
,. 

• 

... 

.. 

Sem. 
Eco. 
98/12 

D.EC098/12 

lJNIYERSIDAD DE SAN ANDRES 

Seminario del Departamento de Economía 

"Pesticides and Production Risk: Theory 
and Empirical Evidence" 

Erik Lichtenberg 
(University of Maryland) 

Martes 11 de agosto de 1998 
11:00 hrs 

Aula Chica de Planta Baja 

hemeroteca
Línea



IIIU 111111 111 U 

REPRINT 

from 

JOURNAL OF 
AGRICULTURAL ECONOMICS 

Vol. 45, No. 1 
January, 1994 

EC098/ 12 

UdeSA 

; 

•" 
.! 

' .. 
" '. "i 
., 

< 

' · ' 
'· I 

' I 

~ 

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea



82 

RISK-REDUCING AND RISK-INCREASING 
EFFECTS OF PESTICIDES 

J. K. Horowitz and E. Lichtenberg* 

This paper examines the issue of uncertainty and pesticide use and, in 
particular, explores the conditions under which pesticides increase or 
decrease profit risk. We develop a simple yet versacile model of crop 
production that can incorporare severa! sources of uncertainty and 
zhat makes clear the conditions under which pesticide use will 
increase or decrease risk. We show thac when the principal source of 
uncertainty is pest population, pesticides are likely to be risk­
reducing, che convencional view. Bue if crop growth is also random 
and if pese populations are high primarily when crop growch 
conditions are good, then pesticides will likely be risk-increasing. 
The reason is that pesticides chen increase output in already good 
states o/ nature, thus increasing !he variability of harvests. This result 
provides a convenienc vehicle for interpreting severa! empirical 
findings. 

l. Introduction 

Risk is widely believed to be a major determinant of pesticide use. This belief 
has its origins in the observation by crop scientists that insecticides, in 
particular, were used in response to the risk of pest infestation, that is, before 
infestation was observed (see, for example, van den Bosch and Stern, 1962). 
Numerous other random variables in addition to infestation also affect 
pesticide productivity, including weather, prices, and biological factors that 
influence poten tia! output. damage per pest, and pesticide effectiveness. These 
uncertainties are present for both observable and unobservable infestations. 
Thus, even when pest infestations are observable , and farmers can respond to 
observed infestation levels, the true extent of infestation, the dama.ge 
associated with any given infestation leve!, and the effectiveness of pesticide 
applications remain stochastic. 

This framework leads naturally to the concept of pesticides as a form of 
insurance (Carlson and Main, 1976; Norgaard. 1976). Scouting to monitor 
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infestations. or oth ~r methods of providing information about infestation. 
could therefore be used to reduce the demand for this insurance function and 
reduce insecticide use, helping to alleviate environmental problems associated 
with pesticides (Carlson. 1979; Miranowski. 1974). For the same reasons. taxes 
aimed at reducing pesticide use for environmental reasons would need to take 
the risk effects of pesticides into account (Leathers and Quiggin. 1991). New 
crops for which pest damage is more predictable could also be valuable . 

Numerous theoretical and empirical papers have discussed these issues 
directly and indirectly. The purpose of this paper is to provide a general model 
and to consider policy prescriptions and findings about pesticides in this light. 
We reconsider the notion of pesticides as risk-reducing or risk-increasing 
inputs and show that, in many production contexts, pesticides are more likely 
to be risk-increasing than risk-reducing. 

2- A Model oflnput Choice Under Uncertainty 

Consider a production technology given by f(x,e) where x is an input , E a 
random variable (state of nature) and f(x,e) crop output. E is usually considered 
to be an index of random factors affecting production. We assume that states of 
nature can be ordered from worst to best independent of x, as when E indexes 
rainfall or, more generally, crop-growth conditions. This assumption implies 
that f.(x.e) > O, where the subscript denotes the partial derivative. In general 
we expect the input to raise output in ali states of nature. f.(x.e) > O, although 
there may be inputs ( e.g. fertiliser) whose marginal product is zero or negative 
for sorne values of E . A common example of a production function of this type is 
the Just-Pope production function , f(x.e) = g(x) + s(x)e (Just and Pope, 1979). 

Let p be the non-stochastic price per unit of output, w the unit cost of input x. 
and y yield . State-contingent farm profits are pf(x,e) - wx. Denote the 
distribution of E as G(e), defined over a support (Emin,Ema,) , and the density 
function as g( e). A farmer with utility of profits u chooses x to maximise: 

Em:ix 

max f u(pf(x,e) - wx)dG(e) 
X Em,n 

(1) 

Where price or product quality are stochastic, we may also model farm profits, 
denoted IT(x,e), and interpret E accordingly. 

Quiggin (1991) has argued that the input x is risk-reducing if f .. (x,e) < O. 
since the input raises production more in bad states of nature than in good 
states. Toe input is risk-increasing if f •• (x,e) > O. A risk-reducing input can be 
characterised in three ways (Quiggin): (1) A risk-averse producer would use 
more of it than a risk-neutral one; (2) the input causes a monotone spread or 
second stochastic dominance shift in the distribution of output; and (3) a 
producer with output insurance would use less of the input. Toe definition is 
thus more general than those that look only at increases in variance. In the Just­
Pope example, f.,(x,e) = s.(x) and the input is risk-increasing precisely when it 
increases the variance of f(x,e). · 

3. Pesticides at Risk-Increasing or Risk-Reducing Inputs 

Toe conventional wisdom is that pesticides are risk-reducing inputs, so that 
risk-averse farmers apply more of them than risk-neutral farmers would 
(Carlson, 1979; Robinson and Barry, 1987). This view is due largely to the 
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work of Feder ( 1979) . who analysed pesticide use decisions using a model of 
expected utility maximisation by a farmer with non-increasing absolute risk 
aversion. Profit was: 

(2) 

where f10 and C0 are constant revenue and non-pesticide production cost. 8 is 
damage per pest, N is pest population size , k(x) is the proportion of the pest 
population killed by application of adose of pesticide x ande is the unit cost of 
the pesticide. Feder considers three sources of randomness: pest population N. 
damage per pest 8 and pesticide effectiveness. He shows that Sandmo-type 
mean-preserving spreads in 8, N. and, under certain conditions. pest 
survivorship, [1 - k(x)], lead a risk-averse farmer to apply more pesticides per 
application x and to treat at a Iower pest population threshold N, implying that 
pesticides are risk reducing. 

Robison and Barry (1987, pp. 107-112) derive essentially the same results 
using this specification of pest damage in a mean-variance model. They note 
that the model is limited beca use it considers only one source or risk . 

The empirical evidence on the risk effects of pesticides is quite mixed. In 
particular, severa! econometric studies obtain results consistent with the notion 
that pesticides are risk-increasing. Farnsworth and Moffitt (1981) found that 
pesticides increase yield variability on cotton in California, while Antle (1988) 
obtained similar results for tomatoes produced for processing in California. 
Horowitz and Lichtenber (1994) found that Corn Belt farmers who purchased 
crop insurance used more insecticides and herbicides on corn, which would be 
expected for a risk-increasing input. In his review of the literature on pesticides 
and risk, Pannell (1991) cites several simulation studies indicating that higher 
pesticide use is associated with greater variability of income. He finds no study 
that shows pesticides as reducing risk in cases where they are applied ex ante, 
i.e. before the realisation of an important random variable. 

