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Abstract

This paper proposes an aggregative model of Total FFactor Produc-
tivity (TFP) in the spirit of Houthakker (1955-1956). It first considers
a simple general equilibrium competitive model where labor is a fully
flexible and mobile factor while capital is relatively [ixed and [irms’
productivity is subject to idiosyncratic shocks. Within this context,
an aggregate production function is derived by aggregating across pro-
duction units in equilibrium. In this simple model individual decisions
afTect aggregate inputs but the level of TFP is a constant that depends
on the underlying assumed heterogeneity. The model is then extended
to allow for a frictional labor market where jobs arc created and de-
stroyed as in Mortensen and Pissarides (1994). Within this context,
the level of TFP is shown to depend on all the characteristics of the
labor market as summarized by the job-destruction decision.

*Preliminary version. First Draft: December 2000. I thank the CV Starr Cenier for
Applied Economics at NYU for financial support.
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1 Introduction

Hall and Jones (1999) and Parente and Prescott (2000) have established that
differences in Total Factor Productivity (TFP) account for a large fraction
of the variation in output per worker across countries. Hall and Jones (1999)
use data on output, labor input, average educational attainment and physical
capital to decompose the differences in output per worker into differences in
capital intensity, human capital per worker and TFP. Their levels accounting
exercise implies that differences in physical capital and educational attain-
ment explain only a small amount of the differences in output per worker.!
Parente and Prescott (2000) show that the standard growth model without
TEFP differences is not consistent with the observed income differences even
when augmented to include a human capital sector. ? So in order to under-
stand income differences across countries, one first needs to understand what
determines the level of TFP.

Hall and Jones (1999) conjecture that differences in observed TFP are

driven by differences in the institutions and government policies they collec-

! As a way of lllustration, consider the following fact reported by Hall and Jones (1999).
In 1988, output per worker in the five richest countries was on average 31.7 times that of
the five poorest. Differences in capital intensitics and cducational attainments contributed
factors of 1.8 and 2.2, respectively, to this difference. The remaining difference, a factor of
8.3 was accounted for by the TFP differential. Without this productivity difference, the
average output per worker of the five richest countries would have only been about four
times that of the five poorest.

*Specifically, they find that reasonable differences in saving rates cannot account for
observed differences in stecady-state income levels; and that the small diminishing returns
to individuals investing in human capital that are needed to fit the empirical income
differences imply that the time allocated to schooling is implausibly high. They also show
that the factor difference in TFP needed to account for the income differences between
the world’s richest and poorest countries is between 2 and 3, not unreasonably high.



tively refer to as “social infrastructure”. Corrupt government officials, severe
impediments to trade, poor contract enforcement and government interfer-
ence in production are their examples of bad “social infrastructures™ leading
to low levels of TFP.?

Parente and Prescott (1994) propose that some countries have lower TFP
than others because their process of technology adoption at the micro level is
constrained by “barriers to riches”. These barriers are essentially any insti-
tution or government policy that increases the cost of technology adoption.
Parente and Prescott (1999) show that monopoly rights can be a “barrier to
riches”.

In this paper I focus on the theory underlying the aggregate production
function and show how labor-market policies affect this function in general,
and the level of measured TP in particular. Specifically, I construct an
aggregative model of TFP in the spirit of Houthakker (1955-1956):.the basic
idea is to derive an aggregate production function by aggregating across
active production units. In equilibrium, the levels of output, inputs and
TEFP as well as the shape of the aggregate relationship between them depend
on individual production decisions —such as which production units remain

active in the face of idiosyncratic shocks— and these decisions are in turn

*Examples aside, the institutions and policics that Hall and Jones (1999) refer to as
“social infrastructure” are defined by the two variables they use to proxy it in their regres-
sions. The first is a measure of openness to trade; and the sccond, an index of government
“anti-diversion” policies measuring (i) law and order, bureaucratic quality, (iii) corruption,
(iv) risk of expropriation, and (v) government repudiation of contracts. In their empirical
investigation, Acemoglu, Johnson and Robinson (2001) also highlight thé role of institu-
tions in determining different income levels across countrics. Their focus is on the role
property rights and checks against government power, and their definition of “institutions”
is a risk-of-expropriation index.




affected by policies. So the model can be used to study the precise interaction
between all these variables explicitly. .

In the model proposed here, policy affects TFP because the latter is re-
lated to the average productivity of the units which are active, and policy
induces changes in the productivily composition of active units. By dis-
torting the way in which individual production units react-to the economic
environment, labor-market policies can make an economy exhibit a low level
of TFP. As a result, an economy may have a higher level of aggregate mea-
sured TFP than another even when production units in both operate the
same technologies. In this sense the determinants of TFP levels I focus on
here are different from the barriers to technology adoption of Parente and
Prescott (1999, 2000).4

At a theoretical level, the paper also shows that under some conditions,
a standard search model of the labor market —with its underlying meeting
frictions and simple fixed-proportions micro-level production technologies—

can generate an aggregate production function just like the one implied by

4Although they focus on monopoly rights in their formal modelling, Parente and
Prescott (2000) mention a few labor-market policies as examples of “barriers to riches”:

“In India, for example, firms with morce than 100 workers must obtain the government’s
permission to terminate any worker, and firms of all sizes are subject to state certification
of changes in the tasks associated with a job.” (pp. 107-108). “Anocther way the state
protects the monopoly rights is by requiring large severance payments to laid-off workers.”
“Also in India, regulations require certain firms to award workers with lifetimne employment
and require firms with more that twenty-five workers to use official labor exchanges to fill
any vacancy.” (p. 108). “In Bangladesh, for example, private buyers of the statc-owned
jute mills were prohibited for one year from laying off any of the workforce they inherited.
After one year, a worker could be laid off but not without a large severance payment.”

Parente and Prescott (2000) use these as instances of policies that can lower TFP by
making technology adoption costly. But as we show below, these policies can also have a
direct impact on level of TFP.



the textbook neoclassical model of growth in which firms have access to a
standard constant-returns Cobb-Douglas production technology. So in this
sense, from the perspective of aggregate output, inputs and productivity, the
neoclassical and the search paradigms can seem quite close.

The rest of the paper is organized as follows. Section 2 considers a sim-
ple general equilibrium competitive model where labor is a fully flexible and
mobile factor while capital is relatively fixed and firms’ produétivity is sub-
ject to idiosyncratic shocks. Within this context, an aggregate production
function is derived by aggregating across production units in equilibrium. In
this simple model individual decisions affect aggregate inputs but the level
of TFP is a constant that depends on the underlying assumed heterogenceity.
In Section 3 the model is extended to allow for a frictional labor market
where jobs are created and destroyed as in Mortensen and Pissarides (1994).
The equilibrium is characterized in Section 3.1, and the classical aggregation
result of Houthakker (1955-1956) is extended to the dynamic general equi-
librium search setup in Section 3.3. When aggregate inputs are correctly
measured, the level of TFP is shown to depend on all the characteristics of
the labor market as summarized by the job-destruction decision. Section 4
introduces four policies: employment and hiring subsidies, ﬁr'plg taxes and
unemployment benefits, and studies their effects on TFP. Section 5 extends
the basic model to the more realistic case of serially-correlated shocks and
elaborates on how the observed level of TIP is affected by the different ways
of measuring aggregate inputs that can be found in the literature. Section 6

concludes. All-propositions are proved in th¢ Appendix.




2 The Competitive Model

Time is discrete and continues forever. The economy is populated by a
continuum of identical and infinitely-lived individuals of size L. There is also

a large number of firms determined by free entry.

2.1 Preferences and Technology

Individual preferences are represented by

U= Zﬁtu (Ct)
t=0

where £ € (0,1) is the discount factor and C; is consumptioﬁ in period t.
The instantaneous utility function u is strictly concave, twice continuously
differentiable and satisfies Inada conditions. For now I assume no utility from
leisure and normalize the time endowment to 1.

