that 
depends on the number of channels that opened during the puff, No. The inhibition 
probability, pinh, is a monotomically increasing function of No such that pinh→1 as No→∞.  To 
limit the number of free parameters, we consider the exponential function, pinh(No)=1-(1 - 
a).exp(-(No-1)b), where a, and b are adjusted to match the experimental data. Similar results 
were obtained with a sigmoidal function (data not shown).  We chose pinh as an increasing 
function of No to mimic the observed inhibitory effect of puffs on the channels within the 
cluster. Specifically, we assumed that the larger No, the higher [Ca2+] at the cluster and, 
consequently, the higher the probability of channels in the cluster becoming inhibited. We 
show in Fig. 7 the system dynamics that apply when Ca2+ binding to an “activating” site is 
the rate limiting process for opening of uninhibited channels. This assumption holds for the 
IP3R if [Ca2+] is close to its basal value ([Ca2+]~50nM), as we are assuming is the case in-
between puffs.  
 
We can relate the parameters, λ1, λ2, a and b of the model to properties of single IP3R's. 
Namely, λ1 is the probability per unit time that the necessary number of Ca2+ ions binds to 
activating sites of an IP3R with IP3 bound and induce channel opening. Assuming that IP3R 
inhibition is only due to the inhibiting effect of cytosolic Ca2+ , λ2 is then the probability per 
unit time at which Ca2+ unbinds from the inhibiting site(s).  Since we find that 1/λ2 is 
relatively large, which means that it takes a relatively long time for the channel to become 
uninhibited, we can assume that the function pinh(No) is mainly determined by the stationary 
open probability at the (high) cytosolic [Ca2+] that is achieved near the channel's mouth 
during a puff. Namely, we can assume that 1-pinh(No) provides an upper bound of this open 
probability, Po([Ca2+])≤ 1-pinh(No)=(1-a)exp(-(No-1)b), so that 1-a ≥ Po([Ca2+]) and b-1 gives 
the rate at which Po decreases with with No or, equivalently, with cytosolic [Ca2+] at the high 
concentrations that are reached during the puff (see Discussion).  
 
Estimating the model parameters from the experimental data 
We adjusted the parameters of the model to minimize the value of T defined in Eq. (1) with 
F1 equal to the (cumulative) distribution function of inter-puff times obtained experimentally 
(displayed in  Fig. 3 B)) and F2 equal to the one obtained from the model. Given that we are 
not using any of the conditional distributions shown in Figs. 4 and 5 to fit the parameters, the 
subsequent ability of the model to reproduce these conditional distributions serves as a 
validation of the model.  This fitting procedure cannot provide the value of N. On the other 
hand, the values of λ1 and λ2 should be related to N (e.g., if we decrease N, we expect the 
fitted values of λ1 to get larger in order to obtain the experimentally determined mean inter-
puff time).  We could find N if we had a way to determine the relationship between puff 
amplitude, A, and number of open channels, No. If we assume that the smallest events that we 
observe correspond to No=1 and the largest ones to No=N (for the type of cluster that we are 
analyzing) and that there is a linear relationship between A and No, then we could estimate 
from Fig. 4 A), that N (the number of channels with IP3 bound) is around 4 or 5. This number 
coincides with the typical number of open channels in a puff estimated in (27). However, it is 
not completely clear that the relationship between relative fluorescence (amplitude) and 



number of open channels should be linear (19). Therefore, we decided to repeat all the 
calculations for two values of N, N=4 and N=16. 
 
For N=4, the best parameter values that we find are: λ1=0.225s-1, λ2 =0.4s-1 , a=0.8, and 
b=1.8, for which the test defined by Eq. 1 gives T=0.07 (p-value=0.22,  i.e., the hypothesis 
that the two distributions are the same cannot be rejected). For N=16, the best parameter 
values that we find are: λ1=0.043s-1, λ2 =0.67s-1, a=0.6 and b=1.5, for which the test defined 
by Eq. 1 gives T=0.08 (p-value=0.11). These pararameter values are contrasted against single 
IP3R properties in the Discussion section.  
 