The theoretical underpinning for the notion that pesticides are risk-reducing 
is not altogether robust, either. As Robison and Barry note, Feder's model 
ignores important sources of uncertainty such as crop size (potential output) 
and price. In addition, Feder shows that pesticides are not always risk­
reducing: a mean-preserving spread in pest kili k(x) leads a risk-averse farmer 
to apply less pesticide ~er application with a higher pest population threshold. 
suggesting that pestic1des can be risk-increasing. Moffitt (1986), using an 
optima! threshold model, finds that increased uncertainty about infestation or 
damage results in both a higher dosage and a higher threshold, making it 
possible that total seasonal pesticide use could be lower. Pannell (1991) notes 
that greater uncertainty about price or output makes such a result possible as 
well. 

The next section re-examines the issue of uncertainty and pesticide use. We 
use a more general frarnework than that used by Feder or Robison and Barry to 
explore the conditions under which pesticide use increases or decreases risk. 
We then consider several empírica! cases. The possibility that the risk effects of 
pesticides depend on the source of uncertainty has been remarked on before 
(see Pannell, 1991, for a comprehensive review of the literature on this topic). 
One development of our paper is a simple, versatile, and general model that 
can incorporate severa! sources of uncertainty and that makes clear the 
conditions under which pesticide use will increase or decrease risk. 
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4. Pesticides and Production Risk 

Let e be a vector of random factors affecting production. Far simplicity, we 
assume that it consists of two elements. e and w. and write the production 
function as f(x.6.w). where x is pesticide use. e is a random factor influencing 
poten tia! output ( crop growth) and w is a random factor influencing pest 
damage (pest population). Alternatively. one can think of e and w as indices of 
random factors affecting these two respective components. As befare. we scale 
e and w so that a higher realisation of either implies a higher leve! of output: 
thus. fe(x .6,w) > O and t(x.6,w) >O.A highervalue of e thus represents better 
crop growth conditions (higher rainfall. greater solar radiation) while a higher 
value of w represents less pest damage (lower infestation levels, less damaging 
pests, higher natural predator population levels . higher pesticide 
effectiveness). Pesticides decrease damage so f.(x ,6,w) > O as well. 

Lichtenberg and Zilberman (1986) have argued that models of pesticide 
productivity should define realised output as a combination of potential output 
and pest damage with the restriction that damage cannot exceed potential 
output. Our model distinguishes two corresponding potential types of 
uncertainty: (1) uncertainty due to variability in potential output and (2) 
uncertainty about fraction of potential output damaged. The former reflects 
variability in crop growth conditions due to fluctuations in rainfall, solar 
radiation. temperature and the like. T'1e latter includes the three sources of 
uncertainty discussed by Feder: variability in infestation level, damage 
associated with different infestation levels and pesticide effectiveness. 

One specification that incorporates this restriction on damage is f(x,6,w) = 
h(6)(1 - d(x,w)) where h(6) is potential output and d(x,w) is the fraction of 
output damaged. Multiplicative specifications iike this have been widely used 
in simulation studies of pesticide use (Lichtenberg and Zilberrnan); we will use 
it to help illustrate our arguments. Pesticides decrease damage, so d..(x,w) < O. 
A higher value of 8 denotes higher yield when fe(x,8,w) = he(8)(1 - d(x,w)) is 
positive, i.e. he(8) >O.A hígher value of w denotes hígher yíeld when f,.(x,8,w) 
= -h(8)d.,(x.w) is positive, i.e. d..,(x,w) < O. 

We proceed by examining different scenarios about the sources of 
uncertainty. 

Case 1 Uncercainty About Pese Damage Only 

Suppose that crop growth conditions are non-random and that there is 
uncertainty only about damage, because of randomness in pest infestation. 
damage per pest. or pesticide effectiveness. In our model, this corresponds to 
an assumption that f(x.8.w) = f(x ,e• ,w) where 6* is a constant and w is the 
important random variable. Toe sigo of the cross-partial between input x and 
pest infestation w, f,..,(x.8* ,w ), depends on whether marginal damage reduction 
is higher or lower in better states of nature. If marginal damage reduction is 
higher during less favourable states of nature , such as periods of high pest 
infestation or when pests are more damaging, then f .... (x ,8* ,w) < O and 
pesticides are risk-reducing. 

For example, in the multiplicative model we have f(x,8* ,w) = h(8*}(1 -
d(x.w)) and f, .. (x.6* ,w) = -h(8*)d, .. (x.w). Pesticides are risk-reducing if 
marginal damage reduction is higher in less favourable states of nature, that is, 
if -d .... (x,w) < O. which yields f .... (x,8* ,w) < O. That this is reasonable can be 
seen more readily when darnage takes the specific form d(x,w) = d*(w)(l - m(x)) 
where d*(w) is potential damage. which is the leve! of damage if no pesticide is 
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applied . and m(x) is a mitigation function. The derivatives are d;(w) < O and 
m,(x) > O. Pest infestation increases potential damage and this damage may be 
mitigated by pesticides. The cross-partía! is - d • ..,(x.w) = d;(w)((.:))m,(x) < O. 

Case l encompasses Feder·s model (see equation (2)). Crop darnage. 
h(8"' )d(x.w) = SN(l - k(x)]w. is here independent of randomness in potential 
output: under this specification, Feder finds pesticides to be risk-reducing. 

Empirically. this case is likely to correspond to irrigated crop production. 
particularly in arid areas such as the western United States. Crop growth 
conditions do not vary much: water availability is controlled by the grower. and 
factors such as solar radiation and diurna! temperature pattems typically do not 
fluctuate much during the growing season. Pest infestation and damage are 
uncertain because they depend on (random) initial pest and predator 
population levels. One would thus expect pesticide use to be risk-reducing for 
the large number of fruits, vegetables. cotton. and alfalfa grown under 
irrigation in arid regions. 

Case 2 Uncertainty Abour Crop Growth Conditions Only 

Suppose that the only source of uncertainty is uncertainty about crop growth 
conditions. In our model. this corresponds toan assumption that f(x .8w) = 
f(x.8.w*) where w * is a constant. Ont; would expect the marginal product of 
pesticides to be higher when growing conditions are good and there is more 
crop to be protected. If this is true. then the cross-partial f.8(x.8 .w) is positive. 
and pesticides are risk-increasing. This result is easy to see in the multiplica ti ve 
model. The cross-partía! is f,8(x,0.w*) = -he(8)dx(x.w*) > O. Pesticides clearly 
increase output more in the good state of nature because a given decrease in 
proportional damage salvages more production. 

An example is Pannell (1990), who suggests for ryegrass weeds in wheat that 
w and 8 are uncorrelated, since weed density depends primarily on weed seed 
production in the previous season and cultural practices at the start of the 
current season. These factors are much less important in determining potential 
crop yield than weather conditions while the crop is growing; in our 
framework, this suggests w = w* . t 

An identical argument applies when output price is the sole source of 
uncertainty. Let profits be fl(x.8,w*) = p(8)f*(x.w*) - wx, where p8(8) > O 
and e represents better market conditions and f* (x.w*) is output. Toen 
fl,a(x.8.w*) = p8(8)f.'(x.w*) > O. 

