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Abstract 

1 Introduction 

In this paper we develop estimators for models with nonseparable error terms 
and endogenous explanatory variables that can be used when the data are 
clustered in sorne way. Examples of such data are samples of siblings, panel 
data on a set of individuals or firms, and data on a set of individuals who 
grew up in the same neighborhood or attended the same high school. The 
methods will be applicable to a wide range of topics. Examples inc1~e the 
use of siblings to analyze the effects of teenage pregnancy on the prob~ ilities 
of being in poyerty, of being on welfare, and of ever marrying ( Gero · mus 
and Korenman (1992)), the use of children from the same high schoo to 
isolate the effects of family background on educational attainment, the use _ 

1 

D. E.C.098/Jo 

\ 

tf i!§5f tt;J ;;-;t~~t~tt.:c.:i:tff :Ír:{f_-_t_:-¡-'.f ?'", "t'2't::timZJ:iFf 'F/e'_~_:Í I.;!_tJ};f_:_i:_:11 
:.· :, ::_;.-:.·· .. ·::-.:· .. -: _: ... '. ·. _.. -.!···· ·.: ... ~- . ~:. ·- .. ••.. . . ·-· . -- . .. ·:·, . _· .. 

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea



of siblings to study the effects of neighborhood characteristics on high school 
graduation (Aaronson (forthcoming)), and the use of siblings to study trans
fers of time and money to and from parents (Altonji, Hayashi and Kotlikoff 
(1996), Rosenzweig and Wolpin (1994 a and b). The methods cover a wide 
range of nonlinear models, including binary choice models. 

To be more specific, consider the model (1.1) 

(1.1) Yik = m(xik, Ei, Uik), i = l...n, k = l...Kí-

where Yik is an outcome of person k from group i , Xik is a 1 x J1 vector of 
observed variables, éi is an error component common to observations from 
group i, 'Uik is an error term that is specific to person k of group i, and K 
is the number of observations in group i . In sorne applications, the "group" 
might be a family. In others, it might be a neighborhood, a school, or a firm. 
In cross section time series data, i might refer to an individual and k to the 
time period. The function m(-, ·, ·) may be nonseparable in Xik, Ei, and Uik· 

The index k may be an element of Xik, which means that the effect of 'Uik and 
éi on Yik may depend on sibling arder in a family context or age or the time 
period in a cross section time series context. 

To give a simple example, consider Aaronson's (forthcoming) analysis of 
the effects of neighborhood characteristics on college attendance. In this 
case i denotes a family and k a specific child. The outcome Yik is 1 if person 
i, k started college and O otherwise and Xik is average neighborhood income 
while person ik was between the ages of 10 and 16. (We abstract from other 
elements of Xik such as the income of family i when k is growing up to simplify 
the exposition). The function m(xik, ei, Uik) takes on the value O or l. The 
form of m(xik, Ei, Uik) might be 

or 

- 1 if W(Xik, éi, Uik) = Xikf + éi + 'Uik > Ü 

O otherwise. 

(l.la) m(Xik, éi, U:k) = J(-Xikf - éi < Uik) 

where the function J(.) is 1 if the inequality is true and O if it is false. (We 
adopt the linear form for the index function for exposition only-our methods 
are nonparanietric and do not require that the index function W be separable 
in Xik, Ei, and 'Uik-) 
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Let g('Uik,Ei lxik) be the density of ('Uik, .Eilxik)- The probability that a 
person with characteristics Xik attends college is 

J J [m(xik, Ei , 'Uik)]g( 'Uik, EilXik)déiduik 
E:i tLik 

00 

- [. j g(uik,Ei jxik)déiduik 
-rx,k-ei 

The objective of the analysis is to estímate the expected value of the partial 
derivative of the probability of attending college with respect to neighborhood 
income, holding the distribution g(ei , 'Uiklxik) constant. Call this derivative 
/3(xik), where 

(1.3a) /3(Xik) = f f · g(-fxik - éi, éi, JXik)déi 
E; 

in the above binary choice example. The majar statistical problem in esti
mating f3(xik) arises from the fact that neighborhood income, Xik, is likely 
to be correlated with unobserved characteristics of families who are clustered 
in the same neighborhood. Standard parametric methods for binary choice 
models such as the probit, logit, as well as nonparametric estimators provide 
biased estimates of /3(xik) when éi is correlated with Xik In those methods, 
the estímate of /3(x,k) will pickup part of the effect of éi on Yik· 

Aaronson (forthcoming) attempts to get around this problem by com
paring the schooling outcomes of siblings who grew up in different neighbor
hoods. He assumes that most family background characteristics are the same 
for siblings conditional on observables such as family in.come and marital sta
tus. He used the linear probability model with family fixed effects and the 
conditional logit model proposed by Gary Chamberlain (1980, 1984) to do 
this. Man.y other authors have u.sed one or both of these methods in other 
contexts. Unfortunately, the linear probability model is biased in almost ali 
circumstances. Chamberlain's conditionai logit model does not estímate the 
parameter of interest ( the population mean at a particular value of Xit of the 
effect of Xit on the mean of y for the ) and does not use information on groups 
(e.g., siblings). in which ali members have the same value for Yik· There is no 
suitable estimation method in the literature. 
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To give a second special case to which our methods apply, consider the 
model 

where E(éilx.;k) #- O and H is differentiable. Since m is differentiable in 
Xik the parameter of interest may be written as 

(1.3) f3(xki) = J J [mxk(Xki, éi , Uki) ]g(uki , €.;jxki)dé:idU;k . 
éi 'UJci 

There is a huge literature that assumes that H(xik, éi) is O and deals with 
the correlation between éi and Xik by controlling for é,¡, with a group specific 
intercept. These "fixed effects" estimators don't work when the impact of 
Xik on Yik depends on é,¡, , and alternatives in the literature require strong 
assumptions about the form of H and the distributions of the error terms. 

In this paper we propose two estimators for these problems as well as a 
wide class of other panel data models involving nonseparable error terms and 
endogenous regressors. For simplicity let Ki = K for all groups i, and define 
x .. to be the vector [xi1 , . . . , Xixl'- Both estimators are based on the assumption 
that the distribution of U;k and éi conditional on Xi1 ... XiK is exchangeable in 
[xil ·· -XiK] . By "exchangeable" we mean g(uik,éi jXil ···xiK) <loes not depend 
on the order in which the Xik are entered into the function g(U;k, eilxil ···xi;). 
That is, 

Assumption Al.1 g(uik, é.;IX,1---XiK) = g(uik, €i1Xik1 , Xik2 ---XikK) for 

ki E {1, 2 .. , K}, ki =/= ki' (1) 

For example, the assumption implies that g(U;k, éilxi1 ... XiK) = g(U;k , éi lxiK···xil)
In neighborhood and sibling applications the assumption that the value of 
the function g(Uik, éilxi) is the same regardless of the order in which the Xik 
are entered into Xi is a natural one provided that the elements of Xik are 
measured at the same age for each child. 

Our first estimator is based on the conditional expectation function E(Yiklxi)), 
and for this reason we refer to it as the "Regression Estimator". The vari
able xil has a direct impact on Yil through the function m(.) and an indirect 
impact by shifting the distribution of éi and uil· [xi2 .. x.;x] only have an 
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indirect impact through their effects on the distribution of éi and ui1 • How
ever, exchangeability restricts the distribution of Uii and éi to depend on xi 
o·nly through a vector of L exchangeable functions z(xi) of Xi- This implies 
that g(uik,cilXi1---XiK) = g(Uik,cilz(xi)) and that the mean E(Yiklxi) can 
be written as E(Yiklxi1, z(xi)). If the z(.) vector of functions is known and 
(2) Xik and the elements of the vector z(xi) vary sufficiently, then the partial 
derivative 8E(Yiklxil, z(xi))/ox-:1 is identified. Since it is possible to estímate 
the distribution of z(xi) conditional on Xii, one can recover the parameter 
of interest /3(xi1) from the estimator of 8E(Yiklxi1,·z(x.,))/&x.,1by integrating 
this derivative over the distribution of z(xi) conditional on Xik· 

The second estimator also relies heavily on Al.1 but involves a somewhat 
different set of assumptions. It <loes not use or require knowledge of the z( •) 
functions, but it <loes require sorne additional assumptions that we discuss 
below. The most important is that m(xik, c.¡, Uik) is of the form m(xik, e.¡k) and 
is strictly monotone in eik,where eik = Y(c.¡, Uik) and Y(.,.) is a continous 
function. The strict monotonicity assumption rules out qualitative choice 
models but covers many models that take on the form of (1.4). We show 
that m(xik, eik) and g(eiklXik) are identified under exchangeability of g(cilxi) 
from knowledge of the joint distribution of Yik and Xi- With knowledge of 
m(xik, eik) and g(e.¡klxik) one can estímate the average response /3(xik) as well 
as other parameters that characterize the distribution of the response of Yik 
to a change in Xik · 

The basic intuition underlying the second estimator is as follows. Suppose 
that K = 2, with k = l, 2. A shift in XiI alters the distribution of Yik = 
m(xi1, e.¡k) by shifting m(xi1, e.¡k) for a given value of e.¡1 and by shifting 
the distribution e.¡k. A shift in X.¡1 alters the distribution of m(xi2, e.¡k) only 
by shifting the distribution of eik· Consequently, one can isolate the direct 
effect of xi1 on the distribution of m(xi1, e) by comparing the change in 
the distribution of m(xi1, eik)I X.¡1, X.¡2 as X.¡1 changes to the change in the 
distribution of m(X.¡2, e.¡) lxi2, Xil as Xil changes. 