Model results 
In order to check that the model in fact reproduces the inter-puff time distribution that was 
used for the fitting and to test its ability to reproduce other features of the experimentally 
determined distributions not enforced with the fitting, we performed numerical simulations 
using N=4, λ1=0.225s-1, λ2 =0.4s-1 a=0.8, and b=1.8.  We show in Fig. 8 the histograms of the 
number of open channels in a puff, No, and of the inter-puff times, τ, obtained with these 
simulations.  As expected, the τ distribution thus obtained is statistically indistinguishable 
from the experimental one (compare Fig. 8 B) and 3 B)). The Kolmogorov statitics is T=0.07, 
giving a p-value=0.22 for the equal distribution null hypothesis. A quantitative comparison of 
the No distribution and the amplitude distribution histogram is not possible at this time 
because we do not know the relationship between puff amplitude and number of open 
channels. 
 
We show in Fig. 9 the conditional distributions of the number of open channels for the sets of 
small (τ<1.4s) and large (τ>3.27s) previous inter-puff times. Although we do not know the 
relationship between observed puff amplitude and number of open channels, the way the 
histograms change as we condition them to small (A) or large (B) previous inter-puff times is 
qualitatively similar to the change observed experimentally and shown in Fig. 4. 
 
We show in Fig. 10 the conditional distributions of inter-puff times for the set of small, No≤ 
2, and large, No≥ 3, previous number of open channels, No.  Also in this case, the agreement 
with the observations of Fig. 5 is very good. Furthermore the Kolmogorov test does not reject 
the equal distribution hypothesis between the simulated conditional distributions and the 
experimental ones (p-values>0.5). 
 
 
We repeated all these computations using N=16.  Also in this case, the test defined by Eq. 1 
gives a reasonably good value, (p-value=0.11) for which the hypothesis that the inter-puff 
time distribution functions obtained with the model and with the experiments are the same 
cannot be rejected.  However, while three of the parameter values that we obtain with the 
fitting procedure are similar to the N=4 case (λ2 =0.67s-1, a=0.6 and b=1.5), the value of λ1 
(λ1=0.043s-1) is harder to justify from the point of view of the single IP3R dynamics. If we 
relate it to the rate of Ca2+ binding to n activating sites of the IP3R in the absence of inhibition 
(see Discussion), using the rates of the DeYoung-Keizer model (23) we obtain n=7, which is 
too large. On the other hand, while the various conditional distribution functions analyzed in 
this paper are qualitatively similar to the experimentally determined ones, the Kolomogorov 
tests give p-values that are not as good as in the N=4 case (p-value=0.022 for the set of small 
previous amplitudes and p-value=0.094 for the set of large previous amplitudes). For this 
reason, all subsequent results will be restricted to the N=4 case. 



 
 Model predictions and suggested further tests 
The simple model introduced in this paper explains the experimentally observed distributions 
of puff amplitude and inter-puff times in terms of the competition between two basic 
processes: inhibition and channel opening. The degree of inhibition is related to the amount 
of Ca2+ that is released during a puff and, at the single channel level, the typical timescale of 
inhibition is given by 1/λ2.  In the model, the opening of the first channel during a puff is 
triggered by random binding of Ca2+ at basal cytosolic [Ca2+] levels with a typical timescale 
given by 1/λ1. The fitting of the previous section gives us that 1/λ1>1/λ2, which means that, 
typically, each channel becomes uninhibited faster than the rate at which it is challenged by 
basal Ca2+ to become open.  Under the assumptions for which the model works, IP3 enters 
mainly to determine the effective number of IP3R's in a cluster, N, that are amenable to make 
a transition to the open state (and contribute to a puff). This number does affect the statistics 
of the cluster as a whole. It is thus of interest to analyze how the mean puff amplitude and the 
mean inter-puff times change when the balance between inhibition and channel opening are 
changed by a change in the rates at which they occur at the single channel level, or by a 
change in the number of “available” IP3R's in a cluster. 
 