The set-up is similar when pesticides are used to protect product quality or 
appearance and pest 'pressure · is relatively constant. Let f(x,8w*) = 
-rr(x.w*)Q(8) be high quality output , where Q(8) is total output and 1T(x,w*) is 
the pro!?ortion that is of high quality, with 1o.(x.w*) >O.Toen fx8(x,8,w*) = 
-rr,(x.w*)Qe(8) > O. The marginal product of pesticides is higher under more 
favourable growing conditions and thus pesticides will be risk-increasing. Te 
allow multiple quality levels. Jet Ph be the price of high quality output, and le: 
p,<ph be the price of low quality output. Revenue is [-rr(x,w*)ph + (1 -
-rr(x.w*))p1]Q(8) and the cross-partial for profits is flxe(x ,8,w*) = -rrx(x,w*)[ph -
p1]Q8(8) > O. 

Babcock. Lichtenberg and Zilberman's (1992) study of pesticide use o~ 
apples provides an empírica! example. Tbey find that insecticide use does ne 
affect output but does reduce damage, and that damage reduces the proportio: 
of the crop sold on the higher-price fresh market. Among stochastic factor~ 
t We thank an anonymous rcferee for detailed comments on this general issuc. 
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rainfall increases output and reduces damage. while freezes have the opposite 
effect. Letting TI(x.0.w) denote profits, their regression equations in ·piy 
TI,d(x.0 ,w*) > O, i.e. pesticides are risk-increasing. 

Case 3 Uncercainry Abour Boch Crop Growch Condicions and Damage 

Suppose that both crop growth conditions and pest damage are subject to 
random influences. so that the production function is f(x.0.w) , with both 0 and 
w variable. 

We consider the case where crop growth conditions and damage are highiy 
correlated. Ecologicai principies suggest that potential yield and damage 
would often be highly correiated, since a field constitutes an ecosystem 
systematically skewed towards growth of certain crop plants. Therefore. 
factors that promote crop growth would likely also encourage growth of any 
plants that compete well with the crop (weeds) or rely on the crop for food 
(insect pests) or other sustenance (diseases). Wíthín a given producing region. 
an improvement in crop growth conditions will tend to lead to greater pest 
infestations, and one might expect a high negative correlation between the 
random variables e and w. 

As in Case 1, we assume that the marginal product of pesticides is higher 
when pest infestarion levels are higher, fxJx,0,w) < O. Similarly, we assume as 
in Case 2 that margina! (proportional) damage reduction is greater when crop 
growth conditions are more favourable. because there is more crop to protect 
from losses, or f.e(x,8 ,w) > O. 

Consider _perfect correlation, w = -pe, so that the production function can 
be written f(x ,8, - p8) where pis a scale parameter. Toe random variable 8 can 
be used as an index for production if and only if fe(x,8,-p8) > O. In other 
words, as crop growth conditions improve, pest damage cannot become so 
large that realised output actually decreases. Toe problem becomes 
significantly more comphcated when this cond.ition fails and e cannot be 
suitably reordered. 

Toe cross-partial between the input x and the random state of nature e is 
f.6(x,8,-p8) = f.8(x,8,w) + f • .,(x,8,w) [dw/d8] = fxe(x,0 ,w) - pf • .,(x,8,w) > O. 
Thus. when crop growth conditions and pest damage are perfectly negatively 
correlated, we expect pesticides to be risk-increasing. If 8 and w are negatively 
but not perfectly correlated, the intuition for these results remains valid. 

To see this more clearly, consider the multiplicative case, where the 
assumption that 8 and w are perfectly negatively correlated implies that the 
production function is f(x,8,-p8) = h(8)(1 - d(x,-p8)), with d.(x,8) < O and 
de(x,-p8) > O. For our a¡:,proach to be reasonable, the random variable 8 must 
satisfy fe(x,8 ,-p8) = he(8)(1 - d(x,-p8)) - h(0)<4(x,-p8) > O, which means: 

(3) 

This will hold if the proportional increase in potential yield h(8) is greater than 
the proportional increase in damage reduction, 1 - d(x, -p8). 
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The assumption that marginal damage reduction is greater when pest 
infestation levels are higher. damage per pest is higher. or pesticide 
effectiveness is higher implies that d,8(x.-p0) < O. When crop growth 
condition and pest infestation are perfectly negatively correlated. then 
f,8(x.0.-p0) = -he(0)d,(x.-p0) - h(0)d,8(x.-p0) > O.so that pesticides are 
risk-increasing. Again. pesticides make the distribution of output more risky 
by increasing yield in already good states of nature. 

Possible corroborating evidence for the case of weeds comes from 
Horowitz and Lichtenberg, who found that farmers with insurance use more 
herbicides on corn in the Midwest United States; other possible explanations 
for their finding are discussed there. In the case of insects, high nitrogen 
applications have been found to be positively correlated with high insect pest 
populations in a number of cases (for a survey see Dale. 1988). When growing 
conditions are good, both yield and insect population size will be high, and 
vice versa. If darnage is positively related to pest population size, then 
insecticide use would be increasing in these cases as well. 

There may, of course, be situations where crop growth conditions and pest 
damage are uncorrelated. or even negatively correlated. Many pests are well 
established within crop ecosystems and do damage regardless of how well the 
crop is doing; apple maggot and sorne weeds are examples. Sorne pests may 
do more damage when growing conditions for the crop are poor. For 
example. drought conditions in Illinois in 1988 favoured explosive 
populations of two spotted spider mites which are not norrnally a pest of 
economic importance. 

5. Conclusion 

Toe risk effects of pesticides are important in a number of contexts. For 
example, crop insurance has been proposed as a means of reducing pesticide 
use; this proposal is based on a belief that pesticide use is positively correlated 
with production risk (Carlson, 1979; Miranowski, 1974). Risk is likely to be 
important in determining the adoption of new crop varieties, which are often 
developed to have less variable yields, and the use of pesticides associated 
with them. A recent paper by Leathers and Quiggin (1991) suggests that 
farmers · responses to policies such as pesticide taxes will depend on the risk 
effects of pesticides. 

Pesticides are widely believed to reduce production risk, but the theoretical 
analyses that provide the underpinning for this belief have been based on a 
limited view of production that assumes that pest damage is independent of 
other factors affecting output. As Lichtenberg and Zilberman have argued. 
this view is implausible because damage is limited by potential output. Thus. 
pesticide productivity depends on other factors affecting output. 

Taking a more general view of production that incorporates this 
imerdependence between pesticides and other factors, we examine the 
condition under which pesticides are likely to be risk-reducing or risk­
increasing. We show that pesticides may be risk-increasing in a wide variety of 
circumstances, a result consistent with numerous empírica! studies. Future 
research on pest management under risk would likely benefit from explicitly 
recognising multiple sources of uncertainty and investigating their mutual 
effects on crop production. 
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Insurance, Moral Hazard, and 
Chemical Use in Agriculture 
John K. Horowitz and Erik Lichtenberg 

This paper examines how crop insurance affects corn farmers· fenilizer and pestic ide 

use in the U .S. Midwesc. Crop insurance might be expected to affect chemical use 
beco.use of ·moral hazard": insured farmers may undenake riskier production than do 
uninsured farmers. Resulrs suggest that insurance exens considerable iníluence on corn 
farmers· chemical use decisions . Those purchasing insurance applied s ignificantly more 
nitrogen per acre ( l 9'ié ). spent more on pesticides (21 'k ). and treated more acrea ge with 
both herbicides and insecticides (7'ié and 63'ié) than did those not purchasing insurance. 
These results suggest that both fenilizer and pesticides may be risk-increasing inputs. 

