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PRICING AN INSURANCE AGAINST INVESTMENT YIELD 

DEVIATIONS FOR ARGENTINE PENSION FUNDS BY A 
QUASI MONTE CARLO METHOD 

JEL classification code: G13, Gl8, G23 

Keywords: insurance, pension funds, call spread, Quasi Monte-Carlo. 

Abstract In this paper a Quasi Monte-Carlo method, based on Halton se- . 
quences, is used to price an insurance on profit deviations for the Argentine 
pension funds. The insurance is replicated as a 3D European call spread type 
option, and the problem of pricing this option is solved in continuous time. 
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1 Int:rod uction 

The pension funds (PFs), managed by private firms called Administradoras 
de Fondos de Jubilaciones y Pensiones (AFJPs), were created in Argentina, in 
1994, by the Law 24.241, which is the main legal frame that, although recent 
modifications, still regulates their activities. 
To protect the affiliates from excessive volatility and dispersion in returns 
among the PFs, there are minimum return requirements relative to the weighted 
average performance of all PFs over a twelve months period. If the return of a 
PF is less than 70% of the weighted average or if it is lower than the weighted 
average minus two percentage points, whichever results in a greatest shortfall, 
the AF JP managing that fund is required to make up for the difference. The 
AF JPs do this by transferring cash and other assets from a reserve fund of 
their property to the PFs. 
In November 2001, Argentina's National Administration issued a new a reg
ulation modifying the law, namely the decree Nr. 1495/01. As a result, the 
AF JPs will be allowed, starting during the first half of 2002, the possibility of 
partially or totally constitute the required reserve funds through a bank guar
antee. The same decree reduced the required value of the reserve funds from 
2% of the total value of the PFs, and a minimum value of 3 million Argentine 
pesos (AR$), to 1% of the PFs, anda minimum value of 1.5 AR$. A previ
ous attempt of introducing the bank guarantee as an alternative for funding 
the required reserves, was the suspended decree Nr. 1306/00, intended to be 
applied startiffi · September 2001. For an analysis of the consequences the 
decree Nr. 1~,6 · I~hould had brought on the AFJP's decisions concerning 
reserves, we r.,.6.. ~,11,. ader to Cané de Estrada (2001). 
The bank grw~~ ,, ' e · .d behave as an insurance on yield deviations, and to 
value its prt~J we r(, it as a 3D European call spread option. We solve 
the problf¡~ }h c_oné-_ e, an_d ca~culate t_he price using a Quasi Monte-
Carlo ( ort);,g'w L .

1 
seré 1mencal mtegrat10n method, based on Halton 

sequences. 
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per is organized as follows. In Section 2 we introduce 
, :.1íon 3 the pricing method is outlined. Section 4 includes 

, of low discrepancy methods, and the definition of Halton 
1 

~·, on 5 contains the numerical results, and in Section 6 we present 

2 The Valuation Problem 

In the practice, the return deviation of a PF, denoted by D, is computed 
monthly as 
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D = R1 -R2, 

where R2 is the return of a PF, and R1 is a benchmark given by 

R1 = min(0.7Average Return, Average Return - 2%)]. 

The return R2 of a particular PF, calculated monthly, is defined as 

(1) 

where T coincides with the end of a month, S2 (T) is the average price of the 
fund's share over the month, and .6.T = 1 year. S2 is obviously a tradable. 
The minimum return R1 can be exactly replicated as the return of an index 
S1, 

Ri (T) = S1 (T) - S1 (T - .6.T) = S1 (T) _ 1 (2) 
S1 (T - .6.T) S1 (T - .6.T) 

where T and .6.T are the same as in (1 ). 
In what follows we will assume that the reserves are totally integrated through 
the bank guarantee, which is agreed monthly, and gives the PF the right to 
receive, at the end of the month, a payoff equivalent to 

P ff _ { max(O, D)P, if DP < E; 
ayo - E if D P 2: E, (3) 

where P denotes the total PF shareholders fund at the expiry date in AR$, 
and E are the required reserves given, as a function of P, by 

E= max(AR$1, 500,000; 0.01P). 