The theoretical literature on estimating nonseparable panel data models 
when the regressors are correlated with 'the error term is relatively small. 
(See Powell (1994)). An exception is the recent independent paper by Abre
vaya (1997) which deals with generalized regression models with fixed effects. 
Abrevaya's approach permits estimation of slope parameters up to scale but, 
in contrast to our approaches, <loes not permit estimation of the partial ef
fects of Xik on mean of Yik· In the case of qualitative response models we 
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have already mentioned the linear probability model with fixed effects and 
the conditional logit model. The conditional logit model and the other "fixed 
effects" approaches that we are aware of are restricted to specifications that 
take on the additively separable form of (l.la). 1 The fixed effects probit 
model is sometimes used to estímate r up to scale. It is well known that the 
fixed effects probit model is inconsistent when the group size is fixed, but 
Heckman (1981) provides monte carlo evidence suggesting that the bias is 
small when K is on the order of 10.2 

Manski (1987) provides a way to estímate r up to scale under more general 
assumptions than the conditional logit. He places no restrictions on the 
distribution of éi and assumes that the distribution of uil lci, xi1 , xi2 , is the 
same as the distribution of ui2le·i, xil, Xi2· He propases a maximum score 
estimator that exploits that fact that sgn(E((Yi2 - Yi1) lxi1, Xi2) = sgn(xi2I'
xi1I') where sgn(.) is -1 if the argument is negative and 1 if it is positive. In 
contrast to Manski's estimator, our approach requires appriori information 
about the distribution of cilxi1, x:2 . However, it permits us to estímate the 
partial effect of Xik on the probability that Yik is 1 as well as the parameter 
vector r up to scale. Furthermore, our "regression" approach can handle 
qualitative choice models cases in which Xik and the error components interact 
in arbitrary ways while the other approaches in the literature cannot. 

We should point out however that the estimators in there current form 
cannot accomodate dynamics in the model, which are addressed in recent 
papers by Honore and Kyriazidou (1997) and Kyriazidou (1997). 

The conditional logit and the fixed effects probit estimators may · be 
thought of as parametric "fixed effects" approaches. In addition, Cham
berlain (1984) discusses parametric random effects approaches to estimating 
r up to scale in (1.3a). This approach has been used in a number of appli
cations, including Jakubsen (19??). Assume that Uik is n0rmal, identically 

1The most common method in empirical studies is the linear probability model with 
fixed effects, whlch forces one to mai.ntai.n that the probability of y is the sum of ei and a 
function of x,k· 

2Heclanan and MaCurdy (1980) apply thls estimator as well as the fixed effects Tobit 
estimator to the analysis of life cycle labor supply. Note that one can recover an estimate 
of the partial effect of x,k on the probability that Yik is 1 from the probit coefficients and 
the distribution of é:i given Xik. However, the :MLE estimates of E:i are unbounded when y 
is the same for a11 group members, so one cannot obtain an estimate of the distribution of 
E:ilx,k without ·making assumptions about thls distribution. The same is true in the case 
of the conditional logit. 
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d.istributed across k,and independent of Xi and that éi is the sum of a func
tion off (xi; 0) plus a normally distributed error term that is independent of 
Xi- Then one can estimate r up to scale by adding f(xi; 0) to a probit model 
for each k and jointly estimating 0 and r while imposing cross restrictions 
across the models for each k. One may also recover the partial effect of Xik on 
the probability Yik that l. The main disadvantages of this approach relative 
to ours is that it requires the assumption that uik and éilxi are normal and 
the assumption of additive separability, as in (1.3a) 

In the case of continuous variables, the incidental parameters problem 
limits the utility of parametric "fixed effects" approaches for models such 
as (1.4). In special cases, parametric random effects approaches may be 
available. GMM is often used to estimate the parameters of nonseparable 
models a.nd it may be possible in some cases to estimate elements of /31 
or sorne parameters of the H ( Xik, éi; 0) when that function is parametric. 
However, there are many cases in which this method cannot be used to 
estimate the partial eff ect of Xik on the mean of Yik. 3 

The paper continues in section 2, where we present the "Regression" es-
. timator based on E(Yiklxi)). In section 3 we discuss a nonparametric version 
of the estimator and analyze its asymptotic distribution. In section 4 we 
d.iscuss an extension of the estimator to the case in which Xik is correlated 
with Uik conditional on x(xi) but an instrumental variable is available. This 
estimator provides an alternative to the "fixed effects-IV" linear probability 
model that is sometimes used in applied stud.ies even though it is inconsis
tent. In section 5 we derive the second estimator and provide results on its 
asymptotic properties. In ·section 6 we present some very encouraging monte 
carlo evidence on the performance of the "Regression Estimator. In section 
we provide some concluding remarks. 

3Thus far, neither of our estimators cover other limited dependent variables models such 
as the censored regression models or ~ple selection models. Honore (1992) provides a 
fixed e:ffects estimator for the limited dependent variables case. Kyriazidou (1997) uses 
an exchangeability assumption that is similar to ours in her work on panel data sample 
selection models. The approaches in both of these papers are based on differencing the 
observations in clever ways and are quite distinct from our approaches. 
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2 An Estimator Based on E(Yiklxi) 

In this section we present our regression based estimator. The estima
tor uses exchangeable functions z1 ( Xi1 ... XiK), z2 ( Xi1 .. -XiK), ... , zL ( Xii .. -XiK) of 
(xi1- --XiK) satisfying that property that for ali Xil··-XiK, g(u.;k, e:ilxii---XiK) = 
g(uik, e.dz¡, .... ,zf). By exchangeable we mean that the functions are invari
ant to the order in which the elements of (xil ---XiK) enter the function. For 
example, zJ might be the mean of Xii --XiK for family i and z'f might be the 
average over k of (xik - Zi1)

2. As we noted in the introduction, assumption 
(Al.l) that g(u.;k,e:ilXi1---XiK) is exchangeable in Xii -- -XiK means that with-
out loss of generality we can g(uik,e:ilxii---XiK) as g(u.;k,eilz;, .... ,zf), where 
z¡, .... ,zf are symmetric functions z1(xil --·XiK), z2(xi1- --XiK), ... , zL(xi1---XiK) 
of (xii ---XiK)- Let Zi be the vector of zf variables for family i. The first 
estimator requires the following assumptions in addition to (Al.1) 

Assumption 2.1. The functions that define zi in terms of xi are known. 
Assumption 2.2. The distributions of each element of the vector Xik, 

z; , .... , zf conditional on the other elements of the vector are nondegenerate. 

With these assumptions one may estímate E(Yiklxik, zi) nonparametri
cally. (As we discuss below, Assumption 2.2 can be weakened appriori in
formation about the functional form of E(yiklxik, zi) is available.) The Re
gression estimator of /3(xik) is based on the conditional expectation function 
E(Yiklxik, Zi)- Suppressing the i subscript where it is not needed for clarity 
and setting k to 1 for concreteness, this function is 

E(Y1lx1, z) = J J m(x1, e:, u1)g(u1, e:ix1, z)dé, du1 (2) 
¡;; U1 

The idea of the estimator is to recover /3(x1) from 

. 8 
(2.2) E:i:1 (Y1lx1, z) = ~E(Y1lx1, z) 

uX1 

and h(zlx1), the conditional distribution of zlx1, The distribution h(zlx1) 
can be estimated from the observations on x1 for the cross section of groups 
i. The derivative with respect to x1 is : 

(2.3) Ex1 (Y1lx1,z) = j j mx1(x1,e:,u1)g(u1,e:lx1,z)dédu1 
U1 ¡;; 
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because 

j j m(x1,E, u1) 9x1 (u1,Elx1,z)dédu1 = O 
u1 e 

The form of (2.3) is analogous to (1.3a) in the binary choice case. In this 
case 

(2.4) ExJY1 lx1, z) = f f · g(-rx1 - é, t:lx1, z)dé. 
E: 

Note that Ex1 (y1jx1,z) differs from /3(x1) because the distribution of u1 
and E is conditioned on both x1 and Zi- (See the right hand side of (2.3) or 
(2.4).) However, one may integrate out z to obtain /3(x1) from Ex1 (y1jx1, z) . 
To see how to do this, note fust that · 

where h(zlx1 ) is the conditional density of z given x 1 . Multiply both sides 
of (2.3) by h(zjx1) and integrate over the range of z. This yields (2.6) 

Re-arranging the order of integration on the right hand side of the equality 
and using (2.5) establishes that the right hand side is /3(x1 ), the function we 
would like to estímate. That is, 

The above equation forms the basis of our . first estimator. The estimator 
is obtained by substituting parametric or nonparametric estimators of the 
components of the right hand side of (2.7) into the equation.4 In the next 
section we provide the asymptotic distribution theory for a nonparametric 
approach in which kernel estimators of Ex1 (y1 Jx1 , z) and h(zlx1 ) are used. 