Key words: crop insurance. fenilize r use. moral hazard. pesticide use . risk . 

Deteriorating quality of the rural environment 
and agricultura! resource base has become .1 

growing source of concern in the United States. 
EnvironmentaJ problems include leaching of ni­
trate and pesticides into groundwater. surface 
water pollution from soil erosion and nutrients 
and pestici.des in runoff. pesticide drift. and res­
idues on foods . AH of these arise as spillovers 
from agriculture and are widely perceived as 
problems of increasing gravity. 

There has been further concern that farrn 
commodity programs. favorable tax treatment 
of agricultura! investment. and other agricul­
tural policies have exacerbated these problems 
(National Research Council). One program that 
could potentially influence agricultura! chemica! 
use is federal crop insurance. Agriculture is 
widely believed to be an industry in which risk 
plays a substantial role in production decisions . 
including decisions such as chemical use. cul­
tivation practices. and cropping pattems which 
have potentially significant environmental ef­
fects . It seems likely that crop insurance. which 
is aimed specifically at affecting risk . could af-
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f ect environmental quality both through direct 
changes in input use decisions on existing crop 
land and indirectly through changes in cropping 
pattems. Crop insurance has been specifically 
proposed as a means for encouraging reductions 
in pesticide use. and its potential in this regard 
has been investigated on general conceptual 
grounds (Carlson 1979) and through simulation 
(Miranowski et al.). However, the issue of 
whether crop insurance actually affects agricul­
tura! chemical use has not been investigated em­
pirically. 

Crop insurance might be expected to affect 
chemical use because of oppommities for "moral 
hazard. - i.e .. the possibility that insured people 
take fewer precaurions against harm (Arrow, 
Holmstrom). Moral hazard has been identified 
as a major reason for the absence of privare in­
surance markets for most agricultural risks 
(Chambers). 

The present paper estimares the effect of in­
surance coverage on chemicaJ use by com­
growers in the U.S . Midwest. Moral hazard plays 
an important role in many theoretical economic 
models. but it has rarely been measured and there 
is often little more than anecdotal evidence of 
its importance. Estimation has been difficult be­
cause insurance may induce only small, hard­
to-measure changes in behavior if contracts are 
wrinen to minimize moral hazard: in cases where 
significant moral hazard effects are present, it 
may be difficult to observe either agents' pre­
cautionary actions . the costs of those actions , or 
their effects on the distribution of returns. If the 
insurance contract is complex, it may also be 
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difficult to deterrr.ine what the optima] actions 
are for the insured parties and therefore how to 
interpret estimation results (Newhouse. Phelps. 
and Marquis). Separation of moral hazard and 
adverse selection effects has also been a prob­
lem (Manning et al.). 

Measuring the moral hazard effects of crop 
insurance should be less problematical for a 
number of reasons. Agricultura] production con­
forms fairly closely to the neoclassical model 
and much is known already, at least qualita­
tively. about the production relationships that are 
necessary for understanding moral hazard. Pro­
duction is relatively risky because of its depen­
dence on weather. pest population growth. and 
other stochastic factors. Federal crop insurance 
is designed in a way that permits moral hazard 
(Chambers). 

We consider only the effects of insurance on 
land currently planted to corn. As noted above. 
an important effect of crop insurance may be to 
alter cropping patterns , which may in turn cause 
changes in chemical use uecause of differences 
in climate , soils, and other facrors affecting che 
productivity of chemicals. Our study does not 
deal with such effects. 

A Model of Insurance and Input Choice 

Let the production technology be given by f (x, 
w), where x is an input, w is a random state of 
nature, and f (·) is output. We assume states of 
nature w can be ordered from worst to best in­
dependently of x. which would be appropriate 
if w were rainfall. for example. This assumption 
is strong but not unreasonable in sorne cases. In 
terms of our notation, it meaos fix. w) > O 'v 
x, where f;(x. w ) is the parcial derivative of out­
put with respect to the ith argument. In general. 
we expect inputs to raise output in ali states of 
the world. i.e . .f1(x. w) === O, although there may 
be cases for whichf1(x, w) < O for sorne values 
of w. Such an input may be said to be strongly 
risk-increasing (Quiggin). For example. nitro­
gen fertilizer is widely believed to cause burn­
ing and reduce yields when there is low rainfall . 
Denote the distribution of w as G(w), defined 
overa support [wm,n• Wm,xL and the density func­
tion as g(w). 

Let p be the nonstochastic price per unit of 
output. w the unit cost of input x. and y yield. 
State-contingent farm profits in the absence of 
insurance are pf (x. w) - wx. We consider an 
insurance contraer that guarantees to the finn 
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revenues of at least p_v*. where p and the insured 
yield leve! y* are assumed to be determined ex­
ogenously and f (x. w) is observable by the in­
surer. If y ield falls below _v*. the farmer re­
ceives a payment equal to p[y* - J(x. w)]. This 
is a commonly observed form of insurance con­
tract even outside of agriculture. 

Under such a contract. there exists a trigger 
state w* = w*(x. y*) . defined by che implicit 
function f (x, w*) = y*, such that the insurer 
pays out to the firm whenever w falls below w*. 
Because w* is a function of x. the insurer's ex­
pected payout is detemúned by the finn·s choice 
of x. This moral hazard possibility will be im­
portant to the players if the insurer cannot per­
fectly observe w or write a contract contingent 
on x. There may also be adverse selection if there 
exists a parameter of functions f (-) or g(·) that 
is known by the firm prior to choice of x but is 
not known by the insurer. 

lf the firm is risk averse, it chooses x to max­
imize the expected utility of profits: 

(1) i~""" u(pf(x, w) - wx)g(w)dw 

+ u(py* - wx)G(w*). 

Toe arguments of w*(x, y*) are omitted for ease 
of notation. Let 1r(w) = pf (x, w) - wx and 7r' 
= 1r(w*) = py* - wx. Toe first order condition 
is 

(2) [mu u'(1T(w))[pf1(x, w) - w]g(w)dw 

- wu'(r)G(w*) = O. 

where u' is the partial derivative of utility with 
respect to profit. 

To see the general moral hazard effect of in­
surance, differentiate the first order condition to 
obtain 1 

(3) 
dx u'(r)pfi(x, w*)g(w*) dw* 
- = ---------
dy* ~ dy* 

wu" ( -rr')pG( w*) 
+------. 

~ 

where .1 < O is the second derivative of the ob­
jective function with respect to x. Equation (3) 
shows that the resulting change in input use de-

1 Without further restrictions on f(x. w). there may be multiple 
solutions to equation (2) and thereforc the optima! x may not be 
continuous in y*. See Grossman and Hart or Arnott and Stiglitz. 
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pends primarily on the shape of the production 
function ar w*. ~ 

The first term on the right hand side of equa­
tion ( 3 ) is the effect on input use x of a change 
in the trigger state w* holding v* constant. This 
effect dep~nds on f 1(x. w* ).~ ~ultiplied by the 
rate of change dw* / dy* in the trigger state: by 
assumption. dw* / dy* = 1 /f:(x. w* ) is always 
positive. Toe second term me:isures the direct 
effect on x of a change in y* holding w* con­
stant. i.e .. with no change in the trigger state. 