The payoff (3) can be written as the payoff of the European option 

- max [O, (R1 (T) - R2(T)) P(T) - E(T)], (4) 
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for the expiry time T = 1 month. After replacing (1) and (2), equation {4) 
becomes 

(5) 

where S3 denotes the random variable corresponding to the total PF share
holders· fund. 
We will work in a continuous time framework, and we will salve the general 
problem of pricing an European call spread option on 3 underlyings, Si(t) 
(i = 1, 3), with payoff given by (5) . 
Our assumptions are: 

3 

i) Si(t), i = 1, 3, follow lognormal diffusions 

(6) 

where Wi ( i = 1, 3) are corrclated standard Brownian motions with drifts 
µi, volatilities cri, and correlation matrix :E . 

ii) The risk-free rate r is a constant. 

iii) There is no credit-risk. 

The pricing method 

Sorne financia! derivatives in n dimensions can be evaluated by computing an 
n-dimensional integral. 
For an European non path dependent multi asset option over log-normal un
derlyings, we have the following integral formulation that gives the value V of 
the option as a function of the underlyings S 1, .... Sn at time t (see Barrett et 
al. (1992) and Wilmott (1998)) 

V(S1 · · · S t) = e ~1r • • · 1 n e-½aT¿;-1°'dS' · · · dS' 
-r(T-t)(? (T _ t)) - n/2 ¡00 ¡00 G(S' ... S') 

, n, ( ) ! S' S' 1 n, 
CT¡ • · · CTn Det:E 2 0 0 l • . . n 

(7) 
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where 

(i = 1 · · · n) 
' ' ' 

G(S1, S2,---,Sn) is the payoff, r is a constant interest rate, o-1 , . .. , O-n are the 
volatilities, and :E is the correlation matrix for the n assets. 
Since the random variables S1 , · · · , Sn are log-normally distributed, the value 
of the option given by (7) can be rewritten as 

V(S1, · · · Sn, t) = e-r(T-t) 1-: · · · 1-: G(S~, · · · , S~)p(</>1, · · · , <Pn)d</>1 · · · d</>n, 

(8) 

where p(</>1, · · · , </>n) is the probability density function for the n correlated 
Normal variables </>1 , · · • , <Pn, with zero mean and unit variance (cfr. Wilmott 
(1998)). In most of the cases, these integrals have no analytic solution and 
must be computed numerically. 
Theoretical and numerical results in Spanier et al. (1994), Paskov (1994), 
Paskov et al. (1995), and Bruno et al (1999), allow to affirm that approxima
tions to these integrals using deterministic sequences are more accurate and 
faster to compute than the basic Monte-Carlo method. 
The price of an European call spread option with a payoff given by (5) may be 
written as the integral (8) for n = 3, and G(S1, S2, S3) replaced by (5), and 
the problem of approximating this integral can be effi.ciently solved by using a 
Quasi Monte-Carlo method. 

4 Quasi Monte-Cario Methods 

The Monte-Carlo technique to calculate integrals uses random points, and in 
its application it is crucial to generate adequate random samples. Its success 
is related to the quality of the random samples, and here quality means how 
well these samples exhibit a real randomness. Due their important role, the 
generation of random numbers or random vectors has become a fundamental 
issue in the development of these techniques. 
The Monte-Carlo integration methods have severa! advantages when compared 
to classic formulae: (1) they may be applied to a very general class of functions; 
(2) the error in the speed of convergence is essentially independent of the 
dimension of the problem; (3) the error may be easily estimated "a posteriori" . 
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However, serious drawbacks are also associated with them. Despite the fact 
that the speed of convergence <loes not depend on the dimension, it is too slow. 
Moreover, there are practica! problems in the construction of random samples. 
In the practice, we use the so called pseudo-random numbers or vectors, gener
ated by a computer through a completely deterministic algorithm, and when 
pseudo-random numbers substitute random samples it is not obvious that the 
statistical analysis of the error holds. 
From these considerations, the statistical analysis of the error was dismissed, 
and, instead, the emphasis was placed on rigorous bounds to the absolute 
integration error. Therefore, what becomes relevant is that the samples were 
distributed as uniformly as possible, not their real randomness. The role played 
by sequences distributed in this way is to assure that, for an enough wide class 
of functions, the integration error may be made as small as required. The 
idea of using selected deterministic nodes is the starting point of the Quasi 
M onte-Carlo integration methods. 
A Quasi Monte-Carlo method (cfr. Niederreiter (1992) and Spanier et al. 
(1994)) may be described, in a simple way, as a deterministic version of a 
Monte-Cado method, in the sense that the random samples are replaced by 
selected deterministic points. The selection criterium depends on the particu
lar problem under study, and the main goal is to choose points for which the 
deterministic error bound is less than the Monte-Cado probabilistic error. 
To estímate the magnitude of the quadrature error as a function of the sample 
size it is necessary to introduce the discrepancy (a concept that arises in number 
theory), a quantitative refinement of the concept of a uniform distribution. It 
measures the deviation from uniformity of an n-dimensional set of numbers, 
and its usefulness consists in providing, for enough regular integrands, an "a 
priori" higher bound for the integration error. Although the problem of finding 
the n-dimensional set of numbers that has the lower discrepancy is still open, 
severa! low discrepancy sets are already known, e.g. Halton, Sobol, and Faure 
sequences, amongst others (cfr. Paskov et al. (1995), Faure (1982), Tezuka 
(1994), and Tezuka (1991)). 