Firms have access to a production technology that combines capital and

labor to produce the only consumption good in the economy:
f (Z,TL;_, k:) = min (ZTL,', kz)

where n; and k; denote the levels of labor and capital inputs chosen by firm
7. Output is linear in labor but is bounded above by the stock of capital
the firm is operating with. Labor productivity is stochastic at the firm level
and indexed by a random variable z with cumulative density G (z). This
idiosyncratic productivity shock is assumed to be iid across ﬁrm_s. The timing
convention is that firm ¢ has to choose kj.1 —its “scale of operation” for

period ¢ + 1- at the end of period t, before observing the realization of the

6



idiosyncratic shock. This timing captures the idea that labor is a fully flexible
factor while capital is relatively fixed in the short run (in this case within
the period). But more important in what follows, is that this timing makes
the notion of a job well defined. A standard neoclassical firm eflectively has
an unlimited number of jobs; in contrast this formulation formalizes the idea

that in any period a firm only has a fixed number of jobs to fill.

2.2 Competitive Equilibrium

Individuals choose a sequence of consumption in order to maximize U subject

to

Kir=(ri+1—=6) Ke4+w, — Cy, ‘ (1)

where K;,1 is the é.mount of capital each chooses to save at time ¢ and
§ € (0,1) is the discount factor. The rental and wage rates are denoted 7,
and w, respectively.

Every period firms must decide how much labor to hire given the current
realization of the idiosyncratic shock and tl';e capital it pu;; in pla;:e at the

end of the previous period. In other words, each solves®
max f (z,n,k) —wn — k.
n

The demand for capital was specified at the end of the previous period and

its rental must be paid regardless of the firm’s production decision. Then

5Notice that we arc regarding k as independent of 2. As we show below, this is indeed
the case when shocks are 7id through time. In a later section we explore the case where
shocks are serially correlated.




the firm’s demand for labor is

0 ifz<w ;
n(z)={_@ ifw<z (2)
output is zn (z) and profits are
i Ll —rk ifz < w
- (1—%—7‘)& ifw< =z

If the shock renders the marginal product of labor smaller than the wage,
the firm hires no workers and loses the rental on capital. On the other hand,
if the marginal product exceeds the wage, then the firm will hire workers to
produce at capacity. Profits are positive iff z > w/ (1 — 7).

At the end of every period the firm chooses the capital stock it will employ
in production in the following period. I begin by analyzing the case in which
shocks are 7id through time. The amount of capital is chosen before observing

the realization of next period’s shock, so at the end of period ¢ the firm solves

max [ (1= 27 "wee1) dG (2) — rpan | kewr. (3)

Nt
The iid assumption keeps the firm’s problem a series of static, one-period
maximizations as in the standard neoclassical setup.

A competitive equilibrium is a sequence of allocations {C), K, ¢+1}f20 to-
gether with a sequence of prices {wy,r,};2, such that the former solves the
individual’s maximization problem given the latter, firms maximize expected
profit and markets clear. Given an initial capital stock Ky, the solution to

the agent’s maximization problem is characterized by the Euler equation

u' (Ct) = 6 ('I"H.} 41— 5) 'i‘.f.'r (C,H.‘]) )

8



the budget constraint (1) and the transversality condition tlim B4 (Cy) Ky =
0. As usual, r; and w, are obtained by imposing market clearing in the factor

markets. From (3):

I—G(w)—w/z"dG(z)-—rso (4)

must be the case in equilibrium.® Hence any feasible k; solves firm #’s ca-
pacity problem: as for the standard neoclassical firm, individual firm-size is
indeterminate in equilibrium. Market clearing requires that the sum of the
k;'s across firms equals the aggregate capital stock K. Condition (4) ensures
that a firm’s expected profit is zero and can be seen to deliver the equilibrium
interest rate » given the wage rate w.

I now characterize the equilibrium wage rate. The individual firm’s in-

verse labor demand in (2) can be used to derive the aggregate (inverse)

demand for labor:
N = I\’j 27'dG (2) - (5)
w

Similarly, aggregate output is
Y (K,w)=[1-G(w)]K. (6)

Following Houthakker (1955-1956), one could imagine solving (5) for the
aggregate labor demand w (K, N) and then plugging it in (6) to obtain

6The firm’s problem when choosing capacity has a solution iff

1—G’(w)—wf 2 1dG (2) —=r <0.

If the condtion held with strict inequality then each firm i would choose k; = 0 and the
capital market wouldn’t clear.




Y [K,w(K,N)|. Hereafter I impose N = L (the labor market clears) and
will use £ (K, L) to denote Y [K,w (K, L)] in order to simplify notation and
to stress the fact that it is the economy’s -aggrega.te prod.uction hfunction.
From (5) one sees that —w; (K, L) g (w(K,L)] K = w(K,L) and from (6)
that 5 (K, L) = —w, (K, L) g [w (K, L)) K. Hence F; (K,L) = w(K,L).” In
equilibrium labor is paid its marginal product in the aggregate production
function. Taking another look at (4), one sees that using (5) and (6) it can
be rewritten as 7K = F (K, L)—wL. So if the aggregate production function
exhibits constant returns to scale (CRS), then r = F (K, L) and capital is
also paid its (aggregate) marginal productivity. And indeed, the aggregate
production function is CRS. To see this notice from (5) that w (K, L) is ho-
mogeneous of degree zero and hence (6) indicates that for any £ > 0, we have
F(¢K,EL) =EF (K, L).

To conclude this section I show that the aggregate technology is consistent
a balanced growth path, namely a growth path along which all endogenous
variables grow at constant (albeit possibly different) rates. For this purpose,
assume the firm-level technology is f (z,z:n;, ki), where z;.1/%; = 7,. That
is, =, represents labor-augmenting (exogenous) technical progress, and it is
aggregate in the sense that it affects all firms symmetrically. The aggregate
production function corresponding to this micro structure is F' (K, z,L). To
see this notice that the firm-level (inverse) labor demand is

0 ifzz<w
n(z):{ k X

= fw <z
Tz

T owe this argument to Erzo G. J. Luttmer.
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and firm-level output is z,2n (z). Hence aggregate labor demand and output

are

N = (K/z,) /

w/z,

z7'dG (2), and Y (K,w/z,) = Kf dG (z).

w/r,

The former defines w/z; = w (K, z,/N) and plugging this into the latter yields
Y [K,w(K,z.N)|, which is F (K,z,N). So with labor-augmenting technical
change at the micro level, the model will be consistent with balanced growth

provided the instantancous utility function u is.®
2.3 An Example

Now suppose the idiosyncratic shock follows.a Pareto distribution;.that is

(B 0 ifz<e
IVEZN &5 ife < =

For this case (5) and (6) indicate that aggregate inverse demand and aggre-

gate output specialize to

N £ =5 2% ond
14+ o

Y (Kw) = efw K

respectively. Inverting the former to get the aggregate labor demand

1
o I{)Tﬁ

’a v x
G ) (1+cxE N
SWith the firm-level technology adopted, the aggregation process in the spirit of
Houthakker preserves the type of technical change prevailing at the micro level. Above
we showed that labor-augmenting technical change at the micro level implies labor-
augmenting technical change at the macro level.  Similarly, it can be shown that
f(z,n,z¢k) and z, f (2. n, k) aggregate to F (z: K, L) and x,F (K, L) respectively.

11




and substituting this in the latter we arrive at
F(K,N)= AK°N'-°

where A = (1—;‘55)“‘; and ¢ = 7i-. This is a modified version of the
classic aggregation result of Houthakker (1955-1956).> Notice that A is what
economists normally think of as TFP. In this case it only depends on the
parameters of the distribution of productivity shocks. Below I extend the
model by incorporating a frictional labor market and show how labor-market

institutions affect the level of TFP.

3 Model with a Frictional Labor Market

I model the labor market as in Mortensen and Pissarides (1994). Time is
continuous and the horizon infinite. There is a continuum of infinitely lived
agents of two types: workers and firms. The size of the labor force is nor-
malized to unity while the number of firms is determined endogenously by
free entry. Both types are risk-neutral. Workers derive ﬁtility c;hly from
consumption. Each firm has a single job that can either be filled or vacant
and searching. Similarly, workers can either be employed by a firm or unem-

ploved and searching. No new offers arrive while an agent is in a relationship

YHouthakker performs the aggregation over production units that employ two variable
factors and face capacity constraints due to a fixed (unmodelled) factor. Here we have
assumed each production unit employs a single variable factor (labor) as well as capital.
Capital is chosen a period ahead and hence plays the role of the fixed factor constraining
output at the time employment and production decisions are made. This formulation
delivers an aggregate production function with constant returns to scale. In contrast, the
setup used by Houthakker generates a function of the variable inputs only and hence it
exhibits diminshing returns to scale.