Consider first the case where the agent is risk 
neutral. 3 so that the second term on the right 
hand side of (3) is zero . The moral hazard effect 
is determined by the sign of f 1(x. w*). If f 1(x. 
w* ) > O. increased insurance coverage will re­
sult in lower input use because there is a larger 
set of states of nature in which the input has no 
effect on revenue. The firm thus has less incen­
tive to purchase the input. the typical moral haz­
ard effect. If the input is strongly risk increasing 
so that f 1(x. w* ) < O. increased insurance cov­
erage will resuit in higher inout use. 

If the agent is risk a~erse. the second term on 
the right hand side of (3) is positive: an increase 
in y* lowers the marginal utility of income by 
increasing income in ali states below the trigger 
state. making the agent more willing to increase 
spending on the input. The more risk averse the 
agent is. the larger this effect will be. 

Toe sign of dx/dy* depends on the balance 
between the two terms. Note that for any given 
leve! of risk aversion . dx/dy* is decreasing in 
f1(x. ws*). 

Crop lnsurance 

Empirical analysis of this model is based on in­
surance offered by the federal government. which 
has chosen to become the principal provider of 
multiple-peril crop insurance in the absence of 
insurance from privare providers (for ali perils 
except hail). Federal crop insurance specifies 
coverage- y* in terms of a proportion () of the 
farm · s historie average yield E(y) . with y* = 
0E(y). Fanners who purchase insurance can se-

: More gcner:tlly. the differencc bctween input use with :ind without 
insurance is 

l
,. ilx 

x(y" ) - x(O) = - dy 
ay 

which depends on f,Cx. wl ovcr :ill states of the world w s w•; it 
also depends on thc degree of risk avcrsion. the cost of thc input. 
and the density function. 

' A risk neutral agent might still buy federal crop insur:ince be­
cause it is subsidized. 
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leer () (from among three possible choices) and 
a guaranteed price p* (also from among three 
possible choices) for a premium that depends on 
0. p*. and the farmer·s region. If yield falls be­
low y*. che farmer receives a paymenc equal to 
p*[y* - j(x. w)]: this is the contract modeled 
abo ve for p* = p. 

The government' s aims in providing such in­
surance are complex. At one time. it was argued 
that insurance could be a cost-effective substi­
tute for price supports as an income stabilization 
measure (Chambers). More recently. crop in­
surance has been viewed as a less costly alter­
native to ad hoc disaster relief (Commission for 
the Improvement of the Federal Crop Insurance 
Prograrn). At least one of the governrnent's airns 
has been maximizing participation. and premi­
ums are indeed subsidized; but it is not clear 
why the govemment has not designed contracts 
to minimize moral hazard opportunities. as dis­
cussed in Miranda. Note that for any of these 
goals. and for a!most any information structure. 
the contract {p*[y* - f(x. w)] if j (x. w) < y*: 
O otherwise} will almost surely not be optima! 
from the insurer·s standpoint. 

Estimation 

Estimation of the re!ationship between insur­
ance purchases and input use must take account 
of the fact that both are choice variables. In other 
words. it is necessary to separate moral hazard 
effects from (adverse) selection effects. 

Toe decision to purchase insurance is made 
prior to production and is conditioned on the 
distribution of prices and yields (conditional on 
input use) . risk aversion, and other factors af­
fecting profitability and risk. The leve! of cov­
erage /;"desired by the ith fanner is assumed to 
be a function of farm characteristics Z 1; and a 
white noise error u;: 

(4) I¡'" = a'Zu + u;. 

Because the data we use do not include direct 
observations on FCIC coverage. we model crop 
insurance decisions as a dichotomous choice.'' 

• Our data include observations on each farm's total :mnual .:x­
penditures on insurance from federal and prívate sources. Prívate 
insurance includes hail and (crop) fire insurance. Hail and fire in­
sur.mce reimbur.;e farmers for actual yield losses incurred from these 
two specific causes and should not induce moral hazard effects in 
chemic;i.J use. Thus. including thcm in the dependent variable should 
add noise but should not otherwise affeet the results. Prívate in­
surance also includes livestock insurance. the moral hazard effects 
of which are not clear. However. any bias introduced by livestock 
insuranee is likely to be small since only 10% of the insurance 
purchascrs in our sample had 90% or more of their revenue from 
livestock sales. 
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Let the indicator variable / take the value I if 
/* > O (so the fim1 chooses to purchase insur­
ance) and O if /* :5 O (so that the firm does not 
purchase insurance). If error term u; is distrib­
uted normally. then (4) can be estimated effi­
ciently as a probit equation using maximum 
likel ihood rriethods. The estimated coefficients 
are denoted a and the predicted probability that 
insurance is purchased is <P(a'Z1) . where (/) is 
cumulative density of a standard normal distri­
bution. 

Input use decisions x ; are made at the begin­
ning of and during the prod uction se.1son. after 
the insurance contract has been selected. Such 
decisions depend on farm characteristics Z2; and 
insurance coverage /,: 

(5) - {3'Z , ., , X , - 2,T"fi 1 TV1 • 

In this model. a captures selection effects while 
y measures the moral hazard effect. 5 

The sequential nature of the decision process 
implies that (4) and (5) might plausibly be treated 
as a 1ecursive system in which errors u; and v; 
are uncorrelated. However. if there are unob­
served variables affecting either the farm·s risk­
iness or the farmer·s risk aversion. there is likely 
to be correlation between errors in the decisions 
made in different stages . To correct for this 
problem. we follow an approach used often in 
the labor literature and due to Heckman ( 1976, 
1979; see also Greene. pp. 747-48). 

Define .1 = d>(a'Z1)[! /<P(a'Z1) + (1 - 1)/(l 
- <P(a'Z1)]. where <I> is the density function of 
the standard normal distribution. and define A 
similarly. replacing a with its estimare J>. Then 
estimates of y can be derived from OLS esti­
mation of 

(6) X¡= /3'Z2; + y/¡ + a-A;+ TJ¡ 

whe.re a- is the covariance between errors u and 
\' .. 1 is constructed so that error T/ is uncorre­
lated with the insurance variable/. Van de Ven 
shows that estimates of y derived in this way 
are consistent. 

In a different context. Griffiths and Anderson 
discuss cross-section. time-series estimation of 
j(x. w) when f 1(x. w) may depend on w and no 
adverse selection effects exist; see also Just and 
Pope. 

• Goodncss of fit has bet:n a m:ijor concem in the literature on 
medica! expenditures (~fanning et al.. Duan et al.) because of the 
skewed distribu1ion of expenditures: Health expenditures are zero 
for a large proponion of thc population :md extremely large for a 
small propon ion . Differenccs in thc demand for different kinds of 
health care serv,ces also pose a problem. Neither of thcse issues is 
imponant in the si1uations we investigate. 
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Data 

Our estimation is based on three data sets . .\1ost 
of the analysis relies on cross-section. farm-level 
data collected by the National Agricultura! Sta­
tistical Service (NASS) in its Farm Costs and 
Retums Survey (FCRS) 1987 supplement for 
com. Inforrnation on historie (county average ) 
production and current (county leve!) precipi­
tation was obtained from the Federal Crop In­
surance Commission and the National Climatic 
Data Center. respectively. 