4When K, the number of observations per group, differs across i , one could do the 
estimation for each group size and then combine the estimates. 
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The key assumption, aside from exchangeability, is that E(y1Jx1, z) is 
identified conditional on prior information about how x1 and z enter the ex
pectation function. The expectation function is identified nonparametrically 
only if x1 varíes conditional on z. The conditions for identification involve 
trade-offs among (a) the size of the panel K, (b) the number L of elements 
in z, and (e) parametric or nonparametric restrictions on E(y1 Jx1,z). For 
example, consider the case in Xk is a scalar and K = 2 (i.e.e, there are obser
vations on 2 children per family). In this case, we conjecture that variables 
that are continuous exchangeable functions of the elements of X,¡= {x,¡1, xi2} 
may be approximated arbitrarily closely be functions of z; = Xii + xi2 and 
z¡ = Jx,¡1 -Xi2 I-5If the conjecture is correct, then conditioning the distribution 
of (e,¡, 'U.ik) on Zil and Zi2 is general enough. However, z¡ = J2xi2 - Z,¡1J. This 
dependence among z;, z¡, and Xii means that 

is not identified nonparametrically when K is 2. However, if the function 

is a low order polynomial in the three variables or z2 does not enter at all, then 
it may be identified. It is also possible that the function will be identified over 

5 (Prel.i.minary) A sketch of a proof of this conjecture follows. Let zf = x,:1Xi2• zf = 
.25{(zt)2 - (z;)2}. Consider functions of the form h1(A1(x1) + A1 (x2)). Assuming A1 (xr) 
is continuous, then it can be approximated arbitrarily closely by a polynomial in A1 (x1). 

Consequently, h1(A(x1) + A(x2)) ~ h1(ao + a1(x1 + x2) + a2(xf + ~) + a3(xf + x~) + ... ) 
where we have stopped at three terms for simplicity. It is tedious but straightforward to 
show that one can express terms x{ + ~as a linear combination of powers of z¡, powers of 
zf, and products of powers of the two. Thus, functions of the form h1 (A1 (x1) + A1 (x2 )) 

can be approximated arbitrarily. closely by functions of z¡ and z;. Functions of the form 
h2(IA2(x1) -A2(x2)1) ~ h(la1 (x1 - x2) + a2(xr - x~) + a3(xr - x~) + ... 1). The sum of the 
fust three terms inside the absolute value sign is equal l(x¡ -x2) I · !a1 +a2(X1 +x2)+a3(xr+ 
x~) + a3(x1x2)I- The fust term in the product is z'f. The components of the second term 
may be expressed as functions of z¡, z'f and pow.ers of z'f. Exchangeable functions of the 
form h3(A3(x1) · A3(x2)) can be expressed as functions of the three z variables in similar 
fashion by working with a polynomial approximation to A3(x1) · A3(x2). We conjecture 
that any continuous exchangeable function of x1 and x2 must be a composite function of · 
the terms involving h1(A1(x1) + A1(x2)), h2(!A2(x1) -A2(x2)1), and h3(A3(x1) · A3(x2)). 
If this is true, then we conclude that any continous exchangeable function of x1 and x2 
may be written approximated arbitrarily closely by a function of z¡ and z'f. We do not 
know if there is a useful generalization of this result when K > 2. 
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some ranges of x where there is variation in x conditional on z but not others. 
Note that when K is greater than 2, it is possible to test restrictions on the 
dimensionality of z. For example, when K = 4 one can test the hypothesis 
that the distribution of (é, uk)lxi depends only on Zii = (xi1 +xi2+x3 +xk)/4 
and I: lxik - z.;1 j. Finally, note that it is necessary to identify the effects of 
z1 and z2 on the mean of y1 conditional on x1 only over the range in which 
the conditional density h(z1 , z2) is positive sin.ce it is only these values that 
en.ter into (2.7). 

2.1 Discussion 

One very attractive feature of the estimator in the binary choice case com
pared to the conditional logit or fixed effects probit estimators is that it can 
utilize groups in which Yik is either 1 or O for all k. It is quite common panel 
data applications, particulary for rare events, that all group members have 
the same value for Yik· 6 

A second very attractive feature of the regression estimator is that it only 
requires that data on the dependent variable Yik be available for one member 
of group i, although data on Xik must be available for at least 2 members 
of group i. In contrast, the conditional logit estimator and standard fixed 
effects estimators require data on Yik and Xik for at least 2 group members. 
Consequently, data on children as young as 16 can be included in studies 
of the effects of neighborhood characteristics during childhood on outcomes 
that occur later in life, such as college graduation or marriage. This will 
substantially increase the sample sizes for sibling studies. To provide a bit 
of intuition for why one only needs data on Yik for one member of group i 
as well as the intuition underlying the Regression estimator, it is helpful to 
relate it to other panel data estimators for the standard separable case. Note 
that the standard linear regressiori model with an additive family fixed effect 
is a special case of our model (1.1) . Consider the model 

6The regression estimator can also be applied to multinomial models. A simple way to 
do this is to treat each outcome as a seperate 0-1 variable, and estimate E,,,k (y,kJx,k, z.;), 
impose the adding up constraint, and integrate out z,. 
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Chamberlain (1984) and Mundlak (1978) point out that the para.meter 
/3, which is the effect of XikO'nYik holding ci constant, may be estimated by 
using the decomposition of Eiinto its least squares linear projection on the 
elements of xi and the orthogonal error term Vi to eliminate €i from the above 
equation, and using the K observations on group i to estimate the system of 
equations 

(2.9) Yik = Xik/3 +Xi.A+ Uik + Vi, k = l...K 

with cross equation restrictions imposed. This does not require the assump
tion of exchangeability. The assumption of exchangeability places restrictions 
on the coeffi.cient vector ). summarizing the relationship between €i and the 
elements of Xi- In this case our regression based estimation procedure would 
amount to running the regression 

where z.¡ is a vector of exchangeable functions of xi and f(.;/31 ) is a func
tion with para.meter vector /31 , such as a polynomial. In the above model 
mx,k (xik, Uik, €i), the partial derivative of Yik with respect to Xik is a constant 
/3, so it is not necessary to integrate out over the distribution h(z.¡lxik)). A 
special case is when z.¡ only contains z;, the sum of the elements of Xi and 
f(.; .) is linear. In this case, (2.10) is equivalent to (2.9) with the restriction 
that the elements of ). are all equal. With these restrictions one does not 
need to have data on all of the Yik to identify /3 from (2.8). 

3 Asymptotic Properties of the Regression 
Estimator in the Nonparametric Case 

The nonparametric version of the estimator introduced in Section 2 is 
given by 

/3(x) = J %z.E(ylx, z) h(zlx) dz, 

where E(ylx, z) is a kernel estimator of the conditional expectation of 
Y given (X, Z) and h(zlx) is a kernel estimator of the conditional pdf of 
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Z given X. We suppress the i subscript and k subscripts on Yik and Xik and 
the i subscript on Zi• 

To derive the asymptotic properties of /3(x), we note that /3(x) is a 

functional of the kernel estimator, F(y, x, z), for the joint cdf F(y, x, z) 
of (Y, X , Z). Hence, a "delta-method" such as the ones described in Newey 

. (1994) or Ait-Sahalia (1992) can be used to derive its asymptotic distribution. 

Let K1 denote the dimension of x and K2 denote the dimension of z. 

Let d = 1 + K 1 + K 2 , and let f denote the pdf of (y, x, z). Then, 

F'(y, X, z) = J:!.= J~= f~oo JN(ty, tx, tz) dty dtx dtz 

where 

JA (t t t ) - - 1- "'I:' K (tL.,-t., .!:..=h. ~ ) N y , x , z - Nu'¡¡ L.,i=l u , u , u 

The following assumptions will be needed: 

ASSUMPTION 1: The sequence {yi; Xi, zi} is a strictly stationary ,B-mixing 
sequence satisfying k6 ,Bk -1- O as k -1- oo, for some 8 > l. 

ASSUMPTION 2: J(y, x, z) has a compact support 8 e Rd, f(88) = O 
where 88 denotes the boundary of 8, and f(y, x, z) is continuously differen
tiable up to order 9. where g > 2d. 

ASSUMPTION 3: The kernel function K(·, ·, ·) is an even function, inte
grates to 1, is of order r where r is an even integer satisfying d/ 2 < r < g, 
is continuously differentiable up to order g and its derivatives of order up to 
g are in L2 (Rd). Le., 

(i) K(-y,·-w, -z) = K(y, w, z) for ali (y, w, z) E Rd, 
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(ii) J~00 J~ J~= K(y, w, z) dy dw dz = l, 

(iii) for sorne even integer r such that d/2 < r < g, 

(a) 'r;/).. E Nd such that I:t1 )..k E {l, 2, ... , r - l} 

(e) f~oo lltr IK(t)I dt < oo, and 

(iv) K(·, ·, ·) is continuously differentiable on Rd up to order gand its 
derivatives of order up to g are in L2 (Rd)_ 

ASSUMPTION 4: As N ----* oo, O'N ----* O, N O''Jr ----* oo, ffi O''j.¡ ----* O, and 
ffi O'im ----* oo ·where m is an integer such that m < r /2 and m + r ~ g + d. 

ASSUMPTION 5: oo > f(x) >O, and J J J;(y, x, z) dydz, J (J 1"';~~~~~~ dy)
2 

dz 

J
(Jyf(y,x,z)dy)

2
d J(Jf:::(y,x,z)dy)2(Jyf(y,x,z)dy)2d J 1 d J J( )dd 

' f(x,z),; Z ' f(x,z)lO z , f(x,:::)2 z, Y x Y, X, Z Y z, 

J 
IJ f:::(y,x,:::) dyl d J IJ y f(y,x,z) dyj d J IJ f:(y,x,z) dyj IJ y f(y,x,:::) dyj d ali b d d 

f(x,z)'l z, f(x,z) z, f(x,z) z, are oun e . 

Theorem 1 1: IJ Assumptions. 1-5 are satisfied, then f3(x) is a consistent 
estimator of f3(x) and 

ffi O'}.f112
)+1 (f3(x) - f3(x)) - N(O, V) in distribution 

where 
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.. 

V={JVar(yJx,z) f(x , z)dz} {I[fx(JfK(y,x,z)dydz)J2dx} 

PROOF: See the Append.ix. 