12



(i.e. there is no on-the-job search). I abstract from capital accumulation

and assume labor-market participants take aggregate stock of capital, /', as

given.1©

Assume mecting frictions can be represented by a fnnctionl m (u,n) that
determines the instantaneous number of meetings as a function of the num-
bers of searchers on each side of the market; namely unemployed workers
u and vacancies v. Suppose m exhibits constant returns to scale and is in-
creasing in both arguments. Let g (0) denote the (Poisson)-rate with which
a vacancy contacts an unemployed worker, where @ = v/u.!!

Each firm has access to a technology f (z,n, k) that combines hours n and
capital k to produce a homogeneous consumption good. The match-specific

level of technology is indexed by z. I assume that
f(z,n,k) = zmin (n,k) (7)

and interpret k as the firm’s “capacity”. So output is linear in hours but
is bounded above by the stock of capital the firm is operating with. The
convention is that firm ¢ has to choose and put in place k; —its “scale of

operation”- in order to engage in search and that this choice is irreversible.'?

W01 abstract from saving and accumulation because the focus here is on isolating the
effects of labor-market policies on the level of TFP. But even when trying to explain
income differences. Parcnte and Prescott (2000) forecfully argue that one cannot rely on
policies that cause differences in saving rates, as they do not vary systematically with
countries’ incomes. ) ’ =

" Note that ¢ (8) = m(1/0,1) and hence ¢ < 0. The probability a worker contacts a
vacancy in a small time interval is g (6) and is increasing in . Scc Lagos (2000) for an
environment in which a constant-returns matching function is explicitly derived from first
principles.

12The idea is that in order to search, the firm must have borrowed some capital (e.g.

13




This captures fhe idea that hours are a fully flexible factr:x: while .;:apital is
relatively fixed. Firms rent capital from a competitive market at flow cost c.

Match productivity is stochastic and indexed by the random variable z.
For an active match, the process that changes the productivity is Poisson
with finite arrival rate A. When a match of productivity = suffers a change,
the new value z’ is a draw from the fixed distribution G (z). So the pro-
ductivity process is persistent (since A < c0) but —conditional on change- it
is independent of the firm’s previous state.’®* The Poisson process and the
productivity draws are #id across firms and there is no aggregate uncertainty.
The focus will be on steady state outcomes.

Below I will show that there is a productivity level R such that active
matches dissolve if productivity ever falls below R and new matches form
only if their initial productivity is at least R.** Let H, (z) denote the cross-
sectional distribution of productivities among active matches. That is, H, (z)
is the fraction of matches producing at productivities z or lower at time ¢.

The time path of (1 — w;) H; (z), namely of the number of matches producing

to set up a plant). The firm is initially free to pick any size of plant k;, but this choice is
irreversible in the sense that once put in place, k; cannot be changed. In a similar vein,
technologies are assumed fixed and irreversible in Gilchrist and Williams (2000) and in
Mortensen and Pissarides (1994).

'"“This is the process used by Mortensen and Pissarides (1994). For rcasons that will be
clear below, we later generalize the model by specifying that when a match of productivity
2 suffers a change, the new value «’ is a draw from the fixed distribution G (z|z). If
G (z|z1) < G(z|zo) when zp < x4, then apart from persistent, idiosyncratic shocks are
also positively corrclated through time.

4 Mortensen and Pissarides (1994) work with a bounded support and assume new
matches start off with the highest productivity. We relax these assumptions and treat
active and new matches symmetrically. In the model we consider, the initial productivity
of a match is a non-degenerate random variable drawn from the same distribution as the
innovations to active matches.

14



at productivities z or lower at time ¢ is given by!®

f;g [(I-w) Hi ()] = A1—w)[l - H, (2)][G(z) — G (R)]
+0q (0) 1 [G (=) — G (I,)]
(1 -w) H, (2)C(R)
~6(1—w) H, ()

A1 —w) H, (2)[1 - G (x)].

The first term accounts for the matches with productivities above z that
get innovations below z. The newly-formed matches that start off with pro-
ductivities no larger than z are in the second term. The third term is the
number of matches in the interval [R;, z] that get shocks below R, and are de-
stroyed. Let é denote the parameter of an independent Poisson process that
causes separations for unmodelled reasons. Then the fourth term accounts
for matches in the interval [R;, z] that are destroyed for exogenous reasons.
The last term accounts for the number of matches in the same interval that
“move up” by virtue of having drawn productivities larger than z. Imposing

steady states we arrive at:

H(zx) =

X 8g(®)u ‘ ‘
A T Tr - @ -CGEL

In addition, the steady-state unemployment rate is

B §+ MG (R) (8)
5+ GR) +0g(0)[1-G(R)

'5The fact that active matches will form and continuc only for productivitics at least as
large as R, means that H; (R;) = 0. So in the derivation below we only focus on = > It;.

u

15




Using this expression, the steady-state cross-sectional productivity distribu-

tion can be rewritten as

G (z) — G (R)

OB e ©)

Firms can be either vacant and searching or filled. The problem of a

searching firm is summarized by
V= max [—ck + ¢ (6) /ma.x [J (2) — V,0dG (z)} , (10)

where V' is the asset value of a vacancy, J (z) is the asset value of a filled job
and r is the discount factor. I assume there is entry of firms until all rents

are exhausted, so V' = 0 in equilibrium. Letting = (z) denote flow profit,
TJ@)=w@0+A/ﬁmﬂJuLqu@g—AJ@y—ﬂJ@y-w, (1)
where |
1t () = max [zmin (n, k) — ¢n —ck — C(z,¢) k — w (z)].

Instantaneous profit is the residual output after the wage w (z) and all other
costs of production have been paid out. There are three such costs in this
formulation: a fixed one, ck, which is the cost of capital; a variable cost, ¢n,
that can be managed by varying hours; and a “maintenance cost” C (z, ¢)
per unit of capital, which is independent of n. Qur assumptions'® imply that

w is independent of n, so the profit-maximizing choice of hours is

koif
n{m)—{ 0 iff;g (12)

16In particular the fact that workers derive no utility from leisure.

16



and hence flow profit is 7 (z) = [max (z — ¢,0) — ¢ — C (2, $)| k — w ().

One can think of ¢ as the cost of electricity, for instance, with clectricity
usage being proportional to hours worked. This variable cost is introduced
to allow for the possibility of “labor hoarding”. Specifically, for some para-
metrizations, it is possible that at low productivity realizations the firm may
keep the worker employed despite requiring that she supplies zero hours.
Below I show that this extreme variety of labor hoarding has interesting ag-
gregate implications when it occurs in equilibrium. The maintenance cost is
introduced in this section as a simple device to avoid a “flat spot” in flow
profit which would otherwise carry over to the value functions. Since it is per-
haps the only non-standard clement of the model, I redo the whole analysis
without this device in a later section. So for now, I use a convenient speci-
fication for the maintenance cost, namely C (z,¢) = max (¢ — z,0).)" With
this specification, instantaneous profit is just 7 (z) = (z — ¢ — )k — w (x)
for any z.

The value of employment and unemployment to a worker are denoted

1"0One way to interpret this formulation is that machines require no maintainance if
they are being operated by workers; so if > ¢, the maintainance cost is zero and flow
profit is just (z — ¢ — ¢) k — w (z). But when they stand idle, machines need-to be run,
even without a worker, in order to keep them operational. The time they need to be run
depends on productivity. If = 0, say, then the machine needs to be run at the cost of a
full shift, ¢, but if > 0, then each machine needs to be run for less time, at cost ¢ —
per machine. So for < ¢, output is zero, and flow profit is — [(¢ — = + ¢) k + w (2)]; the
firm loses the maintainance cost, the cost of capital, and the wage payment to labor.