Toe FCRS is a survey of farmers in the United 
States who reported sorne corn acreage in 1987. 
We restrict our attention to a subsample of farm­
ers in 1 O states constituting most of the Corn 
Belt. Ali counties in Indiana. Illinois. and Iowa 
were included. plus selected counties in Kansas. 
Michigan. Minnesota, Missouri. Nebraska. South 
Dakota. and Wisconsin. where dryland (non-ir­
rigated) corn is a major crop. A total of 433 farms 
were sampled by the FCRS. of which 376 are 
used in our regr~ssions. The data set contains 
expenditures. input use. farm debts and assets. 
and income in 1987. It contains no inforrnation 
on prices. Toe FCRS is based on a complex 
sample design. and in the analysis be!ow. ali 
observations are weighted by expansion factors 
provided by NASS. 

Toe FCRS data include total annual expen­
diture on each farm for both privare and FCIC 
insurance on both crops and livestock, possibly 
from more than one insurance company, but not 
on motor vehicles or buildings. Coverage is 
converted to a dummy variable that takes the 
value 1 if there are any expenditures and O oth­
erwise. Roughly 48% of farmers reported sorne 
insurance expenditures. We do not have direct 
information on the extent to which our coverage 
variable is determined by FCIC insurance pur­
chases. However in 1988, 93% of cash grain 
farmers (farmers earning 50% or more of their 
total revenue from grain sales) in the six major 
Corn Belt States purchasing sorne form of in­
surance were covered by FCIC insurance. 6 Sixty­
seven percent of the farmers with insurance cov­
erage in our sample were cash grain farmers. 
Assuming FCIC coverage changed little over that 
one year, at least 62% of those in our sample 
with insurance coverage appear to have pur­
chased FCIC insurance. Many farmers earning 
less than 50% of total revenue from grain sales 

• We thanl- Linda Ca!vin of the Economic Research Service. U.S. 
Department oi Agriculturc for making this information available 10 
us. 
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and purchasing insurance will also he. ve pur­
chased FCIC insurance. 

Inputs studied were the three principal com 
nutrients (nitrogen. phosphorus. and potas­
sium). herbicides. insecticides. and overall pes­
ticide use. The quantity of each nutrient applied 
to corn is the product of application rate in tons 
per acre and the number of acres treated. The 
measures of pesticide use were the number of 
com acres treated with herbicides and the num­
ber of coro acres treated with insecticides: an 
acre treated twice counts as two acres. These 
numbers were converted to acre-treatments per 
acre. a standard measure of pesticide use , by 
dividing by total corn acreage. Per-acre expen­
ditures on com pesticides was also used as a 
measure of overall pesticide use. If. as theory 
suggests. the price of a compound is positively 
correlated with its effectiveness. expenditures 
should be a better aggregate indicator of pesti­
cide use than is a measure such as total pounds 
of materials applied. which does not adjust for 
eff ecti \ eness. 

Toe FCRS data were supplemented by county­
level data on historie average yields and yield 
variability (Federal Crop Insurance Commis­
sion). and by data on actual 1987 precipitation 
at county weather stations (National Climatic Data 
Center. U. S. Department of Commerce). Pre­
cipitation data were converted to county-level 
monthly amounts by averaging across al] weather 
stations in each county. 

Explanatory variables were restricted to those 
that were predetermined or exogenous. For in­
surance choice equation (4), the explanatory 
variables were county-level mean yields per acre 
of com and various altemative crops (grains. 
sorghum. soybeans). a weighted-average coef­
ficient of variation of crop yields per acre, and 
the expected -retum - to crop insurance, which 
is a proxy for the price of insurance. This last 
variable is. roughly speaking. the county his­
torical mean percentage excess of payouts over 
premia for Federal crop insurance. See Just and 
Calvin or Gardner and Kramer for derivation of 
this variable. 

For input equation (6), farm-level explanatory 
variables include the total number of acres planted 
in com. the fraction of total acres planted in each 
of the major crops. and the fraction of total 
acreage under reduced tillage. The fraction of 
acres planted in each of the major crops captures 
important information about production. includ­
ing types of rotations in use and the current year·s 
crop diversification. Both are risk management 
tools. 
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FCRS measured most financia] variables at 
the end of 1987. while the theory and econo­
metric models are based on values at the begin­
ning of the crop year. A few assets. such as the 
value of livestock and crops in storage. were re­
ported at the beginning of the year as well as at 
the end. We constructed an asset measure as the 
sum of the value of buildings and machinery at 
the end of I 987 and crops in storage and live­
stock at the beginning of I 987: this variable will 
not Iead to biased estimares if changes in the 
va!ue of buildings and machinery were small. 
Debts were measured as of the end of I 987. Be­
cause the Iatter measurement does not reflect the 
farm · s debt position during the time at which 
insurance and chemical decisions were being 
made, we did not use the debts measure . The 
percentage of assets in livestock was another 
rneasure of farro diversification. 

Tenure arrangements also can have a sub­
stantial effect on the riskiness of production. A 
dummy variable indicates whether any operated 
acres were rented .:or cash (as opposed to a share 
of the crop). We also measured the percent of 
total operated acres that were rented for a share 
of the crop. Measures of nonfarming opportu­
nities include a dummy variable indicating 
whether the operator had any off-farm wages 
during 1987 or operated an off-farro business. 
Operator age was also included as an indicator 
of human capital. 

Results 

We estimated equation (4) as a probit. Esti­
rnated coefficients are given in table I. Virtually 
all coefficients are significantly different from 
zero and have the expected signs. Insurance 
purchase is more Iikely in areas with higher coro 
yields, possibly because the size of potential loss 
is greater and possibly because premium sub­
sidies are greater in those regions. lnsurance 
purchase is less likely in areas where yields from 
altemative crops such as soybeans and wheat are 
higher, signifying that ero~ di versification is 
likely to be more profitable. The positive coef­
ficient on the coefficient of variation of all crops 
suggests that insurance purchases are more likely 
in riskier areas. the standard adverse selection 
effect. The negative coefficient on pre-plant 
(January-March) precipitation reflects the effect 

7 Sor¡;hum is grown mainly in arcas with lower r:,infall where 
com production is marginal. Thus. sorghum may not provide much 
of an opponunity to diversify away from com. 
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Table l. Probit Regression to Estimate the 
Probability of a Farmer Purchasing Any Crop 
Insurance 

!ntercept 

Mean return to FC!C insurance· 

County mean yield/acre corn 

County mean yic:ld/acre soybeans" 

County mean yield/acre wheatb 

County mean yield/acre sorghumb 

Coefficient of variation of yield/acre. 
ali crops' 
January-March precipitation 

Total acres operated 

Operated off-fann business in 1987'? 
(1 if yes) 

-0. 33" 
15.0 

- 0.005 
I.32 
0.00 15* 

i3.5 
- 0.2-."' 
58. i 
-0.22* 
74.7 
0.13* 

23.5 
0.20" 

21.8 
- 0.0018* 
67.4 

0.0005* 
s ... 1 
- 0.12* 
14.2 

• Sicniftc:im :it 99<;;; leve} of confidencc. Absolute values of the 
ratio- of codficient e ,limate to its standard error are reponed below 
the coeffrc.6n cstimatcs. Percenta~e of correct predictions is ~- 1 % . 
Sample sizc is 376. The weighted mean of the dependen! variable 
is 0.48. 
• See authors for derivarion. 
' :vleasured as categorical variables . See authors for derivation . 

of the reduced risk rhat comes from having high 
soil moi1sture í.n the i.nitial stages of crop growth. 
Farmers operaring more acreage may have higher 
(farm-level) yicld variances and perhaps. as a 
consequence. are more likely to purchase crop 
insurance. Off-farro income provides income di­
versification. making insurance purchase less 
likely. 