4.1 The Halton Sequences 

For integers n 2 O and a prime number b 2 2, let us expand each integer nin 
terms of the base b, with m = [logb n] , 

m+l 

n = a1 (n) + a2(n)b + · · · + am+1bm = ¿ ai(n)bi-l, 
i=l 

where O~ ai < b and am+1(n)-=/ O. 
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The N-point Halton sequence for a given basis b in 1 dimension is 

where 

. m+l 

4lb(n) = ¿ aj(n)b-j, n = 1, · · · ,N. 
j=l 

. The Halton sequence in S dimensions is 

with b1, b2, · · · , bs prime. 
Figures 1 and 2 illustrate the covering of the unit square by 10,000 pairs of Hal
ton points, in basis 2 and 3, and 10,000 pairs of a pseudo-random realization, 
respectively. The latter evidences a lack of uniformity. 

<lnsert Figs 1 & 2> 

4.2 Discrepancy 

The Discrepancy is defined to give a quantitative measure of the uniformity 
of the covering of an interval. For a sequence of N points X1, X2 , • · · , XN in 
Is= [O, 1]8

, S ~ l, and subintervals 

s 
J = Il[ü,ni], where i = 1, · ·· ,S for O< ni :S 1, 

the Discrepancy is ( cfr. Niederreiter (1992)) 

where A(J, N) is the number n, O :S n < N, with Xn E J, i.e. the number of 
points in the sequence {Xn} that lie in J, V(J) is the volume of J, and the 
supremum is taken over all the subintervals J. 
A Low Discrepancy Sequence (Halton, Sobol, Faure, etc.) is a sequence X1, X2 , · · · , XN 
in [O, l)B such that, for ali N > 1, its discrepancy satisfies 
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D(S) < e (log N)8 

N - s N ' 

where the constant Cs only depends on the dimension S. 
The Discrepancy for the first N points of a Halton sequence is given by (cfr. 
Tezuka ( 1994)) 

where 

D(S) - C(b b · · · b ) (log N)8 
N - 1, 2, , S N , 

s b· 
C(b1, b2, · · ·, bs) = II !7;· 

i og i 

5 Numerical Results 

The approximated numerical solution is calculated by computing the integral 
(8) for n = 3, and the payoff given by (5). 
The integration points in ( -oo, oo) are generated from Halton sequences in 
basis 2, 3, 5 and 7 by the Box-Muller method. (see Knuth (1981)), and a 
Cholevsky factorization. 
To estimate the log-volatilities O'i ( i = 1, 3), and the correlation matrix ~, 
we used seven years of historical monthly data of the share for each PF, and 
of the index corresponding to the minimum return. The log-volatilities were 
estimated by the Exponentially Weighted Moving Average (EWMA) method. 
Furthermore, we have used a time step t::.t =l month, and an annual risk-free 
rate r = 4.5%. 
The convergence of the method, with the number N of integration points 
varying between 10,000 and 1,000,000, may be observed in Figures 4 and 5, 
that show the results obtained for Consolidar and Nación, two PFs that in 
December 2001 exhibited good an<l bad performances, repectively. 

< Insert Figs 3 & 4 > 

The prices of the insurance, calculated with N = 400, 000, for eleven PFs, 
and the nineteen last months for which data were available, are summarized in 
Tables 1 and 2. For each PF, the second row corresponds to the price written 
as a percentage of the required reserves at the last day of the previous month. 
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< Insert Tables 1 & 2> 