In order to investigate how the various intervening factors affect puff dynamics, we 
performed numerical simulations keeping the same values as before for all parameters but 
one and investigated how the mean number of open channels at a site during a puff, <No>, 
and the mean inter-puff time at the same site, <τ>, changed.  We show in Figs. 11 A and 12 
A the results obtained for λ1=0.225s-1, λ2 =0.4s-1 a=0.8, b=1.8 and various values of N 
(N=2,3,4,5,6,7,8). N=4 corresponds to the case discussed in the previous section. We observe 
that <τ > decreases and <No> increases when N, the number of IP3R's in the cluster with IP3 
bound, increases. Thus, <τ> increases with <No> (as N increases) as shown in Fig. 12 A. 
Although we do not know the exact relationship between No and the observed puff amplitude, 
A, we do expect it to be an increasing function.  Therefore, based on the results of Fig. 12 A 
we expect the observed <τ > to increase with <A> if this is either due to a larger amount of 
IP3 or to a larger mean cluster size.  In fact, if we compute the mean amplitude and inter-puff 
time for the set of large clusters (defined in Fig. 2) we obtain that <A> is larger and that the 
mean and the median inter-puff times (mean=2.48s, median=2.26s, σ=1.37s) are smaller than 
in the group of small clusters (mean=2.36s, median=2.04s, σ=1.37s). Although this result has 
the tendency predicted by Fig. 12 A, the numerical differences are not statistically significant. 
  
 
 
We show in Figs.11 B  and 12 B the dependence of mean inter-puff time, <τ> on λ1 for N=4, 
λ2 =0.4s-1 a=0.8, b=1.8.  By increasing λ1 we are increasing the frequency at which Ca2+ ions 
can bind to the IP3R activating sites. Since channel opening also depends on whether the 
channel is inhibited or not, the net effect of increasing λ1 will thus compete with the effect of 
inhibition, whose typical timescale is 1/λ2. We observe in Fig. 11 B that <τ> decreases with 
λ1, until it reaches a plateau that depends on the value of N.  This is similar to the behavior of 
Fig. 11 A: increasing λ1 increases the inter-puff frequency, because IP3R's are challenged 
more often by the Ca2+ ions that are present in the cytosol in between puffs.  However, the 
behavior of < No>  is different in Figs. 11 A and B.  Namely, < No> decreases with increasing 
λ1 because as 1/λ1 becomes comparable with 1/λ2, the limiting process for the occurrence of a 
puff becomes inhibition rather than channel opening.  Thus, very likely, when the first 
channel in a cluster opens, most of the other channels will be inhibited because not enough 



time has elapsed (compared with 1/λ2). Therefore, on average, events become smaller in size 
than when individual IP3R's are challenged less often (smaller λ1).  As a result, in this case, 
<τ> is an increasing function of < No>, as shown in Fig.12 B). 
 
We also tested the effects of changing the probability that an uninhibited channel becomes 
inhibited during the occurrence of a puff, pinh(No)=1-(1 - a).exp(-(No-1)b). In particular, we 
observed that if pinh is increased, by either increasing a or b, while leaving the other 
parameters fixed, the mean inter-puff time, <τ> increases. The mean number of open 
channels during a puff, <No>, on the other hand, decreases when b is increased, but increases 
with a for a<0.3 and then, decreases (data not shown). The fact that <τ> increases with pinh is 
very intuitive, since a larger inhibition probability should lead to a larger mean inter-puff 
time. As in the case of Fig. 12 B), the decreasing behavior of <No> with pinh is related to the 
fact that inhibition becomes the limiting process for puff occurrence as pinh becomes large 
enough. 
 
DISCUSSION AND CONCLUSIONS 
We have analyzed sequences of “puffs” observed using optical techniques in oocytes of 
Xenopus Laevis. We have shown that there is a dependence between inter-puff time and puff 
amplitude for puffs that occur at the same site (cluster of channels) in the oocyte. Namely, we 
have determined that puffs of large amplitude are most likely followed by a long inter-puff 
time.  Besides, puffs that occur after a large inter-puff time has elapsed are most likely large.  
We have shown the occurrence of this behavior in records containing relatively small puffs 
involving the release through very few channels (IP3R's) that were evoked by a permanent 
photorelease of IP3. Given the small amplitude of the puffs, which we expect should result in 
a small local Ca2+ depletion on the luminal side, we have investigated the possibility of 
explaining this behavior in terms of the inhibiting role that cytosolic Ca2+ can exert on IP3R 
's. To this end, we constructed a very simple stochastic model that yet retains the main 
features of clusters of IP3R's. The stochastic model reproduces the observed behavior 
quantitatively, and provides some interesting predictions regarding the way the observed 
behavior would change by varying the Ca2+ basal concentration or [IP3]. 
  