The coefficient on the return to crop insur­
ance is negative but insignificant: we expected 
it to be positive. A likely explanation is that this 
particular variable is a poor measure of the value 
an individual fanner would expect to get from 
crop insurance. The insignificance of the __retum 
to insurance and the lack of variability in _ 1. cal­
culated from the results in table 1 , may be a 
consequence of the data· s relati vely poor ability 
to predict insurance purchases. The poor ability 
to predict insurance is common in studies of crop 
insurance purchase decisions (Just and Calvin) 
but it should not affect analysis of moral hazard 
effects. 

Chemical Use and lnsurance 

Estimated coefficients of the chemical use equa­
tion (6) are shown in table 2. These are based 
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on the three hundred seventy-six observations 
for which chemical use data are available. 

Insurance has a positive. statistically signifi­
cant. and numerically large effect for nitrogen 
use. pesticide expenditures. and insecticide and 
herbicide acre-treatments. The results suggest 
that providing the typical insurance contraer to 
the average farmer (from among farmers who 
do not currently have insurance) will increase 
nitrogen application per acre by 18.4 pounds. 
roughly 19%; pesticide expenditures per acre by 
$3. 70. roughly 21 %: herbicide acre-treatments 
by 0.06. or 7%: and insecticide acre-treatments 
by 0 . 17, or 63%. 

Toe positive effect of insurance on nitrogen 
is predicted by the many studies that find that 
the marginal product of nitrogen. j 1(x, w) is low 
or negative at low rainfall levels (in particular. 
see Just and Pope and the papers in Anderson 
and Hazell).8 Our moral hazard model suggests 
that insurance can increase use of inputs for which 
this is the case.9 Insurance has a negative but 
siatistically insignificant effect on phosphorus 
and potassium use. which would be the case if 
these nutrients have positive effects on yields in 
unfavorable states of nature. Toe presumption 
that such nutrients have small positive effects on 
yieJd under poor growing conditions is consis­
tent with agronomic knowledge in that neither 
has phytotoxic effects. 

Like nitrogen, pesticide use is substantially 
higher among fanners who have insurance. This 
is true whether pesticide use is measured as total 
expenditures or as the fraction of acreage treated 
with herbicides or the fraction treated with in­
secticides. Higher pesticide use may seem sur­
prising given the widely held belief that pesti­
cides are risk reducing and therefore a substitute 
for insurance. We would argue, however, that 
in many circumstances pesticides are more likely 
to be risk increasing than risk reducing. 

The essential argument is as follows. In in­
tuitive terms, an input reduces risk if it adds more 
to output in bad states of nature than in good 
states of nature, since this makes output (and 
profit) in each state of nature more unifonn and 

3 Feinerman et al. prcsent evidence suggesting that preplant soil 
moisture and nitrogen are substitutes rather than complements on 
com in lowa. This might seem to contradict the notion that water 
and nitrogen are complements. as our results indicare . However. 
the production function estimated by Feinerman et al. says nothing 
aboul !he rclationship between nitrogen and in-season rainfall. which 
should be a major component of the random element in our model. 

9 An altemative explanation is that lenders rcquired borrowers to 
purchase FCIC insurance and that borrowers tended to use more 
inputs. We thank an anonymous rcviewer for pointing out this pos­
sibility. 
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Table 2. Chemical Use Regressions 

Herbicide In ,ecticidc;: 
Nitrogen Phosphorus Pot:iss ium :icrc;:-tre:llmc;:nts acre-tre:itments 

Pesticide 
expenditure 

per corn :icre péí :.icre per :icre per :icrc;: per acre per acre 

lntercept -80. 17 
1.60 

Insurance dummy !SAO 
3.01 

. l 56. 79 
1.71 

Total corn acres O.O 1 
0.51 

County mean corn yield/acre 0.14 
4.21 

Coefficient vari:ition corn yield/:icre 29. 7S 
1.07 

% acreage in soybeans 34.06 
0.75 

9i: acre:ige in soybe:ins: -9 .40 
0.14 

% acreage in small grains 13.55 
0.84 

% acreage in pasture - 2.29 
0.11 

o/c acrea ge und.:r Jow ti l lagc - 1 . 90 
0.20 

January-March precipitation 0.04 
2.11 

April precipitation -0.03 
0 .70 

Assets (SI00.000) 2.84 
2.79 

% assets thac are Jivestock - 13. 75 
0.51 

% acres oper.ared for share of crop 20. 99 
1.97 

Any acres rented for cash? (1 if yes) 12.86 
1.67 

Age of operator -0.24 
0.94 

Any off-farm wages·? 6.06 
1.01 

( 1 if ves) 
R: . 0.31 
F 8.22 

-33AO 
O.SI 

- 2.62 
0.52 

64.7S 
2.38 

-0.02 
1.00 
0.04 
1.61 
7.94 
0.34 

100.85 
2.72 

-116.65 
2.09 

15.53 
1.18 

- 11.50 
0.65 

-4.21 
0.55 
0.01 
0.93 
0.10 
2.85 
1.34 
1.60 

- 4 .32 
0.19 

- 3.82 
0.39 

- 12.87 
0.93 

-0.08 
0.38 
0.12 
0.02 

O. 18 
4.07 

-0.14 
0.003 

-7.27 
1.25 

38.50 
1.22 
0.0003 
0.01 
0.03 
0 .88 

-7.60 
0.29 

99.44 
2.31 

-85.82 
1.33 
9 .53 
0.62 

-15.71 
0.77 

-14.30 
1.61 

- 0 .02 
1.00 
O.OS 
2.08 
l. 75 
1.80 

-32. 18 
1.25 

27.70 
2.74 
5.70 
0.78 

- 0 .001 
0.006 
7.38 
1.29 

0.20 
4.63 

O.S I 
3.73 
0.06 
2.16 

-0.02 
0.1 1 

==0.00 
0.90 

==0.00 
0.25 

-0.22 
1.S I 
0.67 
3.41 

-0.73 
2.46 
0 .09 
1.30 
0.005 
0 .05 
0.04 
1.01 

==0.00 
0.79 

2.8 X l◊-• 

- 1.57 
0 .01 
2.1 8 
0.21 
1.77 
0.06 
1.31 
0 .02 
0.57 
0 .001 
1.31 
0.02 
0 .85 

0. 14 
3.08 

0.86 
2.40 
o. 17 
3.98 
O. '.: ! 
0.86 

==0.00 
0.75 
0.00 
0.35 

-0.33 
1.68 

-1.35 
4 . 14 
0.73 
1.50 

-0.37 
3.22 

-0.26 
1.66 

-0.06 
0.90 
0.0003 
2. 12 

==0.00 
o. 18 

2.4 X JO-·' 
0.23 
0.05 
0.25 

- 0.07 
0.88 
0.03 
0.59 

-0.002 
1.14 

-0.04 
0.90 

0.24 
5.94 

39.92 
3.51 
3 .70 
2.67 

-0.58 
o.os 

-0.01 
1.03 

- O.O! 
0.67 

-19.05 
3.00 

-8.56 
0.83 

19.44 
1.25 

-0. 10 
o.os 
0.79 
1.99 
0 .89 
0.42 

-0.01 
2.91 

-0.02 
1.76 
0.49 
2. 13 
3.3 I 
0.54 

- 1.85 
0 .76 
2.60 
1.48 

-0.03 
0.46 

-1.66 
1.22 

0.16 
3.62 

Ab~olute values of 1-st:nistics are reponed bclow the coefficicnts. Samplc size = 376. 

decreases yield variability. An input increases 
risk if it adds relatively more to output in good 
states than in bad ones. since that increases the 
discrepancy among states. In regions and/or crops 
where high pese infestations occur primarily when 
crop growth conditions are good. pesticides work 
by increasing output in good states of nature and 
are thus Iikely to be risk-increasing. 