17




W (z) and U respectively and solve

rU = b+0q(0) /'max[W(z)_U,o}dc(z) (13)

W (z) = 'w(:c)—l—)\/max[W(z)—U,O]dG(z) (14)
— 6+ [W(z)-Ul,

where b > 0 is a worker’s flow income while unemployed.'®
3.1 Equilibrium

I follow the bulk of the unemployment search literature by letting 8 € [0,1)

and assuming the instantaneous wage w (z) continuously solves
max W (@)= UP (&) - V1™
and therefore it satisfies
(1-p8) W (z) - U] = 8J (z) (15)

at all times. Letting S(z) = J(z) + W (z) — U denote the surplus from a
match, notice that (15) implies J (z) = (1 — 8) S (z) and W (2)-U = 58S (z).
These together with (11), (13), and (14) imply

(1‘+6+A)S(a¢):(:z:—-qb—c)k—'rU+)\fmax[3(z),01dG(z),

where

rU=0b+ 3 Bﬁkcﬂ. (16)

Y Below we will model b as a fraction of the average market wage and interpret it as
uncmployment insurance income.

18



Since ' (z) = —f5 > 0, there exists a unique R such that S(R) > 0
iff £ > R. Hence matches separate whenever productivity falls below R.!?

Using this reservation strategy the surplus can be written as
(r+6+2) S (z) = (m-¢—c)k—rU+,\f S(2)dG(z). (17)
R

For completeness, (15) and the value functions can be manipulated to obtain

expressions for instantaneous wages and profit:

w(z) = Blz=—¢p—c)k+(1-5rU (18)
@) = (1-8)[(z=¢—c)k—r0]. (19)

Intuitively, the wage is a wciglll.cd average of output (net of the rental on
capital and the variable and maintenance costs) and the worker’s reservation
wage.

I now do some analysis to characterize the job-creation and destruction
decisions as summarized by 8 and R respectively. Evaluating (17) at 2 = R
we see that

A/RS(;:)dG(z) =rU—~(R—¢—c)k.
Notice that since the expected capital gain on the left-hand-side is positive,
at ¢ = R net output is smaller than the worker’s reservation wage. From (18)
and (19) we see that this implies that w (R) < rU and = (R) < 0: workers

and firms sometimes tolerate instantaneous payoffs below those they could

"Notice that scparations arc privately cfficient. Morcover, they arc also conscensual in
the sense that by (15), J (z) > 0iff TV (z) — U > 0; so the firm wants to destroy the match
iff the worker wants to quit. ’ ) ’
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get by separating, in anticipation of a future productivity improvement.?
Substituting this simpler expression for the expected capital gain term into

(17) gives
z—R
ol ey

Evaluating (17) at 2 = R and using (20) to substitute S () we arrive at the

(20)

job-destruction condition:

L .S _
R—-¢—c (k+1—ﬁce)+r+6+)\]};($ R)dG(m?—O. (21)

Notice that as is steindard, the destruction decision is independent of scale
if b is. The natural interpretation of b is that it is unemployment insurance
income. Along these lines, if we assume b = pE, [w (z) |z > R|, where p €
[0,1) is the replacement rate, then b = bk, with
pB[Z(R) — ¢ —c+cb]

1-(1-8)p
and % (R) = Efz|z > R] = (1 - G(R)]™" [,2dG (z). Under this specifica-

tion, b is linear in k& and hence (21) is independent of k. For future reference,

b=

in this case (21) becomes:

Bz (R) (1=p) (@-+c) Bed A _
R— 12(12—;3);) - 1—f1~13);c> - {1-—,5}11f(1—,6)p] g s 7 /R(:U — R)dG (z) = 0.

In what follows I will always abstract from scale effects caused by unemploy-
ment incomne b by assuming it is a fraction of the average going wage. At

times I 1nay cven resort to the especially tractable case with p =6 = 0.

20This feature of the model is a consequence of the costly and time-consuming meeting
process, as noted by Mortensen and Pissarides (1994).
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Equation (10) together with 7V = 0 imply that at the optimal k, we have

(1-6) [ 5@d6 @) - =,

R q(0)
= namely that the expected profit from a filled job equals the expected hiring
cost in an equilibrium with free entry. Using (20) to substitute S (+) out of
this expression we arrive at the job-creation condition:

_(7+5—|—)\)
S LEOR e (22)

The job-creation and destruction conditions jointly determine R and 6,
and under our maintained assumptions they are independent of the choice of
i scale, k.?' For given ¢ and ¢, an equilibrium is a vector (0, R, H, U, w, u, k|
3 such that (6, R) jointly solve (21) and (22); and given (8, R), H satisfies (9);
i U is given by (16); w by (18); and w by (8). In addition, the market for
: capital should clecar,.so k must satisfy [1 — (1 —8)u]k = K, where K is the

aggregate supply of capital, which labor-market participants take as given.?

2 For the case with p = 0, for instance, it is easy to show that there is a unique pair
(6, R) that satisfies (21) and (22). To see this notice that the slopes (in 6-R space) of the
| job-creation and destruction conditions arc

—(+&+Nen(@ Be
(=90 @0 -6 ®] ~° ™ ) [7 gy ~°

; respectively, with n (0) = _—2'&%
2 Notice that using (20), (10) can be written as

| rV = mEx [ (1 :_'?_E (f) / (z — R)dG (a:)] k.

Since in equilibrium @ and R are independent of k, the objective is linear and the problem

has a solution iff
(r+6+Ne

/R(I_R)dc(m) S ETIO)
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Note that if R < ¢, then the capital and workers in matches with realizations
in [R,®) remain employed but are not engaged in production. The firms in
these states have excess capacity and hoard labor. In the following section
I provide a sharper characterization of aggregate outcomes for a particular

distribution of idiosyncratic shocks.

3.2 Aggregation

Let K. denote the demand for capital from all firms with filled jobs. Since
firms irreversibly choose the same amount of capital £ upon entering the
market, K, = 1_};—_“3)UK . In general, aggregate output Y and the aggregate
number of hours worked, N, are given by Y = (1 — ) [, f [z,n (z), k] dH (z)
and N = (1 — u) [ n(z)dH (z) respectively, with 4 = max (R, ¢). Using (7)

and (12), these expressions become
N=[1-HWK. ‘ (23)

Y (Ko i) =l - H ()] K Mzlz 2 (24)

where E (z|z > p) = [1 = H (u)]” L sdH (z). Intuitively, since every firm-
worker palr is setting hours either to zero or to full capacity &, the aggregate
number of hours worked is just equal to the fraction of firm-worker pairs who
engage in production times the total capital stock in filled jobs. Similarly,

aggregate output equals the number of active units of capital, [1 — H (p)] K.,

But if the inequality is strict, then cach firm 4 will choosce k; = 0 and the market is inactive.
So a nontrivial equilibrium requires (22) to hold. Then any feasible k; solves firm &'s

capacity problem: as for the standard neoclassical firm, individual size is indeterminate
in equilibrium.
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times their average productivity.?® Following Houthakker (1955-1956), one
could imagine solving (23) for the aggregate “labor demand” by active firms
(K., N) and then plugging it in (24) to obtain Y [K,, it (K., N)]. Herealter,
L use I (K., N) to denote Y [Ke, t (K¢, V)] in order to simplify notation and
stress the fact that it is the economy’s aggregate production function. Even
for an arbitrary H, the aggregate production function is CRS. To see this,
notice that u (K., N) is homogeneous of degree zero and hence (24) indicates
that for any ¢ > 0, we have F ((K,,(N) = (F (K., N). Also, from (23)
one sees that —u, (Ke, N) K.dH (1) = 1 and from (24) that I, (K., N) =
—pis (Key N) Kepd H (). Thus Fo (K., N) = u. So the marginal product of
labor in the aggregate production function is equal to the marginal product
of the least efficient unit of labor employed in production.?!