The simple stochastic model of puff dynamics that we have introduced in this paper is 
characterized by three probabilities which can be related to single IP3R properties: λ1, the 
probability per unit time that an IP3R with IP3 bound opens at basal Ca2+ levels; λ2, the 
probability per unit time that an (inhibited) IP3R loses the Ca2+ ions that induced its 
inhibition; pinh(No), the probability that an IP3R becomes inhibited during a puff.. The model 
is also characterized by the maximum possible number of “active” IP3R 's in the cluster, N 
(i.e., the number of IP3R 's with IP3 bound). We fixed a value of N and determined the values 
of the parameters that characterize the three probabilities by a fitting procedure. Most 
reasonable values of λ1 and λ2 were obtained for N=4. 
 
Assuming that the rate of Ca2+ binding to one activating site is kon

act and that Ca2+ binding to 
n (independent) activating sites is needed to induce channel opening (provided that IP3 is 
already bound and that there is no Ca2+ bound to the inhibitory sites of the channel), then we 
can relate λ1 and kon

act by: λ1~ ([Ca2+]/Kd) n-1kon
act[Ca2+], where Kd is the dissociation constant 

of each (activating) Ca2+ binding site. The fitting procedure with N=4 gave λ1=0.225s-1. This 
value is compatible with the one that is obtained using models of the IP3R for [Ca2+]=50nM 
and n>1.  For example, if we use the DeYoung-Keizer model (28) we determine that for n=3 



it is ([Ca2+]/Kd) n-1kon
act[ Ca2+]+]=0.37s-1. If we repeat this calculation using the rate, λ1, 

determined with the fitting with N=16, λ1=0.043s-1, we obtain n=7, which is too large.  
 
 The value of λ2 obtained with the fitting with N=4, λ2 =0.4s-1, implies that the mean time that 
a channel remains inhibited is of the order of 2.5 s. If inhibition is due to Ca2+ binding to 
some cytosolic sites, 1/λ2 should provide a lower bound for the mean time that an IP3R 
remains closed in single channel experiments when cytosolic [Ca2+] is of the order of the 
values that it achieves during a puff (which we estimate as ~50-120µM in a ~(20nm) 3 region 
around the channel's mouth). 1/λ2=2.5s is much larger than the mean closed time reported in 
(30) for [Ca2+]=100µM and [IP3]=10µM with or without ATP. However, it could be 
compatible with the behavior at [IP3]=33nM shown in this paper (mean closed times at 
[IP3]=33nM, are shown up to [Ca2+]=3µM only and they are of the order of 0.1s (30)). It is 
compatible with the values of the model presented in (31), in which the time for the recovery 
of IP3R 's from Ca2+-induced inactivation was estimated to be between 1.25s and 2.6s. 
Similar conclusions can be obtained using the value of λ2 determined with the fitting with 
N=16 (λ2=0.67s-1).  
 