Suppose w represents an index of -growing 
conditions . .. In many cases the marginal product 
of pesticides will be small if growing conditions 
are poor because (i) insect populations and weed 
growth are apt to be low and (ii) crop yield and 
thus potencial losses from pest infestation are 

Iikely to be Iow (a sentiment reflected in Carl­
son 1989). U nder such conditions. high pest in­
festations and therefore high pesticide produc­
uvity occur primarily when crop growth 
conditions are good. When such an association 
prevails. pesticides increase output in good states 
of nature more than in bad states and are thus 
Iikely to be risk-increasing. 10 This conclusion 
differs from the convencional wisdom because it 

'" In terms of our formal theorctical model . this ar¡;umenc sug­
gests that thc first term on the right hand side of (3J will be small 
and lhat the second term (the reduction in che mar~inal utilicv of 
incomc) will domínate. lcading to incrcascd pcstic-idc use u~der 
,nsur:incc. 
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includes output uncer1ainty rather than concen­
trating solely on uncer1ainty about pest infesta­
tion (see. for example. Feder). 

The possibility that pesticide use is risk in­
creasing rather than risk reducing has been re­
marked on before. In his survey on pesticides 
and risk. Pannell notes that pesticides are likely 
to be risk increasing when output uncenainty is 
the dominant source of randomness. He cites 
severa! empírica! studies. both simulation and 
econometric . indicating that pesticides are risk 
increasing in sorne contexts. In fact. he cites no 
studies showing pesticides to be risk reducing in 
cases where they are applied ex ante. that is. 
before the realization of an important random 
variable. 

Our discussion has so far ignored specifica­
tion issues other than selection effects . The in­
surance purchase decision has been studied in 
more detail elsewhere (Gardner and Kramer. Just 
and Cajvin): we are interested in it only to con­
struct :1. Since there does not appear to be sig­
nificqnt correlation between the errors in (4) and 
(5). :1 has not played much of a role in our anal­
ysis. The estimated coefficients in table 2 do not 
change much when variables are dropped from 
the regression. We have used a quadratic func­
tional form for soybean acreages only because 
soybeans are frequently in rotation with com. 11 

We have not consídered possible cross-equation 
restrictions tha: might be developed if retums 
from inputs are correlated. 

Orher Facrors Ajfecring Chemical Use 

The regression results also provide evidence about 
other risk management issues in agriculture. First. 
it is often assened that farmers paying share rent 
should apply less of variable inputs than cash 
renters or owner-operators. Yet nitrogen and po­
tassium use per acre grew as the proportion of 
land operated under share renta] increased. The 
relatíonship between tenancy and input use de­
serves further study. 

Second. farmers with more assets tend to ap­
ply more inputs per acre. Higher input use likely 
reflects wealthier farmers· enhanced abilíty to 
receive credit. or possibly higher machinery 
ownership. which lowers the cost of applica-

11 lf rela1ive prices are stationary. the proportions of thc farmer·s 
land planted to com and soybe:ms will indicate the rotation period. 
Othcr thin¡;s cqual. a f:um that is SO'ic com and SO'k soybcans will 
be relying on rotation more than a farm that is. say . 1 O'ié in one 
crop and 90'ic in thc othcr. Wc use che quadratic functional form 
to allow mcasurcmcnt oi thc cxtcnt of divcrsification in this way . 

lnsura11cc .. \tforal Ha:urd. and Chemica/ Use '13 > 

tion. lt is possible. of course. that if nitrogen 
and pesticides are risk-increasing . increases in 
their use comes from the lower risk aversion o f 
we:ilthier farmers. 

Overall. the regression results are in accord 
with standard agronomic knowledge. For ex­
ample . a larger share of acreage in soybe:ins is 
associated with higher phosphorus . potassium. 
and herbicide use but reduced insecticide use. 
Many farmers believe soybeans deplete soil 
phosphorus and potassium. and apply additional 
amounts of these nutrients on com when corn 
follows soybeans. Fields rotated from soybeans 
or small grains to corn have greater weed prob­
lems but reduced infestations of corn rootworm. 
the principal coro insect pest (Lazarus and 
Swanson). Fer1ilizer and insecticide use are higher 
when precipitation is higher. reflecting in­
creases in plant uptake of nitrogen and in insect 
population growth under humid conditions. 

Discussion 

We have examined how insurance affects com 
fanners · fenilízer and pesticide use in the mid­
west. Our results suggest that insurance exens 
considerable influence on com farmers · chem­
icaJ use decisions. Those purchasing insurance 
applied significantly more nitrogen per acre 
(I 9%), spent more on pesticides (21 % ) , and 
treated more acreage with both herbicides and 
insecticides (7% and 63%, respectively). Whether 
such effects occur in other crops, exactly how 
much they might affect insurers· payouts and 
whether they are substantial enough to explain 
the lack of privately-provided multiple peril in­
surance. remain to be determined. 

There has been growing concern over prob­
lems such as ground and surface water contam­
ination. wildlife kills. and a variety of health 
and safety hazards. ali of which are closely as­
sociated with agricultura! chemical use (Na­
tional Research Council). Insurance has been 
proposed as an instrument for addressing these 
problems by providing a substitute for addi­
tional pesticide applications (Carlson 1979: Mir­
anowski) . Results obtained here imply that fed­
eral crop insurance tends if anything to promote 
chemical use. rather than the reverse. To be a 
substitute for pesticide application. insurance 
contracts would have to be restricted to certifi­
able pest damage. a factor difficult to verify 
(Carlson 1979). An altemative would be to ad­
just the critical states of nature to correspond to 
those in which pesticides are effective. The lat-
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ter probably would require guaranteeing an ex­
tremely high percentage of average yield. for 
example 95%. and is thus likely to be exces­
sively costly (Miranowski et al.). Overa!!. our 
empírica! findings confirm the pessimism of 
previous conceptual scudies on chis issue. 

A major limitation of this study is that data 
allowed examination of insurance purchases onJy 
asan all-or-nothing decision. One would expect 
the leve! of coverage selected to influence input 
use decisions. It would be worthwhile to collect 
information for a more detailed analysis of in­
surance purchases and their effects on chemical 
use. 

We have concentrated on the effect of crop 
insurance on total amounts of agricultura! chem­
icals applied. Other important moral hazard pos­
sibilities include the timing of planting and of 
chemical application. both of which may affect 
the insurer·s payouts but which are unlikely to 
have substancial en\' ironmental effects. Crop 
insurance may also affect crop choice and land 
use decisions such as whether to cultivate 
low-productivity land. decisions that one would 
expect to have significant environmental con­
sequences. As we noted earlier, we have notad­
dressed these effects. Because, however, such 
decisions are more easily observable by the in­
surer. it should be easier to structure contracts 
to alleviate these kinds of moral hazard if the 
insurer is so inclined. 

[Received June 1992: final revision received 
February 1993.J 
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