1 
f(:z:)2 

4 An Extension: Correlation between Uik and 
Xik conditional on Zi. 

In sorne applications, Xik will be correlated with the idiosyncratic error com
ponent Uik even after one conditions on Zi- It is common in panel data appli
cations involving continuous dependent variables with additive error terms 
such as (2.8) to use an instrumental variable approach to <leal with this prob
lem while at the same time adding group specific intercepts to control for é i or 
to use the class of estimators discussed in Hausman and Taylor (1982). Un
fortunately, this approach is not available in the case of nonseparable models. 
Here we extend the Regression estimator to handle correlation between uik 
and Xi.k when an instrumental variable Aik is available. We modify the above 
model by dropping Al.1 and replacing it with the following assumptions. 

(Al.la) Xik = Y(Ái.k) + ~ik, where Y(Aik) is independent ~ik 
(Al.lb) Ái.k is independent of éi, Uik conditional on Zi , ~ik· 
Note that the correlation of Xik with Uik comes from ~ik· Sin.ce Xik and 

Ái.k are both observed, it possible to consistently estimate i(Ái.k) and ~ik , 
particularly if Y(Aik) has a finite number of parameters. Given these facts, 
we modify the approach to estimation underlying (2. 7) by working with the 
Ex,k(YiklXik,Zi,<;ik) rather than Ex,k(YiklXik,Z.¡). 

Suppressing the i subscript and set k to l. 

(i) E(y1Jx1,z,6) = j j m(x1,é_,u1)g(u1,élx1,z,6)dédu1 
-u1 . e 

Sin.ce Y(Aik) is independent of (é, uk), 

(ii) 8g(u1,élx1,z,6) = 8g(u1,élx1,z,6) = 
0 

8x1 8Y(A1 ) 
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Using (i ) and (ii) leads to 

(iii) Exi(Y1lx1,z,6) = j j mx1 (x1,€,u1)g(u1,E:lx1,z,6)d€du1 
u1 e: 

Ex1 (Y1 lx1, z) differs from /3(x1) because the distribution of u1 and € is 
conditioned on z and 6as well as x 1 . However, one may integrate out z and 
6 to obtain /3(x1) from Ex1 (Y1lx1,z). To see how to do this, note first that 

(iv) g(u1,E:lx1) = j j g(u1,E:lx1,z)h(z,~1lx1)dz 
= 6 

where h(z, 6 lx1) is the conditional density of z given x1 . Following the 
approach above, multiply both sides of (iii) by h(z, 6Jx1) and integrate over 
the range of z and 6. This yields ( v) 

(v) j j Ex1 (Y1lx1,z,6)h(z,6lx1)d~dz 
z ~l 

j j j j mx1(x1,E:,u1)g(u1,E:lx1,z)h(zJx1)dé:du1d;dz 
z 6 U¡ E: 

Using (iv) and re-arranging the order of integration on the right hand 
side of the equality establishes that the right hand side is /3(x1), the function 
we would like to estimate. 

The key assumption is (Al.lb), but this assumption is very unlikely to 
hold when ~ik is correlated with E:i and (Al.la) <loes not hold. Altonji and 
Ichimura (1997) take a similar approach to treatment of endogenous ex
planatory variables in the context of nonseparable linear dependent variables 
models. As they point out, the GOnditions that Aik is independent of ~ik and 
independent of E:i and Uik are much stronger than the usual conditions on 
instrumental variables for IV estimators. However, it should be kept in mind 
that IV estimators of partial derivatives are inconsistent in models such as 
(1.4), where slope coefficients are random and correlated with the endogenous 
variable. 
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5 Estimating the effect of Xii on Yil from the 
joint distribution of Yi and Xi. 

Our second estimator uses the entire distribution of Yil given Xi rather 
than just the conditional expectation function . We show that under certain 
assumptions it is possible to identify m(xik, éi, uik) and g(Uik, c.dxi) from the 
joint distribution of Yiklxi and the distribution of Yiklxik --Consequently, var
ious functions of m(xik, e,¡, Uik) and g(uik, c,¡lxi), including averages such as 
f3(xi1 ), are identified. Our proof of identification is a constructive proof and, 
hence, it provides a way of estimating m(xik, éi, Uik) and g(ci, Uiklxi) from a 
nonparametric estimator for the joint distribution of Yi and X,¡. 

To simplify the notation we will sometimes suppress both the k and i 
subscripts and use y to refer to Yil , x to refer to X,¡1 , and u to refer to 
ui1 .The model underlying the second approach to estimation is described by 
the following assumptions: 

(A5.l) There exists a function T(c, u) such that y = m(x, e), where 
e= T(ci, Ui) 

Let q(elx1 , x2) denote the conditional density of given (x1 , x2). 

(A5.2) \:/w, w' q(elw, w') = q(elw', w). 

(A5.3) \:/x m(x, ·) is strictly increasing in e. 

(A5.4) q(elw, w') is strictly positive everywhere. 

Assumption (A5.l) states that m(·.·) is weakly separable in x anda func
tion T(c=:, u) of e and u. We did not need this restriction for the regression 
estimator, but it is also assumed to hold in most nonlinear panel data models 
in the literature, such as the probit and logit binary choice models. Assump
tion (A5.2) states that the conditional distribution of e is exchangeable in x 1 
and X2 . If, for example, e= T(c, u) = e=:+ u, the conditional distribution of 
e is exchangeable in x1 and x2, and u is distributed independently of x and 
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€, then, Assumption (A5.2) is satisfied. 7 

The strict monotonicity assumption (A5.3) is not required for the regres
sion estimator based on (2.7) but it seems to be critical for the identification 
of m(xik, eik) and g(eiklxik)- As we have noted in the introduction, strict 
monotonicity of m in e restricts the analysis rules out qualitative choice 
models.8 On the other hand, this second estimator has a number of advan
tages over the regression estimator. First, it does not require the knowledge 
of or the use of the z functions, which are required for the regression es
timator. Second, it does not require that x and the relevant z functions 
vary independently for nonparametric identification. Finally, it permits one 
to estímate m(x .. k, ~k) and g(eikjx .. k) and various functions of them that in
elude but are not limited to /3(xik )- Thus the two approaches have different 
strengths and weaknesses and are complementary. 

We adopt the following normalization: 

(A5.5) m(O, e) = e. 

This is innocuous because the assumption of strict monotonicity of m 
in e implies that, given any function m( ·, ·), one can define a new function 
m'(·, •) by m'(x, e) = m(x, m-1 (0, e)), where m-1 (0, •) denotes the inverse 
function of m with respect to e, when x = O. From the definition of m' it 
follows that for all e, m'(O, e) = e. Moreover, since for all x and all e and e 
such that m'(x, e) = m(x, e) it is the case that fxm'(x, e) = fxm(x , e), it 
follows from Brown and Matzkin (1996) that m' and m are observationally 

7To see tbis, let g(elw, w') and s( u) denote, respectively, the conditional pdf of e and 
the pdf of u, and note that 

(5.2) Vw, w' q(e!w, w') = J s(e - elw, w') g(elw, w') de 

= js(e-e)g(e!w,w') ·dc 

= js(e-e!w',w) g(elw' ,w)dc 

= q(ejw',w). 
8The sign of the effect of e on m can depend on x1 provided that the analyst knows the 

values of x1 at which the sign switches. For example, in the case of the model m(x1 , e)= 
a 1x1 + a2x1e the sign of the effect of e depends on the sign of x1. 

18 

;-~\}\?t.,:~~~=.{.~_~_!-.:.~;_~_\~_.iX/:~~i:;;::y",ii~{.:~:-i-~~;~"i::1~/~i-I{:~~:~~:.i-\~=:•:nt:=F/}((?,i\~~fi;i-~~-;:{f ;;}:;:::{:~~.\\::.f\_~-~i?~~k~ff~~:~ 
. :'. :.~ . .:· ..... . : .. ._ .. . ·:;; ·. - . : ·--:.:: ~. - . - . .. ~: . ... . . . ... 

·::::. :.-,:··~ :-~~-: -:, .. , ,, ,: ., . : _.::· -.,.-._ - : .>:--:· -· .~/?:-.,~--:~ ;;.::/:~ i,,;:·.·· ; ·· .• ' • ·-,._<\.: ::--·::.: -~::~~<;./,.::\~,\-;~:',~~: 



equivalent. 

Theorem 2 Under A5.1-A5.5 m(x, e) is identified from the distribution of 
yjx1, X2-

Proof. : Equation (5.2) implies that 
'efw,w' Pr(e ~ r¡jw',w) = Pr(e ~ r¡jw,w'). 

It follows by (A5.3) that 

'efw', w, Ye,and Vr¡, Pr(m(w', e)~ m(w', r¡)Jw', w) = Pr(m(w, e)~ m(w, r¡)Jw, w'), 
or 

(5.3) Pr(y < m(w',r¡)jw',w) = Pr(y ~ m(w,17)jw,w1
). 

In other words, 

Fy¡w1 ,w(m(w',r¡)) = Fy¡w,w1 (m(w,r¡)) where Fylw',w(·) is the CDF of y 
conditional on x1 = w' and x 2 = w. In particular, 

(5.4) Fy¡x,o(m(x, e)) = Fy¡o,x(m(O, e)) = Fy¡o,x(e)), 

where the last equality follows from (A5.5) . 