Now suppose idiosyncratic shocks are draws from a Pareto distribution

with parameters £ and «, namely

23 As mentioned previonsly, Mortensen and Pissarides (1994) assume that & has support,
[0.1] and that all new matches start off with productivity 1. So, using our notation but
setting 6 = 0, aggregate output in their model evolves according to

1
Y = k0g(@)u—AY + (1 —u)k/ 2dG (z) .
I

Replacing (1 — u) k with I, steady state output is

_ fq (8) uk
A

which is essentially (24) except for the first term. Qur assumption that the initial prodne-
tivity of a new matech is a random draw from G —just as the innovations to the productivity
of ongoing matches— allows us to consider a density G with unbounded support. In addi-
tion, this alternative assumption smoothes aggregale oulput by getting rid of the “spike”
0q (6) ukA™". This will turn out to be key in the aggregation procedure that follows.

#The marginal product of capital in the aggregate production [mction is
[1-HWIE (x| = p) — pl.

Y +[1 = H(WIKE (zlr 2 )
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0 if z < ;
G(@:{ 1-(£)° ifegi %)

where ¢ > 0 and @ > 2. * Then, provided R > ¢, 1 - G(R) = (£)%; and

for any = > R,

¢@)-6®)=(5) [1 = (?ﬂ |

Plugging these expressions in (9) one sees that the steady state productivity

distribution of active matches is

sio={ e Fa37 =

This is the cdf of a Pareto distribution with parameters R and «. Using (26),

1-H(p= (—E)& and E (z|z > p) = 2% 1, so (23) and (24) specialize to

N = (%)aﬁ’e (27)

a Wk — ¥
b (Kenu) ] 19 V. lR /-L1 K. (2'8)

Inverting the former to get the aggregate labor demand

1/
1 (Ko, N) = (%) R,

and substituting it in the latter we arrive at
F (K., N)=AKIN'™" . . (29)

where

R
A e (30)
L=y
25This distribution has mean £ = —27¢ and variance o* = mﬁm We assume ¢ > 2
so that both are finite.
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and v = 1/c. This is a modified version of the classic aggregation result of
Houthakker (1955-1956).2° The factor A is what macroeconomists normally
refer to as TFP. Its level depends on «, a parameter of the primitive dis-
tribution of productivity shocks, as well as on all the characteristics of the
labor market as summarized by the destruction decision 2. Notice that 7
expresses output as a function of the aggregate number of hours worked, NV,
and the total amount of capital hired by firms with filled jobs, K,. One can
also express output as a function of the aggregate capital stock, K, simply

by substituting
_ l1—-wu
1-(1-80u

in (29) to get F'(K,N) = AKYN'-", with A = [1—_31“—_”5):]744.

K. K (31)

The aggregate production function is Cobb-Douglas despite ﬁxe_d propor-
tions in the micro-level technologies. This results when only a fraction of the
capital stock included as an argument in the aggregate production function
is actually being used in production. To see this, notice that if there is no

hoarding in equilibrium (i.e. if ¢ = R) then N = K, and F (K., N) = AK,.*

26Houthakker performed the aggregation over production units that employ two variable
factors and face capacity constraints due to a fixed (unmodelled) factor. Here we have
assumed each production unit employs 2 single variable factor (labor) as well as capital.
Capital is chosen before engaging in search and then remains fixed, hence playing the role of
the fixed factor constraining output at the time employment and production decisions are
made. This formulation delivers an aggregate production function with constant returns
to scale. In contrast, the setup used by Houthakker generates a function of the variable
inputs only and hence it exhibits diminshing returns to scale. Another difference is that the
shift parameter in Houthakker's production function is solely a function of the parameters
in the primitive productivity distribution. But here, decisions can shift the aggregate
production function.

*"Herc is another way to sce that hoarding (with imperfect measurcment of utilization)
is necessary for the aggregate to be Cobb-Douglas in capital and hours. Let K, denote
the capital stock being used in production, that is K, = [1 — H ()] .. Then it is clear
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Since having firm-worker pairs that sometimes choose to be inactive affects
the shape of the aggregates, I now establish under what conditions the equi-
librium exhibits this property. For the remainder of the section I assume
p = 0 to ease the algebra.

With G given by (25), (21) and (22) specialize to:

ﬁ A EQR'I—O: _ 5
St l—ﬁC9+r+6+A a-1 0 (32)

R (r+6+N)c

a-1 ama-p - 0@
By totally differentiating, we find that
OR \ (r+&+XN)n(@)
Do BI@N-GR]+(r+6+Nn(o) {1-2L=Z8 =% W)

and
80 —(1-6)6a(6)[L=G(R)|OR
o¢ (r+6+N)n(@ec ¢
where 1 -G (R) = (¢/R)" and n (0) = —0¢ () /¢ (0). An increase in ¢ has no

direct effect on the job-creation condition, and it shifts the job-destruction

< 0,

condition up in 6-R space. This increases the equilibrium value of R and
decreases the equilibrium value of 8. Combining (32) and (33), one sees that
the sign of ¢ — R is the sign of

A
m—[l—(l—ﬁ’)ﬁ]-

So at low productivity realizations, the firm is more likely to hoard labor than

to break the match when X is large (and hence the option value of keeping a

from (24) that aggregate output is again linear in the relevant capital stock: Y = AI(J,,
with A = E (z|z > ). We are now in a position to explain why the model was extended
to include the variable cost ¢. If & = 0 then we always have g = R in equilibrium, and
the model always aggregates to a production function of the AN type.
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match is large), and when ¢ is small (and hence the expected cost of hiring
a new worker is high). Market tightness @ enters the expression with an
ambiguous sign because on the one hand a large theta makes hoarding more
likely by increasing the expected recruiting cost; but on the other, through
its effect on the worker’s reservation wage, it also increases the value of
her threat point in the wage bargain, which makes keeping an unproductive
worker employed more costly and hoarding less likely. In fact, the latter effect
disappears if the worker has no power in the wage bargain (i.e. if 8 = 0).
Next, I provide a sufficient condition for R < ¢ to be possible in equilibrium
under some parametrizations.

Let 0; be defined by ¢ (0}) = E=2E22=Ve ang o, = [1 3 m] e
(1 + Tf—ﬁt?:) c. Then if ¢ = ¢,, (32) and (33) are solved by 8 (¢4,) = 6;
and R (¢,) = €. Notice that if R(¢,) < ¢,, then there is a nondegenerate
interval [@,, ¢g) such that R(¢) < ¢ iff ¢ € [¢,, Pr), Where ¢, is defined by
R(¢g) = ¢x-*® The function R (¢) is illustrated in Figure 1.

So a sufficient condition for hoarding to occur in equilibrium is that ¢, —
g > 0, or equivalently, that T (A, {) > 0, where

TOO=GTD (/7\~€+5+A) - (l +%9:) “

The parameter { summarizes the efficiency of matching, with the property

28Letting % = q~" fa=iMrwbudlc) 4 is 2 matter of algebra to verify that
g VR (1=B)e~d,; g

==
P Ae® _
. (a—1)(r+6+)\)(1+7_‘%62)cil
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Figure 1: Destruction decision as a function of the variable cost.

that dm (u,v) /8¢ > 0 and hence that 8q (@) /8¢ > 0 for all §. Figure 2
plots the boundary T'(A,¢) = 0 in X\-¢ space. The condition ¢, —¢ > 0 is
satisfied for the values of the parameters A and ( that lie below boundary.?
Intuitively, the parameter restriction that makes hoarding possible holds for
relatively large A (i.e. when bad shocks are very transitory) and relatively
low ¢ (i.e. when the search process needed to replace the worker is very
costly). ‘ ’ i

Having characterized the main properties of the equilibrium, I now look

P Note that 8 goes to zero as ¢ goes to zero. So T(A.0) = 0 iff A = Xg, where
N = "'E;’:;a(:'{" is the point at which the boundary intercepts the horizontal axis in

Tigure 2. Formally, this boundary is upward-sloping because

oT Bo: 56"

or £(r+8) be (a—1)
e - 0 and s
- 1-8

Ty = e N ~ TR -meen > O
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Figure 2: Range of parameters for which there is hoarding.

at the effects that labor-market policies have on the level of TFP.