Given that the time it takes for a single inactivated IP3R to become uninhibited (~2s) is much 
longer than a typical puff duration (~0.05s), pinh is both the probability that a single active 
IP3R becomes inhibited during the time duration of a puff or the fraction of active IP3R 's that 
become inhibited during a puff. Given the relatively short duration of a puff we expect pinh to 
be smaller than the fraction of channels that are inhibited under a stationary condition of high 
[Ca2+], as the one achieved during a puff (50-120µM). In fact, it can be proven that pinh is 
smaller than the stationary value using the rate of [Ca2+] binding to the inhibitory site of the 
DeYoung-Keizer model and the rate of inhibition release that we obtain, λ2. The stationary 
probability of a channel being inhibited, on the other hand, is smaller than the stationary 
probability of being closed. Therefore, we can assume that pinh ≤ 1- Po([Ca2+]) with Po([Ca2+]) 
the stationary open probability at [Ca2+]~50-120µM, from which we get that Po([Ca2+])≤ 1-
pinh(No)=(1-a)exp(-(No-1)b). Therefore, 1-a is an upper bound for Po at the cytosolic [Ca2+] 
that is reached when a single channel opens, while b-1 modulates the rate at which Po 
decreases with cytosolic [Ca2+] (actually, with No). The parameters obtained with the fitting, 
a=0.8, b=1.8, imply that the upper bound, (1-pinh), decreases from 0.2 (for No=1) at a 
cytosolic concentration, [Ca2+]≈40µM, to 0.001 (No=4) at [Ca2+] between 120 and 160µM. 
These upper bounds are compatible with the observations of (3) at [IP3 ]=2µM and of (5) at 
[IP3]=33nM. It is impossible to know the [IP3] during the experiments in which IP3 is photo-
released, therefore it is hard to validate or reject the model based on the determined behavior 
of pinh (No). On the other hand, single IP3R observations seem to be contradictory. However, 
we have suggested in (20) that one way to reconcile the observations of (3) and (5) is to 
assume that single IP3R open proabibility is modulated by luminal Ca2+.  If the local [Ca2+] 
on the luminal side does not vary much during the time course of each experiment (which is 
one of the assumptions of our model, given the small amplitude of the puffs that we analyze), 
our simple model could then be used to assess the effect of luminal Ca2+ on single IP3R. 
Similar conclusions can be obtained using the values of b and a determined for N=16.  
 
We have also determined how the observed inter-puff time distributions and mean number of 
open channels during a puff would change if some of the parameters of our model were 
changed. The greatest difficulty in trying to test these predictions experimentally is the ability 
to introduce the necessary changes in a very controlled way so that the main assumptions of 
the model are not violated (if they are, we cannot guarantee that the conclusions still hold). In 



particular, we have analyzed what could happen if the number of IP3R's with IP3 bound 
increased. Increasing this number could be achieved by increasing the light intensity with 
which IP3 is uncaged during the experiment. That would serve as long as waves are not 
induced or the average Ca2+ level in between puffs does not increase too much compared with 
its basal value. We obtained that, in the model, the mean inter-puff time, <τ>, decreased and 
the mean number of open channels during a puff, <No>, increased with N. Based on these 
results we concluded that <τ> should increase with  the mean puff amplitude <A> and this 
would occur both due to a larger amount of IP3 or to a larger mean cluster size. In fact, we 
obtained some encouraging results by computing the mean puff amplitude and inter-puff time 
for the set of large clusters, for which we obtained a larger <A> and a smaller <τ> than for 
the set of small clusters, although the differences were not statistically significant. 
 
The fact that 1/λ1>1/λ2 (a relation that we obtain from the fitting), means that, typically, each 
IP3R becomes uninhibited faster than the rate at which it is challenged by basal Ca2+ to 
become open. We then used the model to investigate what its predictions were if we changed 
this inequality, namely, if λ1 was increased leaving the other parameters fixed. We obtained 
that the mean inter-puff time decreased while the mean number of open channels during a 
puff decreased. The first observation is easy to understand: inter-puff frequency increases 
with λ1 because IP3R 's are challenged more often to become open. The other observation is 
due to the competition between channel challenging by basal Ca2+ (characterized by λ1) and 
channel inhibition (characterized by λ2).  Namely, as 1/λ1 becomes comparable with 1/λ2, the 
limiting process for the occurrence of a puff becomes inhibition rather than channel opening. 
Therefore, if 1/λ1 is too small, the opening of the first channel in a cluster cannot induce the 
opening of many others because most of them are still inhibited.  In this way, events tend to 
be smaller in size than when λ1 is smaller. Testing this prediction experimentally is not so 
easy, because it is hard to alter λ1 individually. In principle, it could be done by changing the 
basal Ca2+ level, however, it cannot be done by increasing this level by large amounts. 
Namely, for the assumptions of the model to still hold we need Ca2+ binding to the activating 
sites to be the limiting process for channel opening when channels are not inhibited 
(something that would be violated if the rates of Ca2+ and IP3 binding become comparable) 
and we need Ca2+ -induced inhibition to be very rare at basal Ca2+ levels.  Decreasing the 
basal [Ca2+], on the other hand, would not affect our assumptions. Therefore, one possibility 
would be the use of a slow buffer, like EGTA, that would not affect the values of [Ca2+] that 
could be attained around the channel's mouth during the opening of a single IP3R, but that 
could alter the basal [Ca2+] level between puffs (varying λ1). In fact, the use of moderate 
amounts of EGTA induces “event potentiation”, i.e.an increment of puff amplitude, as 
reported in (25).  It is not clear that this observed potentiation is related to a more likely 
release of inhibition in between puffs due to a lower amount of basal Ca2+ determined by the 
presence of EGTA, mainly because the experimental observation corresponds to events that 
occur almost simultaneously at many sites. The use of EGTA, on the other hand, 
“balkanizes” Ca2+ signals (17), which can be related to the decrease of λ1 that could result 
from a lower cytosolic [Ca2+] between puffs.  Therefore, these two observations seem to fit 
within the dual role that we envisage for cytosolic Ca2+ in our model. The use of relativaly 
large amounts of BAPTA in the experiments of (25), on the other hand, induce an almost 
permanent Ca2+ release from internal stores, where individual puffs cannot be distinguished. 
In principle, very large amounts of BAPTA could alter the distribution of cytosolic Ca2+ 
within the cluster, even when a single IP3R is open. Therefore, the presence of BAPTA could 
not only change “λ1”, but also decrease pinh (No) for each value of the number of open 
channels, No. Our model cannot describe a situation in which cytosolic Ca2+ does not go back 