Let f(yjw', w) be the pdf of y conditional on x1 = w', x2 = w. ·Since 
f(yjw', w) = g(m-1 (w', y)) &m-~w',y), it follows from (A5.3) and (A5.4) that 

Fylw',w(·) is strictly increasing. Hence, by (A5.4) 

This shows that the function m is identified. ■ 

The basic principle underlying identification is quite simple. The assump
tion of exchangeability implies that the CDF of ejx, O is the same as the CDF 
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of ejü, x. When one changes x, the distribution of m(O, e) changes only be
cause of the change in the distribution of ejü, x, while the distribution of 
m(x, e) changes both because of the identical change in the distribution of 
ejx, O and because x has a direct effect on m(x, O) for each value of e. Con
sequently, one can isolate the direct effect of x on the distribution of m(x, e) 
by comparing the change in the distribution of m(x, e)I x, O as x changes to 
the change in the distribution of m(O, e)jü,x as x changes. Our exchange
ability and strong monotonicity assumptions imply that Fy¡::c,o(m(x, e)) = 
Fy¡o,x(m(O, e) ) , which allows one to pin down m(x, e) subject to the normal
ization m(O, x) = e. The mechanics are roughly as follows. Find the CDF 
of yjü, x which, is the CDF of ejü, x. Then find the CDF of yjx, O For each 
value of e, m(x, e) is the value of y at which the 2 CDFs are equal 

5.1 Identification of g(elx) 

Next we derive an expression for g(ejx) in terms of the pdf and CDF of 
yjx1 , x 2 and of yjx, both of which are identified from data on y, x1 , and x2. 

Note first that 

(5.6) g(e jx) = Jy¡x(m(x, e)) amJ:·e) 

where fy¡x(m(x, e)) is the pdf of y¡x and we recall that x is Xil · Since 
g(ejx, O) = g(elO, x) , it follows that 

f ( ( )) om(x,e) f ( (O )) om(O,e) . yJx,0 m X, e ae = yJ0,x m , e ae , Le. 

(5.7) Íylx,o(m(x, e))amJ:·e) = Jy¡o,x(e). Hence, 

(5.8) om(:c.e) - f 
1"'t~e) )) . Or, using (5.5), 

8e - y j::,O m ::t,e 

Using (5.5). (5.6) and (5.9), we obtain 
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Equations (5.5) and (5.10) provide a way to estímate m(x, e) and g(elx) 
provided that one can estímate the pdf and CDF of yix1 , x2 and the pdf 
of yjx. With knowledge of m(x, e) and g(elx), it is of course possible to 
obtain a number of functions summarising the effect of a change in x on the 
distribution of y holding the distribution of e constant. Consider for example, 
the average partial derivative /3(x1) = /3(x) defined in (l.?). We now provide 
an expression that can serve as the basis for an estimator of /3 ( x) . 

Differentiating (5.5), 

(5.10) 
om(x,e) _ aF,~;.0 (F11¡o,.,,(e)) aF,,¡o . .,,(e)) + aF;¡-;_0 (Fy¡0,.,,(e)) 

ax - &y ax ax 

Hence, 

(5.11) j om.J;·e) g(ejx) de 

J.,,o.xCe) de 
Jy¡:,o (m(x,e)) 

5.2 Estimation and Asymptotic Properties 

We now proceed to define a particular estimator for m(x, e). Let K denote 
the dimension of x. Let d = l + 2K, and let f denote the pdf of (y, x1 , x2 ) . 
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Then, the kernel estimator for the unconditional and conditional pdf's and 
cdf's are: 

JA (t t t ) - 1 "f! K(u.,-ty u..-t, u--t2) 
N y, 1, 2 - Nui L..,t=l u ' u ' u 

F(y,x1,x2) = J!!.00 J~~J::~ fN(ty,t1,t2) dty dt1 dt2, 

A ( 1 ) J~00 jN(tv,x1,x2) dt'.I 
Fylx1,x2 y X1, Xz = I-oo ÍN(tv,x1,x2) dt'.I' and 

f N(YIX1, X?) = •w jt"'(y,xi,x2 ) • 
- }_

00 
ÍN(tv,x1,x2) dt'.I 

The estimator for m(x, e)) can then be de:6.ned by 

where 

Fy¡o,x(e) = l\10,x(e) 

Since we do not restrict Fy¡x,o and Fy¡o,x to be strictly increasing, m(x, e) 

need not be a singleton. To measure the distance between m(x, e) and m(x, e) 
we will use the metric p defi.ned by 

p(m, m') = SUPx,e { ma.x { SUPnEm(x,e) infn'Em'(x,e) In - n'I, SUPn'Em'(x,e) infnEm(x,e) In - n'I}} 
for any functions m and m'. To establish the asymptotic properties of 

this estimator, we make the following assumptions: 

ASSUMPTION l': The sequence {Yi, x1i, x.;2} is a strictly stationary .B-mixing 
sequence satisfying k6 .Bk --t O as k --t oo, for sorne 8 > l. 
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ASSUMPTION 2': f(y, x1 , x2 ) has a compact support 8 e Rd, f(80) = O 
where 80 denotes the boundary of e, and f (y, x, z) is continuously differen
tiable up to arder g where g ~ 2d. 

ASSUMPTION 3': The kernel function K(-, -, -) is an even function, in
tegrates to 1, is of arder r where r is an even integer satisfying d/2 < r < g, 

is continuously differentiable up to arder g and its derivatives of arder up to 
g are in L 2(Rd) _ 

ASSUMPTION 4': As N _, oo, aN _, O, N aj:¡ _, oo, ffi a'j.,, _, O, and 
../N a'j,m -, oo where m is an integer such that m < r /2 and m + r :S g + d. 

ASSUMPTION 5': f(O, x), f(x, O), and J(Fy¡;,0(Fy¡o,x(e)), x, O) are bounded 
from above and, bounded away from zero from below. O < Fy¡o,x(e)) < 1 
and O < Fy¡x,o(t)) < 1, where t = Fy¡;,0(Fy¡o,x(e)). 

Theorem 3 : If Assumptions (A5.1}-(A5.5} and 1 '-5' are satisfied, then 
m(x, e) is a consistent estimator of m(x, e), with respect top, and 

./N a{i (m(x, E:) - m(x, e)) _, N(O, V) in distribution 

where 

_ J J[J K(y,x,.::)dy]2 dt1dt2 {[F.,¡o,:::(e)( 1-(F.,¡o,:::(e)) ]+[Fvl:::,o(m(:r,e))( 1-F.,¡o,:::(m(:r,e)))]} 

V = . f 11¡o,:(m(x,e)) f(O,x) , 

Proof: See Appendix. 

In a future draft we will propase a specific estimator for g and analyze 
its asymptotic properties. 
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···. . .. . 

6 Monte Carla Evidence 

We have performed a limited monte carlo analysis of our Regression estima
tor, which we refer to in the tables as AM-1. Our first set of experiments 
involves cases in which y is a continuous variable. The cases are nested in 
the following model: 

Model 1 

Yik - m(xik, €i, Uik) = bo + b1Xik + rXikT/i + 011r¡i + 0e€i + Uik ; k = l, 2; i = 1, 2, ... n 

Xik - Xi+ Xik 

éi - 0exXi + €i 

TJ~ - 011:r:Xi + 'Í7ik 

Xi~ N(O, l); XikN(O, l); €i ~ N(O, l); i¡ ~ N(O, l); Uik ~ N(O, 1) . 

The random variables Xi, Xik, ii, and 7.4.k are i.i.d. and mutually inde
pendent. Model 1 is a special case of the model in (1.4) that we used to 
motívate that paper. In applying AM-1 we defined Zi to (xi1 + Xi2)/2. Be
cause of the linear relationship among the stochastic components and the 
fact that €ik, Xi, and Xik are ali normally distributed, g(r¡i, éi, Uiklxi1, Xi2) = 
g(r¡i,éi,7.4.kl(xú + Xi2)/2), so Zi may be restricted to the mean of Xik gro1+p 
i. In practice, the researcher will not know the distribution of the ran
dom components, and so it will be necessary to experiment with additional 
symmetric functions of Xil and xi2 - It seems sensible to us begin with the 
case in which we have the right conditioning variables. For this design 
/3(x) = b1 + rE(r¡ilXik) = b1 + r011x0x,x;kXik where Bx,x;k is the population 
coefficient of the regression of Xi on Xik. 

We implement AM-1 using 4 different approaches. The first, which we 
refer to as AM-l(poly /llr) in the table, is to approxim.ate E(Yiklxik, zi) as a 
third order polynomial in Xik and Zi with interactions up to the third order. 
We use OLS to estímate the coefficients of the polynomial. We use local linear 
regression to estimate h(z. lxik)- The sécond, called A-M(poly/ker) in the 
table, combines the polynomial approximation to E(Yiklxik, z.) with a kernel 
regression estimator of h(z.lxik)- AM-l(llr/llr) uses local linear regression to 
estímate both E(Yiklxik, z.) and h(zilxik), while AM-l(ker/ker) uses kernel 
regression to estimate both. We also report of f3(x) based on applying OLS 
to Yik = bo + b1Xik + 12Xikéi + éi + uik both with and without group specific 
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intercepts or "fixed effects" . We set n to 1,500. The monte carlo results 
are based on 750 replications. The numbers in parentheses are the standard 
deviations of the estimators over the 750 replications. 

We consider 3 cases of Model l. In ali cases we set b0 to O, b2 to 2, 
and evaluate the estimates at Xit = 0.5. In Case 1 , is O, Be is O, and B.,,x 
is l. Case 1 corresponds to the classic case in which the O1S-fixed effects 
estimator is used in the literature, and it is unbiased. The fact that , = O 
implies that /3(x) = b1 = 2. In this design Xik is correlated with 77i so OLS is 
inconsistent. Given that 1 = O and B.,,x = O the mean of the OLS estimator is 
b1 + B11xBx;x;k = 2.5 where Bx;x;k is the population coefficient of the regression 
of Xi on Xik · 

The results of the monte carlo simulations are reported in Table l. The 
mean of ali 4 versions of the AM-1 estimator are very close to the true value 
of 1, as is the mean of the OLS-fixed effect estimator. Perhaps surprisingly, 
the sampling error of ali 4 versions of the AM-1 estimator are smaller than 
that of the OLS-fixed estimator. In constrast, OLS is biased, with a mean of 
2.5. The results establish that the regression based estimator performs well 
in the standard case in which OLS-fixed effects can be employed. 