4 Labor-Market Policies and the Level of TFP

In this section I consider the effects of four policies: employment and hiring
subsidies, firing taxes and unemployment benefits. I follow Pissarides (2000)
and model the subsidies as transfers from the government to the firm and
the firing tax as a payment from the firm to the government.*® For reasons

that will become clear below, I will assume that the subsidies and the tax

30We assume that upon separation the firm must pay the firing tax the government
because in the present setup, firing taxes would be completely neutral in the alternative
schemne were the firm compensates the fired worker directly. (The effects of such a policy
would be completely undone by the wage bargain.) To keep the analysis simple, we will
ignore financing constraints. A natural extension would be requiring the government to
run a balanced budget. An example of a scheme which is self-financing in the steady state
isTr=71pand 7. =p=0.
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are proportional to the firm’s size, as measured by k.3 The value function
W (z) is still given by (14), while (10), (11) and (13) generalize to
rV = max [—ck - q(@)/max[Jo(z) + Tk — V,0]dG (z)] ¢
rd (z) = w(z)+7k+ )\/max[J(zj,V — Tk dG (z) — M (z)
=6[J(z)+Tsk-V],
rU

b+ 0g(0) f max [W, (2) — U, 0 dG (=).

The policy variables are 7, (hiring subsidy), 7. (employment subsidy), 7
(firing tax) and b (unemployment benefit). There are two reasons why the
bargaining situation faced by a firm and worker when they first meet and
are still considering whether to form a match is different from the one they
face every instant after having agreed to form a match. The first is that in
the initial bargain there is a one-time hiring subsidy at stake. The second,
is that at that point the firm is not yet “locked in” by the firing tax. I use
w, (z) to denote the wage that solves the initial bargain and w (z) to denote
the subsequent one.3? So W, (z) — W (z) = w, (z) — w(2), b (z) = J (z) =

w (z) — w, (z), and hence

Jo(z) + W, (z) = J (z) + W (). (35)

31 Essentially, this assumption is convenient because it implies that the policies introduce
no “scale effects” into the job-creation and destruction decisions.

32 Pissarides (2000) calls the initial wage the “outsider wage” and the subsequent one
the “insider wage”.
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The wages w, (z) and w (z) are respectively characterized by

BJo () + Trk]
BJ (z) + 7 k]

(1=58) W, (z) - U]
(1-p8)W (z) - U].

Letting S, (z) = Jo(z) + W,(z) + 7ok — U and S(z) = J(z) + W (x) +
77k — U be the initial and the subsequent surplus respectively, the first-
order conditions imply that W, (z) — U =.8S,(z), W (z) — U = BS(z),
Jo(z) + Thk = (1 = B) S, (x) and J (z) + 7ok = (1 — B) S(z). Combining

these 'with the value functions we arrive at
(r+6+X2)S(x)=(z—¢—c)k+Tk4+rTk—rU+A / max (S (z),0]dG (z),

with 7U as in (16). Since S’(z) > 0, there is exists a unique R such that
S(z) > 0 iff z > R. Using this reservation property, the surplus of an
ongoing match can be written as

(r+é6+X)S(z)=(z—¢— c)k+Tck+rTfk—rU+/\f S (2)dG (z), (36)

R

a natural generalization of (17). One can work with the value functions and
the first order conditions of the Nash problem to derive expressions for wages
and profit. The key observations are that w, (z) is decreasing in the firing
tax but increasing in the hiring and employment subsidies, whilé w (z) is

increasing in the employment subsidy and the firing tax and independent of
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the hiring subsidy.®® Evaluating (36) at z = R,
,\[ Bl =t = [[R =i der et rri,
R

and substituting this back into (36) yields (20). Using (20) to substitute
S (z) out of (36), evaluating at z = R and using (16) we arrive ai the job-

destruction condition that generalizes (21):

R—¢—C-PT=+T1';—(p+l£ﬂﬂc@>+ﬁ/";(m—-R)dG(;~c)=0.

For simplicity, I have specified b = pk where p € [0, 1) is akin to a replacement
rate.®* Increases in the employment subsidy and the firing tax reduce R for
given 6. In other words, an increase in 7. or 7, shifts the job-destruction
condition down in 6-R space. Conversely, an increase in p raises the worker’s

outside option and hence increases R for given 6.

3 The wages and profit agreed upon in an ongoing match are:

w(zr) = Blla-¢—k+rhk+rrkl+(1-3)rU
7@ = (=Al@=¢—k=rUl-Blrek +rrikl,

while those in an initial match are:

[l

w,(z) = Bllz—¢p—k+7k+(r+6+X)mpk—=(6+ N rrkl+(1-8)rU
(@) = (1-Nllz—d—-k—rUl-Blrek+ (r+8+N7rk— (6 +A)Tsk].

Finally, notice that

wle) —w, (z) =mo () —7(x) =80 +86+X) (ry—7a) k.

34 This formulation of the uncmployment compensation is a clean way to cnsurc the
job-destruction equation is independent k. Another —perhaps more realistic— way to
obtain the same result would be to adopt the specification outlined before, where
b = pE;[w(z) |z > R]. The formulation in the text yields the same qualitative results,
but it is simpler because b remains independent of R.
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By free entry, rV = 0, and

u—mﬁammwbﬁ% (37)

Finally, using (35) we see that S, (z) = S (z) + (7a — 74) k, which combined
with (20), can be used to substitute S, (z) from (37) to obtain the job-creation
condition:

TI}STX/R“ - 6@+ (1= CB)(~ 1) = T—Fro 5y
For given R, the hiring subsidy increases and the firing tax decreases job-
creation. The other policy instruments have no direct effect on the entry
decision.

Assuming G is as in (25), then

’ B /\EGR"—Q' B
R—¢p—c+r1e+r75— (p-|- l_ﬁca) + G iy 0(38)

c

7) ) TR

Eo:R‘I—-a ( €

CENIETED M = B30

The main properties of the equilibrium are summarized in the following

proposition.

Proposition 1. Let 8, be defined by

w (a—=1)(r+8+X)c
q(fe) = (1-B)[e+(o=1)(r+6+X) (Ta—74)

T and let

b = [1+m]5—(1+T%9:)C+Th+7‘7f~—p>0.

Ife+(a—1)(r+6+A) (rh—7s) >0, then for any ¢ > ¢,: (a) there exists
a unique equilibrium; (b) R > €; (¢) 9R/0¢ > 0 and (d) 89/9¢ < 0. If in
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addition, ¢, — & > 0, then: (e) there is a nondegenerate interval (¢,, ) such
that R (¢) < ¢ for all ¢ € (¢,, B).
Proof. See the Appendix.

Aggregate output is still given by (29); the aggregate stock of capital
demanded by filled jobs, K, is still given by (31); and the aggregate number
of hours worked, N, is still as in (27). In addition, if the measure of capital
used to construct aggregate output is K., then the level of TFP is still given
by (30). The following proposition, which holds under the assurﬁptions stated
in Proposition 1, summarizes the effects that labor market policies have on

A, the level of observed TFP.

Proposition 2. Employment subsidies and firing restrictions reduce A.
Hiring subsidies and unemployment benefits increase A.

Proof. See the Appendix.

Since A is proportional to R, policy instruments have the same qualita-
tive effect on TFP as on the destruction rate. Proposition 2 is illustrated
in Figure 3. Employment subsidies make firms more tolerant of low produc-
tivity realizations, and hence lower the average productivity of active firms.
Firing taxes have a similar qualitative effect on job-destruction, but that
mechanism is reinforced by a decrease in job-creation (which reduces the
reservation wage and hence makes firms even more tolerant to low produc-
tivity realizations). Hiring subsidies have no direct effect on the destruction

decision, but they stimulate job-creation. This increases market tightness
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which in turn increases the workers’ outside option and raises /f. Unem-
ployment benefits also cause R to rise through an increase in the worker’s

reservalion wagge.