to its basal value almost immediately after the occurrence of a puff. However, the fact that by 
decreasing pinh, the mean inter-puff time decreases is in accordance with the observation of an 
almost permanent release of Ca2+ in the presence of large amounts of BAPTA. The effect of 
assuming that single IP3R inhibition by cytosolic Ca2+ is moderated (due to the presence of a 
fast buffer like BAPTA) should be similar to the effect of assuming that more channels with 
IP3 bound are present in the cluster. In fact, we observe that, according to the model, both the 
mean inter-puff frequency and the mean number of open channels during a puff increase with 
increasing N. Although not completely conclusive, an analysis of the subset of clusters that 
displayed the largest puff amplitudes indicates that this is indeed the case. 
 
Even though simple, our model allows the extraction of single IP3R information from the 
analysis of experiments in which several IP3R 's work concordantly to generate a puff.  In this 
respect, the existence of an inhibited state with mean time duration of the order of a few 
seconds is a feature that could be contrasted against mean closed times of single IP3R 's, as 
we did before. Different values of mean closed times have been reported in the literature for 
the same amount of IP3, which we have interpreted in (20) as due to the use of diverse 
amounts of luminal Ca2+ in the various experiments. Mean closed times are also dependent 
on [IP3], which is a variable that is hard to know in optical experiments.  If the assumption 
that luminal Ca2+ remains approximately constant during the time course of the experiments 
that we analyze is correct, then we can determine with which values of [IP3] and luminal 
[Ca2+] the parameters of our model are compatible. Thus, our model can help us build a 
comprehensive picture of single IP3R dynamics. However, IP3R inhibition due to cytosolic 
Ca2+ is not the only possible explanation behind the inter-puff time and puff amplitude 
dependence that we report in this paper. Namely, the fact that smaller puff amplitudes are 
observed if not enough time has elapsed from the previous one could also be due to a local 
depletion of luminal Ca2+ that would result in a smaller single channel current.  A change in 
luminal Ca2+ could also affect the open probability of the IP3R 's. In the case of sparks in 
myocytes, in which Ca2+ release from internal stores occurs through ryanodine receptors, 
most experimental evidence points to the role of luminal Ca2+ as a modulator of single 
receptor's open probability as the basic effect that signals spark termination and that 
determines the refractory time (12,13). Right now, we cannot rule out that a similar control is 
taking place in oocyte's puffs too. Comparing the values of λ1 and λ2 obtained with our model 
with the values that can be determined from single IP3R experiments could also be used to 
validate or reject the hypothesis that cytosolic Ca2+ is the only responsible for the inter-puff 
time puff amplitude dependence reported in this paper. At this stage, more experiments and 
analyses are necessary to arrive at a definite conclusion. In particular, experiments in which 
luminal Ca2+ dynamics is altered (e.g., via the inclusion of certain buffers) would help us 
assess the role of luminal Ca2+ on our observations.  In any case, we think that our approach 
sheds light on the unveiling of the elusive behavior of IP3R 's in their native environment. 
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FIGURE LEGENDS  
 