In Case 2 we use the same parameter values as Case 1 except that we 
change, from O to l. For this design and parameter values, /3(.5) = 2.25. 
Controlling for group specific intercepts <loes not control for the Xit7li· All 
versions of the AM-1 estimator have a mean that is very close to 2.25. In 
contrast, O1S is badly biased with a mean of 3.49, and O1S-fixed effects also 
suffers from a substantial bias, with a mean of 2.5. The standard deviation 
of the various versions of the AM-1 estimator range from .127 to .107, which 
is somewhat larger than the value of .101 for O1S-fixed effects. However, the 
AM-1 estimator clearly dominates on mean squared error grounds. 

Case 3 is the same as Case 2 except B.,, is set to O, Be is set to 1, and Bex is 
set to ~ l. In this design Xit is cortelated with the random slope parameter 77i 

and is negatively correlated with a separate random intercept term éi, while 
in Case 2 T/i is both a random slope and a random intercept. The true value of 
/3(.5) is 2.25. OLS is badly downward biased, with a mean of 1.5. The mean 
of the OLS-fixed effects estimator is 2.00. In contrast, the AM-1 estimator 
is essentially unbiased regardless of how we estímate the conditional mean 
of y and the conditional density of z. Overall, the results for the AM-1 
estimator in the continuous dependent variable case are very encouraging. 
In a future draft, we will evaluate the performance of our second estimator 
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using a similar design. 
We now turn to analysis of a binary choice model. The model is of the 

form 

Model 2 

Yik - I(m(xik, éi, Uik)) = I(bo + b1Xik + ;XikrJi + 0r,1Ji + Uik) ; k = 1, 2-; i = 1, 2, .. . n 

Xik - X.¡+ Xik 

1}¿ - 0r¡xXi + 1Jik 

Xi - N(0, o-;); Xik -N(0, a-i); fj-N(0, o-~); 7.1,.¡k - N(0, 1.5) 

For this design we also set Zi to ( Xi1 + Xi2) /2 for reasons discussed above. 
We used two approaches to implementing the AM-1 estimator. In the column 
labelled AM-l(poly/llr) we take a parametric approach and assume that 
E(Yiklxik, z.;) is well approximated by a probit model with an index consisting 
of a third arder polynomial in Xik and Z.¡ with interactions up the third arder, 
and we use local linear regression to estimate h(z.¡jXik) - In the column labelled 
AM-l(ker/ker) we use kernel regression to estimate both functions. We also 
report estimates of f3(x) based on a probit model involving a third arder 
polynomial in Xik· As before, we set n to 1,500 and perform 750 replications. 
In ali the experiments, b0 is O. The results are in Table 2. 

In Case 1, whicb. we do not report in the table, , = O and 0r,x is O, and 
b1 = O. We also set o-1 to 1.5. In this case the probit estimator is consistent 
and f3(x) = O for ali x. The mean of both the AM-1 estimator and the probit 
are essentially O. In Case 2, , = O, but 0r,x is l. We also set 0r, = 1, a; = 1.5, 
al = 1.5, anda~= .5. This design is essentially a probit model with a group 
specific error component (r¡) that is correlated with Xik· We report estimates 
of f3(x) at x = -2, x = -1, x = O, x = l, and x = 2. Not surprisingly, 
the probit estimator suffers from a strong positive bias at each value x. The 
estimates range between .101 and .118. Since the estimated f3(x) is almost 
constant across value of x the probit estimates imply that an in.crease of x 
from -2 to 2 would in.crease the probability that y is positive by about .4, 
while the true effect is O. In contrast, the AM-1 estimator <loes very well. In 
the case of AM-1 (ker /ker) the means of the estimator at the various X values 
lie between -.001 to .001. The standard deviations are larger than those for 
the probit but are still quite small. 
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In case 3 f/i is correlated with Xik and enters as both a random intercept 
and a random slope. The design is the same as Case 2 except that we change 
the random slope parameter I from O to l. In this case, f3(x) varíes with 
Xik for two reasons. The first is that the mean ,E(r¡i!Xik) = 1 · .75 · Xik of 
the random slope obviously shifts with Xik, and the second is that the value 
r¡ infiuences the likelihood that a given change in b1xik will lead the index 
bo + b1xik + ,xikf/• + 011r¡i + uik to exceed O. /3(x) is _ , - , and _ when Xik is 
-2, O, and 2 respectively. Once again, the probit estimator is seriously biased 
at sorne values of x. On the other hand, A-M does quite well, with a mean 
of _ , - , and _ when Xik is -2, O, and 2 respectively. These resultare very 
encouraging. They suggest that the regression based estimator <loes provide 
a viable way to estimate qualitative choice models with random errors that 
interact with and are correlated with the explanatory variables in the model. 

The monte carlo evidence is obviously limited by the small set of designs 
and parameter values we have chosen. However, we find the results to date 
to be quite encouraging. 

7 Conclusion (preliminary and incomplete) 

There has been an explosion of empirical studies that use variation among 
members of a panel to try to <leal with endogeneity of explanatory variables. 
In this paper we provide two estimators for models with nonseparable error 
terms and endogenous explanatory variables that can be used with panel 
data. One important class of such models are qualitative choice models with 
group error components that are correlated with the regressors. Another 
set of examples consists of random coefficients models in which a group spe
cific random coefficient that is correlated with the regressors. The applied 
econometrician <loes not have good options in the literature to estimate such 
models, except in special cases: We believe that our estimators may provide 
attractive options iri a wide range 'of situations. 

There is a long research agenda beyond the obvious tasks of completing 
the asymptotic theory and providing some initial monte carlo evidence for the 
second estimator. First, detailed monte carlo studies of both estimators are 
needed, particularly in a multivariate context. It is important to try different 
distributions of the error terms and the explanatory variables. Second, it 
is important to gain sorne experience with the estimators using real data. 
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With this objective in mind we are in the midst of using the regression based 
estimator to estimate how the probabilities of time and money transfers 
between married couples and the parents of the husband and of the wife 
are affected by the relative incomes, health status, and other characteristics 
factors of the two sets of parents. We will compare our results to those of 
Altonji, Hayashi and Kotlikoff (1996), who have applied fixed effects linear 
probability models and conditional logit models to this problem. There are 
many practical issues that will arise in implementing the estimators that are 
best worked out in the context of real world applications. 
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8 Appendix: Proof of Theorems 1 and 3 

PROOF OF THEOREM 1: 

Define the functional 4? ( ·) by: 

<I?(F) = J fxE (yJ_x, z) h(zJx) dz. 

Then, 

f3(x) = <I?(F) and /3(x) = 4'?(F) 

where P is the kernel estimator for the cdf F. 

Note that 

<I?(F) = J fxE (yJx, z) h(zlx) dz 

= J-ª-- [ f r f(y,x,z) dy] [ f(y,x,z) dy ] dz 
ax j f(y,x,z) dy f(y,x,z) dy dz 

= J .[ y f:r;(y,x,z) dy dz _ J f:(y,x,z) dy y f(y,x,z) dy dz 
j f(y,x,z) dy dz f(y,x,z) dy f(y,x,z) dy d.:: 

_ J r y Í= dy d _ J r f:r; dy r y 1 dy d 
- f(x) Z f(x,z) f(x) z 

and for any H, 

<I?(F + H) - <I?(F) = [I r y u:r;+h,.) dy d _ J r y Í: dy d ] 
f(:z:)+h(:z:) z f(x) z 

[ J r u:+h,.) dy r y (f+h) dy d J r f:r; dy r y J dy d ] 
- (f(:z:,z)+h(x,z)) (f(x)+h(x) z - f(x,z) f(x) z 

_ f (J y h:r; dy )f(x) - }f y f:r; dy )h(x) d 
- !W z 

- J r f:r;dy r yhdy f(x,z) f(:z:) + r h:r;dy r yfdy f(x,z) f(:z:) dz 
f(x,z)'Í f(:z:) 2 
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+ f .f f,:dy { yfdy f(x,z) h(x) + { f,:dy { yfdy h(x,z) f(x) dz 
f(x,z)2 f(x)2 

J (J y h:z: dy )f(x) - }J y Í:z: dy )h(x) [ 1 _ 1 ] dz 
+ f(x) f(x)'-1·+ f(x)h(x) f(x) 2 

J 
{ f:z:dY { yhdy f(x,z) f(x) 

f(x,z) 2 f(x)~ [ (f(x,z)+h(x,z))(f(;)+h(x))f(x,z)f(x) - f(x,z)~ f(x)2 ] 

J 
[ h:;;dy [ yfdy f(x,z) f(x) 

f(x,z)2 f(x )2 [ (f(x,z)+h(x,z))(f (;)+h(x) )f(x,z)f(x) - f (x,z); f(x) 2 ] 

+ J 
{ f:z:dY ( yfdy f(x,z) h(x) 

f(x,::)2 f(:z:)2 [ (f(x,z)+h(x,z))(f(;)+h(x))f(x,z)f(x) - f(x,) f(x)2 ] 

dz 

dz 

dz 

+ J [ f:z:dY [ yfdy h(x,z) f(x) [ 1 1 ] dz 
f(x,z)2 f(x) 2 (f(x,z)+h(x,z))(f(x)+h(x )) f(x,z)f(x ) - f(x,z)2 f(x)2 