R

e

(¢) Hiring Subsidy (d) Firing Tax

Figure 3: Equilibrium effects of varions policies. -

5 Extensions

The maintenance cost C (z,¢) was introduced as a simple device to avoid

“flat spots” in the value functions.®® Here I show that by extending the model

If 7 (2) = [max (x — ¢.0) — el k — w (z), then = (x) is flat up to ¢ and then rises with
slope k. It is easy to show that in this case .J () is also flat up to ¢ and then rises with
slope ——. Note that since R is defined by J (R) = 0. this implies that generically the
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in a natural way, one can drop the maintenance cost without aﬁ‘écting the
main results. To this end, I generalize the productivity process by allowing
for serially correlated shocks: when match of productivity z suffers a change,
the new value z’ is a draw from the fixed distribution G (2/|z). Assuming
G (z|z1) < G (z|zo) if zg < z4, allows idiosyncratic shocks to be positively
correlated through time. For this case, the cross-section of productivities

evolves according to

G- A @) = Ad-w [ (6l - G (R d (o)

00O, [ 16 (als) ~ G (Rls)] B, (5
B .. f_ " G(Ris)dH, (s)

_fz [ - G (z]s)] dH, (s)

—00

—§(1 —u) Hy (z) A (1 — ).
The first term accounts for the matches with productivities above z that get
innovations below 2. The newly-formed matches that start off with produc-
tivities no larger than z are in the second term. Notice our assumption that

upon contact, the worker and firm draw their productivity level from the den-

sity corresponding to the average productivity among active matches.*® The

equilibrium will have ¢ < R (except for the knife-edge case in which R is indeterminate).
We want to avoid this type of flat spots in J to allow for the possibility that R < ¢ in
equilibrium.

36Tf shocks were 4id, we could just specify that new matches draw z from G (z) just as
active matches do when forced to update their shock. However, with correlated shocks
active matches with state z draw the new shock 2’ from G (2'|z). Since vacancies and
unemployed workers have no productivity attached to them, we assume their initial draw
z' is from the average density [ G (2'|z) dH (z). As a way of motivating this, imagine —as
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third term is the number of matches in the interval [R,z] that get shocks
below R and are déstroyed. The fourth term accounts for the number of
malches in the same interval that “move up” by virtue of having drawn pro-
ductivities larger than z. The last term accounts for matches in the interval
[, z] that are destroyed for exogenous reasons. Imposing steady states and
re-arranging, we arrive at ‘ . '

- A 0g (0) u st "~
B 5+A+(5+A)(1_u)]/[G(mls) G (R|s)| dH (s).

The steady-state unemployment rate is

H(x)

- 5+ X [ G(R|s)dH (s)
TS+ JG(Rls)dl (s) +06q(8) [ [L— G (R dll (s)’

U

(40)

Using this expression, the steady-state cross-sectional productivity distribu-
tion can be rewritten as

G (zls) — G (Rls)) dI1 (s)
TH =GR d(s)

H (&) E (41)

which is a natural generalization of (9).

The firm’s problem upon entering the market is now summarized by
rV = max [—ck +q(0)]/max [J(2) = V,0]dG (z|x)dH (z)|.. (42)

As usual, I assume there is enfry of firms until all rents are exhausted, so

rVV = 0 in equilibrium. The value of a filled job with productivity z is

rJ(z) =7 (z)+ A /ma.x [/ (2),V]dG (zlz) = AT (z) =6 [J (x) - V], (43)

Mortensen and Pissarides (1994) do— that firms must. irreversibly adopt a *technology™ to
engage in production. Qur specification then means that they pick their “technology” at
random from all those active at the time the match is created.
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where 7 (z) = max;, [z min (n,k) — ¢n — ck — w(z)]. Flow profit 7 (z) is the
residual remaining after the wage w (z) and all other costs of production have
been paid out. There are only two such costs in this formulation: the fixed
cost, ¢k, and the variable one, ¢n. Our assumptions still imply that w is
independent of n, so the profit-maximizing choice of hours is still given by
(12), and hence 7 (z) = y (z) — w (), where y (z) = [max (z — ¢, 0) — ] k is
output net of the variable cost and the rental on capital.

The value of unemployment and employment and to a worker are
rU = b+08q (9)/] max (W (z) — U,0]dG (z|z) dH (z) (44)

rW (z) -

[

e W f max (W (2) = U,0dG (2fz) - -  (45)
—(6+ X)W (z)=U].

I still assume the wage solves the Nash bargaining problem and hence it
is still characterized by (15). Letting S (z) = J (z) + W (z) — U denote the
surplus from a match, notice that (15) implies that J (z) = (1 — 8) S (z) and
W (z) — U = BS (z). These together with (43), (44), and (45) imply

(r+8+A)8(z)=y(z)—-rU + ,\]max (8 (2),0]dG (z|z)

where rU is given by (16). The fact that S’ (z) > 0 implies that there exists
a unique R such that S (R) > 0iff z > R. Hence matches separate whenever
productivity falls below R. For completeness, (15) and the value functions

can be manipulated to obtain expressions for instantaneous wages and profit:
w() = Py@+Q-HrU  46)
m(z) = (1-8)[y(z)-rU]. (47)
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Intuitively, the wage is a weighted average of net output and the worker’s
reservation wage.

It turns out that one can get a much sharper charac;,erizati(.)n of the
equilibrium by putting some structure on the conditional distribution G (s|x).
In what follows, [ assume that dG (s|x) = € () § (s)ds where &' (z) > 0.*7

Note that this allows us to rewrite the surplus from a match z as
(r+6+X)S(z)=y(z)—rU+ X(x) / S(2)§(2)dz, (418)
R

and that evaluating it at z = R yields

U —y(R)
§(R)

Since the expected capital gain on the left-hand-side is posilive, al. x = R

ALS(Z)@(Z)CIEZ=

net output is smaller than the worker’s reservation wage. From (46) and (47)
we again verify that w (R) < rU and 7 (R) < 0. Substituting the simpler

expression for the expected capital gain term into (48) we obtain™

#
(r+6+\)8(z)=y(z)—rl += (z) U -y (R)]. (19)
£(R)
37 As an example, the Pareto distribution that we adopt below to derive the main ap-
gregation result satisfies this condition.
3B A word of caution is in order here. In general, the lower bound of the support of
the density € () 7(s)ds could be a function of x itsell. For instance assume the sup-
port is [£(x) .00). Then, formally, the capital gain term in (48) should he written as
A () fmnxln.r(r‘)] S (z) g (2) dz, and then evaluating the surplus at o = [7 would vield

- U~y (R)
A §(2)§(2)dz = —L22
/I;l-‘w[.’?.f(n)] b £(n)
Thus s )
il P W
A S(x)a(z)dz = ————
max[it.e(r)] ( )q( ) EU‘))

and (49) follows iff R > ¢ (z) for all z. A restriction that we assume —and later verify- to
be satisfied in equilibrium.
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Note that ¢/ (z) > 0, and that the expected capital gain from the next draw
(the second term) is increasing in current productivity because &' (z) > 0 (i.e.
a higher shock today_ means the next innovation will be drawn from a better
distribution). Thus S’ (z) = ¥/ (z) + [¢' (z) /€ (R)] [rU — y (R)] > 0. Just as
before, in equilibrium we can have ¢ < R or R < ¢. We now use (48) and
(49) to derive the job-creation and destruction conditions. Evaluating (48)
at z = R and using (49) to substitute S (z) we arrive at the job-destruction

condition:

A
y(R)—TU+mL{y(Z)—TU+€(R)[ U-— y(R)]}dG(ZlR)_O

Equation (42) together with 7V = 0 inply that at the optimal k, we have

(1-8 f/s oty it ) = (a)

namely the expected profit from a filled job equals the expected recruiting
cost. Using (49) to substitute S (z) out of this expression we arrive at the
job-creation condition:

5(> (T 0+ Nek
]f{ (2= U+ 25U - R)}}dG (ele)a (2= T2

After some manipulations, the job-destruction and creation conditions

respectively simplify to:

oty s Lo iR + LR [ @) - ¢ (RIdG @IR) ) =0

[otulaa )+ e / f € (&) — £ (R))dG (a]2) dH (=) = {8l
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where ¢ (p|R) = f# [1 - G(z|R)]dz and x = max (¢, ). Given the cross-
sectional productivity distribution H, the job-creation and destruction con-
ditions jointly determine i and 0. Observe that these conditions are anal-
ogous to those in Mortensen and Pissarides (1994) when ¢ = 0 and § (2) =
& for all 2. More formally, for given ¢ and ¢, an equilibrium is a list
[R,0, H,U,w,u,k] such that R, 8 and H jointly solve (41) and the job-
creation and the job-destruction conditions; rU is given by (16); w by (46);
and u satisfies (40). In addition, the market for capital should clear, so &
must satisfy [1 — (1 — @) u]k = K, where K is the aggregate supply of cap-
ital, which labor-market participants take as given. I now turn to the case
when the distribution of idiosyncratic shocks is Pareto.