The fundamental characteristic that we found on the monthly cost of the bank 
guarantee is its very high volatility. Meaning that in many cases its cost 
in creases by a factor of one hundred in a span of two or three months ( see, for 
example, Orígenes between Sep-00 and Nov-00) . 
For asserting the convenience of choosing or not the bank guarantee as a re
placement of the assets in the reserve funds, we need to compare its cost with 
the opportunity cost of funding the reserves in the old fashioned way. The 
average cost of opportunity on an annual basis for these firms ( the AF JPs) lies 
within a range that goes from 15% to 20% of the reserve funds. 
As a result of these figures, Tables 1 and 2 show that the alternative provided 
by the bank guarantee would be clearly convenient for Arauca, Consolidar, 
Máxima and Previsol. On the other hand, while the bank guarantee results 
inconvenient for Profesión, Siembra and Orígenes, it becomes extremely ex
pensive for Nación, Futura, U nidos and, in the last months, for Prorenta. 
Another peculiarity of the bank guarantee is that, during sorne period of the 
observations, its cost descends to almost nothing for all PFs. This fact is 
associated with the formula for calculating the minimum required return, which 
becomes increasingly lower than the average return after the latter surpasses 
6,67%. Note that the period referred to (from Jul-00 to Oct-00), corresponds 
to high positive average annual returns, while most of 2001 exhibits negative 
or poor average annual returns. 

6 Conclusions 

In this paper we applied a low discrepancy method, based on Halton sequences, 
to estimate the cost of insurance on profit deviations for the Argentine Pension 
Funds, during a nineteen months period, and found that the result of this 
exercise provides sorne interesting insights: 

• We found that this new alternative provided by Argentine pen
sion fund's legislation would be profitable for sorne Pension 
Funds. Compared to the cost of funding the reserves through the stan
dard mechanism, the bank guarantee resulted cheaper for four out of 
eleven pension funds studied. 

• We found a very high volatility on insurance prices, which in
troduces a potential solvency risk after replacing asset reserves 
with the bank guarantee. The volatility in the monthly cost of the 
insurance, crea tes a new risk of bankruptcy for AF JPs. The danger of 
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becoming exposed to this bankruptcy risk is particularly high during long 
periods of high average returns, when the AF JPs may delude themselves 
on the cheapness of the insurance and be unprepared for large payments 
in the future. 

• The very high level of sensitivity of the insurance premium 
to the relationship between a fund's performance and the en
dogenous benchmark magnifi.es the prevailing incentives within 
the industry. The behavior commonly referred to as "flock effect", 
derived from the existence of a minimum return linked to an endoge
nous benchmark, is amplified. With the bank insurance, AF JPs are not 
only penalized when they fall below the mínimum return, but also when 
they approach it ( even still being far) through the rise in the cost of the 
insurance. 
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---
-- Table l. Prices in AR$, calculated with N = 400, 000, for Arauca, 

Consolidar, Futura, Máxima, and Nación 

,,....... 

- Arauca Consolidar Futura Máxima Nación 

- June-00 49,091 332 352,270 511,620 292,560 
0.45% - 0.00% 12.34% 1.85% 2.32% 

- July-00 38,365 105 175,400 382,310 637,570 - 0.33% 0.00% 5.94% 1.33% 4.88% 

- Aug-00 22 o 482 606 971 - 0.00% 0.00% 0.02% 0.002% 0.007% -- September-00 110 o 1,257 1,807 84 
0.001% 0.00% 0.04% 0.006% 0.001% 

,...._ , October-00 1,575 13 15,328 23,960 1,022 

- 0.01% 0.00% 0.50% 0.08% 0.01% 

- November-00 30,711 5,925 315,430 330,940 35,289 ,...._ 
0.24% 0.02% 10.53% 1.11% 0.26% -- December-00 65,496 23,629 406,670 354,870 273,310 

0.51 % 0.06 % 13.72 % 1.19 % 1.98 % -- January-01 65,938 43,811 278,460 200,740 525,230 - 0.49% 0.11% 9.17% 0.65% 3.69% 

,-. 
February-01 82,979 168,790 345,520 241,380 428,180 - 0.57% 0.39% 10.64% 0.73% 2.78% 

March-01 76,935 131,720 362,160 243,650 386,540 - 0.54% 0.31% 11.52% 0.75% 2.57% -
,...._ April-01 63,459 71,900 281,340 268,240 834,200 

- 0.44% 0.17% 9.02% 0.83% 5.58% 

- May-01 44,081 117,670 307,340 364,430 2,551,100 - 0.30% 0.28% 9.82% 1.12% 16.99% 
,-. 
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--- Table l. ( continuation) 

-
,...._ 

Arauca Consolidar Futura Máxima Nación ,...._ 

June-01 115,630 189,590 266,060 426,890 2,832,300 - 0.77% 0.44% 8.39% 1.29% 18.55% 