Let 

J 
{ hzdy { yhdy f(x,z) f(x) - { f:dy { yfdy h(x,z) h(x) 

(f (x,z )+h(x,z)) (f (x )+h(x)) f (x,z )f (x) 

ip' (F, H) = J (J y h,, dy )f(x;(:)}Í y f= dy )n(x) dz 

J 
{ f:z:dy { yhdy f(x,z) f(x) + ( h,,dy ( yfdy f(x,z) f(x) dz 

f(x,::) 2 f(x )2 

+ f { f:z:dy { yfdy f(x,z) h(x) + ( f:z:dy ( yfdy h(x,z) f(x) 
f(x,z)2 f(x)2 dz ' 

and 

R(F, H) = J (Jy h::: dy)f(x)- }f y Í:z: dy)h(x) [ 1 _ 1 ] d 
f(x): f(x)2+ f(x)h(x) f(x) 2 Z 

J 
( f:r.dY ( yhdy f(x,z) f(x) 

f(x,z)2 f(:z:)2 [ (f(x,z)+h(x,z))(f(;)+h(x))f(x,z)f(x) - f(x,z)~ f(x)2 ] 

J 
{ h:dY ( yfdy f(x,z) f(x) 

f(x,z)2 f(x)2 [ (f(x,z)+h(x,z))(f(;)+h(x))f(x,z)f(x) - f(x,z)~ f(-z)2 ] 

+ J 
( f:dy { yfdy f(-z,z) h(x) 

f(x,::)2 f(x)2 [ (f(x,z)+h(x,z))(f (;)+h(x))f(x,z)f(x) - f(x,z)~ f(x) 2 ] 

30 

dz 

dz 

dz 



r f,,dy r yfdy h(x,:::) f(x) [ l - l ] dz 
+ f f(x,:::)2 f(x) 2 (f(x,z)+h(x,:::))(f (x)+h(x))f(x,:::)f(x) f(x,:::) 2 f(x)'l 

J { h,,dy { yhdy f(x,:::) f(x) - { f:,dy { yfdy h(x,:::) h(x) dz 
(f ( x ,z )+h( x,z) )(f ( X )+h( X)) f ( X,Z) f (X) 

For any H, let 11 HII denote the supremum over the values and derivatives 
up to order 2(K1 + K2 + 1) of H. Then, letting Rk(F, H) denote the k -
thcoordinate of R(F, H), for k = 1, ... , K, and hx and fx denote the k -
th coordinate of hx and fx, it follows that · 

I
R (F H) 1 < J Jiy h,,I dyd::: f(x) + JI J y Í:r dydzj h(x) [ h(x~] 

k ' - f(x) f(x)3 

+ J IJ f,, dyd:::I Jiy hl dy f(x,:::) f(x) [f(x,z)h(x) + h(x,:::)f(x) + h(x,:::)h(x)] dz 
f(x,:::)2 f(x)2 f(x,:::)3 f(x)3 

+ J lf h:z: dyl IJ Y f dyl f(x,:::) f(x) [f(x,:::)h(x) + h(x,:::)f(x) + h(x.z)h(x)] d 
f(x,:::)?· f(x)'l- f(x,z)J f(x)3 Z 

+ J IJ f: dyj IJ y f dyl f(x,:::) h(x) 
f(x,z)2 f(x)'J. [

f (x,z)h(x) + h.(x,z)f(x) + h(x.z)h(x)] dz 
f(x,z)3 f(x)3 

+ J jf Í: dyj IJ y f dyj h(x,:::) f(x) 
f(x,z )2 f(x)'J. [

f(x,z)h.(x) + h(x,z)f(x) + h.(x.z)h.(x)] dz 
f(x,z)3 f(x)3 

+ J h,, dy !Y h.j dy f(x,z) f(x) + y f dy h(x,:::) h.(x) dz 
f(x,:::)'1-

l/2 ) l/" 

< (J J y2 dyd:::) (J h.; dy - f(x) + IJ f y fx dydzl h(x) [ h(x)] 
f(x)'J. "'1[x)J 

J I J f= dyl (J y2 dy )
112 

(J h 2 
dy) 

112 
f(x,z) f(x) [f(x,z)h.(x) + h.(x.z)f(x) + h(x.z)h(x)] dz + f(x,z)2 f(x) 2 f(x,z) 3 f(x) 3 

+ J (f h; dy )112 
1 J Y f dyl f(x,z) f(x) [f(x,z)h.(x) + h(x,z)f(x) + h(x,z)h(x)] d 

f(x,z) 2 f(x) 2 f(x,z) 3 f(x)3 z 

+ J IJ f,, dyj IJ y f dyj f(x,z) h(x) [f(x.z)h(x) + h(x,:::)f(x) + h(x,z)h(x)] dz 
f(x,z)2 f(x)2 f(x,z)3 f(x)3 

+ J IJ f,, dyj IJ Y f dyj h.(x,z) f(x) [!(x,z)h(x) + h(x,z)f(x) + h(x,z)h(x)] dz 
f(x,z) 2 f(x) 2 f(x,z)3 f(x) 3 

+ J (J h; dy )
112 (J y2 dy )

112 (J h 2 dy )
112 

f(x,:::) f (x) + IJ f,, dyl IJ y f dyl h(x,:::) h(x) , 
f(x,:::)2 f(x)2 áz 
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(J J y2 dydz) l/2 (J J y2 dydz) l/2 u J f; dydz) l/2 
where [A] = f(x)4 + f(x)°'s" 

+ J lff,,dylfy2dy)d + J lff,,dyl (Iy2dy)d 
[ 

2 ( l 1/2 [ 2 l 1/2 
f(x,z)b f(x)" Z f(x,=)" f(x)º Z 

+ 11 HII [I IJ fx dyj2 (J Y2 dy) dz] 1/2 + [I 11 Y f dyj2 dz l 1/2 
f(x,=)" f(x)" f(x,=)" f (x)" 

[ 
lfyfdyl2 ]1/2 [ 1Jyfdyl2 ]1/2 

+ 1 f(x,=)" f(x).,dz + JIHII 1 f(x,=)" f(x)"dz 

+ r¡ IJ Í= dyl2 IJ y f dyl2 dz] 1/2 + [1 IJ Í: dyJ2 IJ y f dyl2 dz] 1/2 l f(x,=)" f(x) 16 f(x,=)" f(x)" 

+ IIHII [1 IJ fx dyj2 IJ Y f dyj2 dz] 1/2 + [J IJ f"' dyl2 IJ Y f dyj2 dz] 1/2 
f(x,=)" f(x)10 f(x,z)" f(x)" 

+ [J IJ Í: dyl2 IJ y f dyl2 d l 1/2 + IIHII [I IJ f:,; dyl2 IJ y f dyl2 d l 1/2 
f(x,z)lO f(x)" Z f(x,z)lO f(x)" z 

[ 
(Jy2dy) ]1/2 [ IJf:dYl21fyfdyj2 ]1/2 

+ f f(x,=)2 f(x)2 dz + f f(x,=)4 f(x)4 dz 

Since by Assumptions 2 and 5, ali the terms in brackets are finite, and 
IIHII is bounded on a neighborhood of F, it follows that 

[A] :s; C(F) for sorne constant C(F). 

Hence, 

(*) IIR(F, H)II :s; C(F) IIHll2 
• 

Also, for each coordinate k of <I>' (F, H) 

1

;¡;1 (F H) 1 < (J J y2 dydz )
112 (J J h;dydz)

112 IJ J y f., dydzjh(x) 
'3!k ' . - f(x) + f(x)2 
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+ J lff:z;dyj(Jy2dy)l/2(fh2dyt2d +J (fh;dy)l/21fyfdyjd 
f(x,z) 2 f(x)2 Z f(x,z) f(x ) Z 

+ J IJ f:::dyj IJ yfdyj h(x) d + J (J f"'dy) (J yfdy) d (J h( )2d )l/2 
( 

2 2 ) 1/2 

f(x,z) f(x)2 z f(x,z)4 f(x)2 z X, z z 

< IIHII [B], 

where 

[El - (Jfy
2
dydz)

112 
jffYf:i:dydzj 

- f(x) + f(x)2 

+ J IJJ:z;dyj (Jy2dy)l/2 d + J lfyfdyj d 
f(x,z)'.I. f(x)'.I. Z f(x,z) f(x) Z 

+ J lff:::dYI lfyfdyld + (I (Jf:z;dy)2 (Jyfdy)2 d )l/2 
f(x,z ) f(x)2 z f(x,z) 4 f(x) 2 Z 

is, by Assumptions 2 and 5, bounded. Let D(F) be such that [B] < 
. D (F). 

Then, 

(**) 14>~(F, H)I ::; IIHII D(F), 

¿From (*) and (**) it follows that <I>' is the Hadamard derivative of <I> at 
F. 

Since, as we have just shown, 

j4>(F + H) - 4>(F)I ::; D(F) IIHII + C(F) IIHll2 

for any bounded H, it follows that 

j<I>(.F) - <I>(F) 1 ::; D(F) IIP - Fil + C(F) IIP - Fjl
2 

Hence, since by Assumptions 1-4, P converges in probability to Fin the 
supremum norm, it follows that 
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converges in probability to O. Hence, 

/3(x) is a consistent estimator for /3(x). 