Suppose idiosyncratic shocks are draws from

& 0 i & < els)

== &
(zls) 1-— [ﬂfl] ife(s) <z
where € (+) is a continuously diffcrentiable function and a > 2. T introduce
positively correlated shocks by assuming that £ > 0. The special case of iid
shocks corresponds to ¢ = 0. In addition, I assume there is an £ > 0 such

that £ () =g and £ (s) = 0 if s < g, and that lime(s) =1 +g=%"
§=+00

Then if R > ¢ (s), 1 — G (R|s) = [%]“ and for any @ > R,

G (zls) — G (R]s) = [%]a [1 = (ﬁr) a] .

Substituting these expressions in (41) we sce that the steady state produe-

W This distribution has mean p = =2=¢ (s) and variance al = A We assume
a > 2 so that both are finite. An example of an ¢ (-) satis(ving all these conditions is
e(s) =1+g—c~"" forany £ > 0.
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tivity cross-section is still given by (26). So for this case, the job-creation

and destruction conditions, respectively, specialize to
=]
p}=e R aly(R)=rU] r ¢ e(z)*—e(m)"™ _ (r+6+XNe £(z)®
a=T ~ |k [m] ./}; o 4T = T—-mel) |&- e = dT

- Ao /’s(m)“’—e{R}“dI y(R)—rU A e(R)*ule
r+8+ X Jp gt k Tr+d+A a-—1

=0

Under relatively mild conditions, it can be shown that the job-creation con-
dition slopes down and the destruction condition up in 6-R space, implying
a unique (@, R) pair. A parameter restriction analogous to the one depicted
in Figure 2 guaranteeing that there is a range of values for ¢ such that R < ¢
can still be derived. In addition, one should always make sure that the equi-
librium satisfies R > £."° Following the same procedure used for the simpler
model, it is easy to verify that output still aggregates to (29).

I conclude this section by showing how the observed level of TFP is
affected by the different ways of measuring aggregate inputs that can be found
in the literature. The measure of capital input used by Hall and Jones (1999)
did not adjust for utilization. This means that K instead of X, was used
in the production function, which would imply F (K, N) = AKYN'™, with

A= [1_21;_“6)“]714, as mentioned in Section 3.3. But in addition, Hall and

""Recall that the derivation of (49) implicitly assumes that B > € (s) for all 5. This
condition is satisfied if 2 > £. Showing that equilibria with B < ¢ are possible for some
parametrizations is now rather tedious, so we just outline the idea here. Let ¢z be the
value of ¢ such that 8= and R (¢:) = T solve the job-creation and destruction conditions.
Then if ¢ —F > 0, there will be an interval (¢, $) such that R (¢) < ¢ iff & € (= o). If,
in addition, we guarantee that dR (¢) /9¢ > 0, then ¢z —E > 0 also implies T < R (@) for
all ¢ € (¢z, ¢). Finally, notice that B > T also implics that every match faces a positive
probability of being destroyed for endogenous reasons. To see why, suppose R = @ < &
then any match that reaches a state s > £ () will never be destroyed endogenously.
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Jones (1999) report they did not have data on hours per worker, so they used
the number of employed workers instead of hours worked to measure labor

input. Letting I = 1 — u denote employment and using (27) and (31), the

number of hours worked is N = (R/ ,u,)v L 1_{}'?0)?“ so their measurements of
inputs imply that the aggregate relationship between inputs, output and TFI?

~ - - 5 pe 1= -
that they observed was F (K, E) = AKYE"™7, with A = [%] TA

6 Concluding Remarks

I have presented a theory of aggregate TFP differences based on the interac-
tion between institutions and the microeconomics underlying the aggregate
production function. I focused on a precise type of institutions, namely
labor-market policies as measured by the magnitudes of hiring and employ-
ment subsidies, unemployment benefits and firing restrictions. In the model,
firm-level technologies are subject to idiosyncratic shocks which induce a
cross-sectional distribution of productivities. Through their effect on the
job-creation and destruction rates, labor market policies affect the distribu-
tion of productivities among active firms.

Policies that make firing difficult make firms less willing to give up rela-
tively unproductive opportunities to search for better ones, lowering the av-
erage productivity among active matches, and aggregate TFP. Employment
subsidies also make firms more tolerant of ba:d productivitieg and hf:nce they
also decrease T‘FP. Unemployment benefits have the opposite effect. Hiring

subsidies stimulate job creation and cause more competition among firms. As
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a result, firms become more selective and only pursue very productive ven-
tures. The cross-sectional distribution of productivities shifts to the right,
and aggregate TFP rises. .

The model could be used as a guide to understand aggregate productivity
data. It could be calibrated to find out how large the differences in the mix
and magnitude of labor-market policies have to be in order to explain the
differences in TFP levels among a relevant set of countries. It may also prove

to be a helpful tool to the econometrician interested in measuring aggregate

productivity.
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A  Appendix

Proof of Proposition 1.

Tet 0 (). and R(¢) denote the solution to (38) and (39) when it exists;
and define 7(R) = R+ a(r-+6+X)(7n —77). By totally differentiating
(38) and (39):

AR (h) :' (T+(S'*_.f\)7] (9)

9% (80q(8) /R (¢/R)* T (R) + (r + 6+ X) 1 (9) [1 — demc )
a6(s) _ —(1-pB)0q(8)(1/R)(e/R)" r (R)OR

o (r+86+XN)n(f)c 00

So 7 (R) > 0 is sufficient for R/8¢ > 0. If ¢ = ¢,, then (38) and (39) have
a unique solution, namely 0 (¢,) = 6; and R(¢,) = &. But 7(s) > 0 by
assumption, so R (¢,) /0¢ > 0. This and the continuity of R (¢) implies
that R(¢) > ¢ for all ¢ > ¢,. Since 7 > 0, for any ¢ > ¢, we know that
7 (R) > 0 and therefore AR (¢) /8¢ > 0 and 90 () /¢ < 0. This establishes
parts (b), (¢) and (d). In 0-R space, the slopes of the job-destruction and

creation conditions are

Be —-en(@)(r+6+ AR
1A - 2] >0 o 0y 0) e/ ()

<0

TH+E+A
respectively, which establishes (a). Finally, (}SG — &> 0 is equivalent to ¢, —
R (¢,) > 0, which implies (e). B

Proof of Proposition 2.

Define

_ (e/R)°1(R) C) {1_ A(E/R)“]
r+6+NR  POgO) | TH6+A)
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Since 7 (R) > 0 by Proposition 1, we have A > 0 in any equilibrium. By
totally differentiating (38) and (39) we get
OR —q(0) OR rn (0)

or. ~ Boa@a <o, =~ WA /R + g

OR IR IR
= WUAE/RS >0, 57 =-27>0,

<0,

and this concludes the proof. B

For completeness, here I report the effects of all policies on market tight-

11CSS.

09 —(1-8)69(6) (¢/R)* 7 (R) OR

o = T @@ (F+8+NRE o0
LIALL 0 P

oy, Be r+86+X| Ory

9 _ —-(1-5)6q(0)(e/R)*T T(R)OR
dp en(@)(r+6+ AR dp ’
0% ﬂ{w[l A(e/R)" } aﬂ}

ot ¢ Be r+é+A| Orp )

Without additional restrictions the sign of 80/87; is ambiguous. It is

negative in any equilibrium with ¢ > ¢, if § > r (1 — ¢) /e.
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