July-01 81,199 116,120 276,940 459,570 2,050,100 
,-. 0.53% 0.26% 8.75% 1.37% 13.33% 

-- August-01 115,340 48,180 299,350 262,480 4,601,800 
0.79% 0.12% 10.17% 0.83% 31.98% -

September-01 126,210 31,439 374,830 250,210 4,879,000 

- 0.83% 0.07% 12.38% 0.76% 32.60% 

October-01 183,920 15,497 471,400 259,590 4,519,500 - 1.22% 0.04% 16.05% 0.81% 30.85% 

- November-01 280,230 9,480 563,950 194,900 3,616,200 - 1.87% 0.02% 19.60% 0.61% 24.97% -- December-01 294,250 5,361 504,690 129,770 1,982,600 

- 2.03% 0.01% 18.36% 0.43% 14.19% 

-----------
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Table 2. Prices in AR$, calculated with N = 400, 000, for Orígenes, 

-- Previsol, Profesión, Prorenta, Siembra, and Unidos 

--- Orígenes Previsol Profesión Prorenta Siembra Unidos --- June-00 718,560 1,112 54,452 391 80,086 807,990 
2.39% 0.03% 3.63% 0.01% 0.30% 53.87% ,....._ 

- July-00 658,430 996 65,244 8 63,751 315,390 - 2.11% 0.02% 4.35% 0.00% 0.23% 21.03% 
,....., 

Aug-00 1822 o 2631 o 82 2,267 - 0.01% 0.00% 0.18% 0.00% 0.00% 0.15% 

- September-00 12,676 5 4,149 o 615 5,226 
0.04% 0.00% 0.28% 0.00% 0.00% 0.35% 

- October-00 139,530 274 15,489 o 9,173 58,803 
0.43% 0.01% 1.03% 0.00% 0.03% 3.92% 

November-00 1,252,400 12,648 101,180 5 275,520 384,280 - 3.85% 0.29% 6.75% 0.00% 0.95% 25.62% 
,...._ 

December-00 1,557,200 34,782 124,960 218 668,750 254,920 
4.83% 0.81% 8.33% 0.005% 2.32% 16.99% 

January-01 1,460,500 31,427 95,061 283 801,760 140,680 
4.40% 0.70% 6.34% 0.01% 2.69% 9.38% 

- ~I February-01 2,774,100 34,932 27,476 1,942 1,149,200 137,900 - 5.22% 0.72% 1.83% 0.04% 3.57% 9.19% 

-- March-01 1,989,800 31,057 27,905 6,209 1,047,900 127,580 - 3.85% 0.65% 1.86% 0.12% 3.33% 8.51% --- April-01 1,214,200 24,374 16,917 15,163 1,099,000 141,850 

- 2.35% 0.51% 1.13% 0.30% 3.48% 9.46% 

- May-01 985,800 21,274 10,896 51,002 1,131,800 132,090 - 1.91% 0.44% 0.73% l.01% 3.56% 8.81% 

-
14 
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Table 2 . ( continuation) 

.---

,,..... Orígenes Previsol Profesión Prorenta Siembra Unidos 

June-01 1,057,400 18,107 23,684 97,021 2,180,600 44,081 ,,.... 
2.02% 0.37% L58% 1.89% 6.72% 2.94% 

,,..... 

,,..... July-01 1,347,400 21,431 45,676 230,590 1,830,600 91,986 
2.56% 0.43% 3.03% 4.50% 5.62% 6.13% 

,-... 
August-01 2,185,200 22,770 61,305 282,510 2,317,300 37,410 

4.44% 0.49% 4.09% 5.88% 7.58% 2.49% 

September-01 1,990,500 14,300 37,222 510,710 2,434,500 58,694 
3.93% 0.30% 2.48% 10.36% 7.70% 3.91% 

October-01 · 1,967,600 14,688 74,005 1,252,900 2,122,700 258,060 
3.98% 0.31% 4.93% 26.00% 6.84% 17.20% 

November-01 2,358,900 18,835 66,089 909,170 2,855,900 292,330 
,,.... 4.83% 0.40% 4.41% 19.10% 7.22% 19.49% 
,-.. 

December-01 3,233,600 29,056 79,858 281,810 3,303,500 338,090 
6.92% 0.64% 5.32% 6.13% 8.85% 22.54% 

,-... 
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Figure 3: Convergence for the PF Consolidar, Dec-01 
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Figure 4: Convergence for the PF Nación, Dec-01 
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