Also, 

J f.dy yhdy f(x,z) f(x) + h,.dy yfdy f(x,z) f(x) dz 
f(x ,z )' f(x) 

+ f f,.dy yfdy f(x,z) h(x) + f,.dy yfdy h(x,z) f(x) 
.J...;..c....:...~~...:...:.....;._;_f~(x~,=-)'~f~(x~)',..:.....¡_;_;__:_...:....;....;_:_.:._:_dz, 

(J J J y 1~
1
\y,w,z) ) 

= - J J J f(x) dH(y,w,z) 

JJJ (
(Jfyf,.(y,x ,z)dydz) l,.(y,w,=) ) dH( ) 

f(x)'.l y,w, z 

J J J (I f,.(y,x,z) dy) l,,(y,w,z) y dH( ) 
f(x,z) f(x) Y, w, Z 

+ J J J 1~
1

) (y,w,z) (J y f(y,x ,z) dy) dH( ) 
f(x,z) f(x) Y, W, Z 

J J J (J (J f,,(y,x ,z) dy) (y !(y,x,z) dy)l,,(w) dz) l ( ) dH( ) + f(x,-) . x Y, W, Z Y, W, Z 

+ J J J (J J,,(y,x,z ) dy) (J y f(y,x,z) dy) l,,(y,w,z) dH( ) 
f(x,z)2 f(x) Y, W, z 

J J J [ (J y f(y,x,z) dy) v ] 1 (l) ( ) dH( ) 
- f(x,z) f(x) - f(x) x Y, W, z Y, W, z 

JJJ[ (Jfyf,.(y,x,z)dydz)+(Jf,,(y,;,z)dy)y]l ( · )dH( ) 
f(x)2 f(x,z) f(x) x Y, W, Z Y, W , z 

+ JJJ [J (ff:(y,x,z)dy)(Jyf(y,w,z)dy)] l ( ) dH( ) 
f(x,z) f(x)'Í x Y, W, z Y, W, z 
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+ J J J [J (f f:(y,z,z) dy) (f y f(y;w,z) dy)] l ( ) dH( ) 
f(z,z)2J(z) z Y, W, Z Y, W, Z . 

where for any (y, z), lx(Y, w, z) and 1f)(y, w, z) denote, respectively, the 
Dirac function and the derivative of the Dirac function with respect to x at 
the point (y, x, z) . 

It follows by Assumptions 1-4 and Theorem 3 in Ait-Sahalia (1992) that 

-/N o-;,fil2
)+1 ( if?(F) - if?(F)) = J°N a-}.f112

)+1 (/3(x) - j3(x)) -+ N(O, V) in 
d.istribution 

where 

V= { J J [y - (Jy ~~~~;) dy)r j(y, x, z) dydz} {f [:z (J f K(y,x, z )dydz)J2 dx} 
= {JVar(ylx,z) f(x,z) dz} {I [:X (J J K(y,x,z)dydz)J2 dx} f(;yi 

■ 

PROOF OF THEOREM 2 (preliminary and in.complete). The proof 
follows using arguments similar to those used in Matzkin and Newey (1993), 
Matzkin (1997), and in the proof of Theorem l. In particular, to derive the 
asymptotic d.istribution, one can show that the Hadamard derivative of the 
functional: 

is given by 

where 

L _ J~
00 

h(s,O,z)ds 
1 - f::"

00 
f(s,O,z)ds 

f~
00 

f(s,0,z)ds 

( ) 
J~00 h(s, O, x)ds 

f~oo f (s,O,z)ds 
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= J [ l[s~e] f(0,x) - J~00 f(s,0,x)ds] 
f(m(x,e),0,x) f(0,xF- ls,o,x(s, w, z) h(s, w, z) ds dw dz 

and 

J~::;,c) f(s,x ,0)ds 
00 

' J"'.:;,c) h(s,x,0)ds 

L2 = ( ). J_00 h(s, x, O)ds J' f( O)d f~oo f(s,x,0)ds -oo s,x, s 

[
J"',;,:::,c) f(s,0,x)ds - l(s~m(x,e)) f(x,O)l 

= f f(m(x,e),0,x) f(0,x)2 ls,x,o(s, w, z) h(s, w, z) ds dw dz 

By Ait-Sahalia (1992), it then follows that 

.Jiíi o}$ (m(x, e) - m(x, e)) - JN o}$ ( <J?(F) - <J?(F)) - N(O, V) m 
distribution 

where 

V= { J J [J K(y, w, z)dy] 2 dwdz} L 

d L _ f [l(s~e,w=0,z=x) f(0,:z:) - F
00 

f(s,0,x)ds] 
2 

an -----,,-,-..,........,___,.~=..--- f ( s, O, x) ds - f (m(x,e),0,x) f(0,x)'l 

J [
J::'~:::,c) f(s,0,x)ds - l[s~m(x,e),w=x,z=O] f(x ,0)] ( ) 

+ f(m(x,e),0,x) f(0,x)2 f s, X, O ds 

il 
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Table 1: Monte Cario Simulations cf A.lvf-1. Continuous Dependent Variable Case 
(750 replications\ Slofes eYaluated at xilc=0.5 

Yit = bo +b¡Xil:, + p:iJ,.r¡j + 0 ,,71; .,,_ Br.Ei +u,,. : k = :,1; i = 1,1, .. .1500 

- B ~ -xi); = X; + z ... ; e, = a:ri + e, ; T/; = lx,. ;- •7.-:.: ; 

-~; - N(O,I); z"-2 ~ N(0J); 2,. ~ N(0,l); ?;,. ~ .V(0.l); u,.,.~ N(0,l) 

Case 1: . Y;, = O+ 2.xit + O.xu, 77; + I 77, + 0& - u,;,; enx=l 
Estimation f.1ethod 

True AM-1 A.J.'vf-1 A.M:-1 Af..1-1 OLS OLS 
value (poly/llr) (po[,.- ',.::er) (llr/llr) (ker/ker) Fi.xed 

Effects 
Meanof 2.0 2.00 2.GC 2.00 2.00 2.50 2.00 

/3(05) (0.056) (0.0..:.3) (0.078) (0.043) (0.072) (0.092) 

Case 2: Y.-( =O+ 2.ril: + u:i! 11; + 117, + Oc_ ..;.. u,x: 

Meanof 2.25 2.25 ,.., ·) -___ :, 
~ ? ~ 
~.-.:J 2.25 2.50 2.00 

- (0.127) (0.i : 2) (0.107) (0.109) (0.072) (0.092) /3(05) 

Case 3: Y;,= 0+2x,é + 1z1.1,77, + 177, ;-O.,:- -u .. : 
"' 

Mcanof 2.25 2.25 2.'.25 2.24 2.25 1.51 2.01 

./3(05) (0.107) ~o. 1 . \ :0.90) (0.010) (0.074) (0.069) 

,. 

Notes: AM-1 (poly/llr) uses a third o:dc::- .: J:yr.c ::::il in Xik and z; to approximate E(yik!Xi.k,Zi) 
anda local linear regression to app:-o;ü~:: : h z¡ :;,.:). AM-l(poly/ki::r) uses a tbird arder 
polynomial in Xik and z¡ to a.-p~~o:-~::.,:it'· . . 1-'. ·. , : ·11"-::r) uses kernel regression to estímate 
h(zi¡xi,k). AM-l(llr/llr) uses 1oc:i: ii::: -··:,.r ·, -;: .;: i . ·: ·o -~stimatt: for both parts of the estimation, 
and AM-l(ker/ker) uses kernel rcg:-c:;;si::i: X.:3 , OLS regression applicd to a modcl rclating Y-ílc 
to a constant and .a cubi::: in Xik- OLS-Fix::-:. Effe :t$ i~ OLS applied to a mode! that contains a 
scparatc intcrccpt far e:ich group i. Tecru::::::1I d~r.:uls are givcn in footnote _ . 

tf :::;:;r!Jf E!"J~tt{!?;~1r:::tr;:/(~ ?:'~?:? ¿7 . :-. "~ . ~ .. ·,r ,~-a .,,, ,."S :< ?/! if;fJ?;:·C 
•, : , 

·. -: . ~ ·: :· ,.;·. . . . . . 
..... ~ ... , __ . ::··· ;---•: -. r _. :·:.- - r' •. -. 



Table 2: Monte Carla Simulations of P.\f-1 Í7 the Case of a Binary Dependent Variable 
(750 replications). · 

Y.-, = l(bo +h1.ril:. + i'Zilc. T/; + 8 ,/7; +U¡~): k = 1,2; i = 1,2, .. .1500 

- o ~ .LiJ:. = X, + Xa,; T/; = · ,;:Xi + TJ;1; ; 

~ ~ u; Case 1: Y.,=l(0+0x,,.+0x;tr¡,.+117,.+G.::;+uJ; 8~x=l; ~=1.5; cG-=1.5; ;;==0.5; 

Estimation Method 
True AM-! A0--·-1 ?robit 
value (poiy. :lr) (:e:· !(CTl 

Mean (sd) o.o 0.002 _,_:, .. : 1 0.101 

of /3(2.0) (0.022) (0.025) (0.011) 

Mean (sd) o.o 0.001 -0.00 l 0.114 
- (0.015) (0.C22) (0.009) f of p'(LO) 

Mean(sd) o.o 0.000 O.Cl 0.118 

of /3(0.0) (0.011) (O. j21) (0.074) 

Mea.e. (sd) o.o 0.000 0.001 0.114 

of /3(-1.0) (O.O 15) (0.021) (0.009) 

Mean (sd) O.O 0.001 -0 . . Ji :J.101 
- (0.02 l) (O . . 25) ~0.011) of/3(-2.0) 

.. 
- . .. . - .. . ·. -= ·- .:· . 

- - .. - :..: 