Fig 1.  A) Linescan image illustrating puffs evoked by sustained photorelease of IP3. The y 
axis represents distance along the scan line, and time runs from left to right. Increases in 
fluorescence ratio (∆F(x,t)/F0) are depicted on a pseudocolor scale, with ‘warmer’ colors 
corresponding to increasing ratio (increasing free [Ca2+]). The UV photolysis light was turned 
on about 10 s before the beginning of the record.  B) Traces show fluorescence profiles 
monitored from 5 of the puff sites in (A). Arrowed line illustrates the measurement of elapsed 
time τ between two successive puffs. 
Fig. 2. Maximum puff amplitude at each site. 
Fig. 3. Histograms of puff amplitude, A (A) and inter-puff time, τ  (B). 
Fig. 4. Puff amplitude (An) histogram conditional to: (A) τn-1 <1.4s ; (B) τn-1 >3.27s.  The 
differences in the distribution functions are statistically significant (p-values<0.001).   
Fig. 5. Inter-puff time (τn) histogram conditional to: (A) An <0.092 ; (B) An >0.134 .  The 
differences in the distribution functions are statistically significant (p-values<0.04). 
Fig. 6. (A) Conditional amplitude distribution function for the sets of small previous inter-
puff times, τn-1, containing the 17% (curve 1) and the 50% smallest values (curve 2) of τn-1 
and for the set of large previous inter-puff times containing the 17% (curve 4) and the 50% 
largest values (curve 3) of τn-1. In both cases the differences in the distribution functions are 
statistically significant (p-values<0.002). (B) Similar to (A) but for the inter-puff time 
distribution function conditional to small or large values of the previous puff amplitude, An. 
The various curves correspond to the sets containing the 17% smallest (curve 1), the 50% 
smallest (curve 2), the 17% largest (curve 4) and the 50% largest (curve 3) values of An. The 
Kolmogorov test gives p-value=0.04 comparing curves 1 and 3, and 0.18 for 2 and 4. 
Fig. 7. A simple model of cluster dynamics in terms of individual channels. Random binding 
events of Ca2+ ions to activating sites on IP3R are marked by crosses.  If the channel is 
inhibited (depicted with dashed lines), nothing happens. If the channel is uninhibited 
(depicted with solid lines), it opens, resulting in opening of all other uninhibited channels in 
the cluster to generate a puff. During each puff, some of the uninhibited channels become 
inhibited, with a probability that is a (saturating) increasing function of the puff amplitude 
(characterized by the number of channels that opened during the puff, No). At any time, an 
inhibited channel may spontaneously become uninhibited (indicated with a solid black circle) 
with a probability per unit time, λ2. The schematic illustrates a cluster of 5 channels, which 
generates 3 puffs involving varying numbers of open channels. 
Fig. 8. Histogram of number of open channels during a puff (A) and of inter-puff times (B) 
obtained from stochastic simulations of our model using N=4,  λ1=0.225s-1 ,  λ2=0.4s-1 a=0.8 
and b=1.8.   
Fig. 9. Histograms of open channels, No conditional to “small”, τn-1 <1.4s , (A) and “large”, 
τn-1 >3.27s, (B)  previous inter-puff times. 
Fig. 10. Conditional distributions of inter-puff times, τ  for the set of small, No ≤ 2 (A) and 
large, No ≥ 3 (B)  previous number of open channels. 
Fig. 11. (A) Mean number of open channels during a puff, <No> (crosses) and mean inter-
puff time, <τ> (asterisks) as a function of the number of functional channels in the cluster, N.  
(B) Mean number of open channels during a puff, <No> (crosses) and mean inter-puff time, 
<τ> (asterisks) as a function of the rate of Ca2+ binding to a channel in the cluster, λ1. 

Fig. 12. Mean inter-puff time, <τ>, as a function of the mean number of open channels during 
a puff, <No> for N=2, 3, 4, 5, 6, 7, and 8 (A) and for various values of λ1  (B). 
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