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Abstract: This paper studies a version of the neoclassical growth model where
lieterogeneous establishments are subject to partial irreversibilities in investient.
Under such investinent technology, the optimal decision rules of establishments
are of the (S,s) variety. A novel contribution of the paper is the analysis of the
general equilibrium dynamics arising from aggregate productivity shocks. This is
a difficult task given the high dimensionality of the state vector, which includes
the distribution of establishments across capital levels and idiosyncratic shocks.
The paper overcomes this difficulty by developing a suitable computational ap-
proach. The model is used to study the importance of investment. irreversibilities
for macroeconomic dvnamics. 1l is found that investment irreversibilities have no
major implications for aggregate fiuctuations, even though they are crucial for
establishment level dynamics. This result contradicts previous conclusions in the
literature which rely on partial equilibrium analysis.
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1. Introduction

Since the early and influential paper by Arrow (2] there has been a considerable
amount of theoretical microeconomic work on irreversible investment (see Dixit
and Pindyck [9] for a survey). Arrow |2] recognized that investment, is in general
costly reversible, the purchase price of capital being larger than its resale price
(due, for example, to the costs of detaching and moving machinery). For simplic-
ity though, he suggested concentrating in the case where the sale price of capital
is zero, i.e. where investrment is completely irreversible. Most. of the literature fol-
lowed this suggestion. In an interesting paper, Abel and Eberly [1] have recently
analyzed the more realistic and general case of partial irreversibilities in invest-
ment. In particular, they studied the problem of a firm facing a positive resale
price of capital, which is lower than its purchase price. They showed that the opti-
mal investment decision of the firm is a two-triggers (S,s) policy, and characterized
the range of inactivity as a function of the wedge between the purchase and resale
price of capital. A surprising result. stemming from their quantitative analysis, is
that -even relatively small wedges between the purchase and sale price of capital
can make the range of inactivity extremely similar to the one under complete
irreversibility. This finding leads to the conclusion that small irreversibilities can
matter a lot, and that modelling investment as being completely irreversible prob-
ably provides a better description of actual investment behavior than assuming it
to be perfectly reversible.

There are not. only theoretical reasons to emphasize investment irreversibilities:
the emnpirical literature has also found evidence that investment is lumpy and
infrequent. at the establishment level. Doms and Dunne [10] using LRD data on
manufacturing plants over 17 years found that the distribution of investment rates
across plants is highly skewed, with 80% of the plants displaving annual capital
growth rates below 10% (accounting for 45% of aggregate investment), while only
6% of the plants displaying capital growth rates over 30% (accounting for 25%
of aggregate investment). They also found that over 50% of the establishinents
display capital growth rates of at least 37% in a single year, and that about
25% of a plant’s cumulative investinent over the 17 years is concentrated in o
single vear (suggesting sporadic investruent spikes at tize plant level). Moreover,
they report that the number of plants going througi: large investment episodes is
ciosely related to aggregate investment. Cooper, Haltiwanger and Power (7} found
analogous results using a similar data set.

More direct evidence of the empirical importance of invectment irreversibilities




has been provided by Ramey and Shapiro [19]. Using data from an equipment
auction performed by an aerospace firm, they estimated the wedge between the
purchase price and resale price for different types of capital. They found that
machine tools sell at about 31% of their purchase value, while structural equip-
ment sell at only 5%. These estimates suggest substantial levels of investment
irreversibilities.

An important issue which received much attention in the literature is the
relevance of microeconomic irreversibilities for macroeconomics dynamics (e.g.,
Caballero and Engel [5], Caballero, Engel and Haltiwanger [6], and Bertola and
Caballero (3], [4]). Aggregating the behavior of heterogeneous establishments
subject. to aggregate shocks, this literature found considerable support for the
view that microeconomic irreversibilities are important for aggregate dynarnics.
For example, Caballero. Engel and Haltiwanger |6} using plant level LRD data
found that non-linear adjustment rules at the plant level substantially improves
the ability of their aggregate investient. equation to keep track of actual aggregate
investment. behavior. In particular, the nou-lincaritics appear to be crucial al
periods of large deviations from trend in actual investient.

All the studies mentioned above are partial equilibriun models of sectoral
imvestment. To fully analyze the nacroeconomic implications of microeconoinic
irreversibilities a general equilibrium analysis is required. The literature has long
avoided studying stochastic general equilibrium economies with heterogencous
agents following (S.s) decision rules since this class of problems seem extremely
difficult to solve. This paper develops a methodology suitable to conduct. such an
analysis and explores the quantitative importance of plant level irreversibilities
for equilibrium business cycle dynamics.’

Previous general equilibriumn studies have focused on investment, irreversibil-
ities at the aggregale level. i.e. the case where capital goods have no use in
consumption (e.g. Sargent 21}, Olson [17]. and Dow and Olson [11]). Sargent.
[21] considered a standard one sector growth model subject to i.i.d. productivity
shocks, where agents supply labor inelastically, and aggregate investment. is sub-
Ject to a non-negativity constraint. However, his emphasis was in the problems
associated with using a q-theory investiment function for econometric policy eval-
uations, and not in the implications of. irreversibilities for aggregate dynarmics.
Olson [17) generalized the class of productivity shocks considered by Sargent. [21)
and established the existence of a unique invariant distribution for the stock of

A notable exception is Fisher and Hornslein [12], who study the general equilibrium dy-
namics of an economy with retailers which follow one sided (S,s) inventory policies.




capital. Interestingly, he showed that irreversibilities can dampen the response of
investient to large aggregate productivity shocks.

The closest precedent to the current paper is Dow and Olson [11], who intro-
duced aggregate investment irreversibilities into the real business cycle studied
by Hansen [14]. For a similar aggregate productivity process as Hansen's, they
found that aggregate investment irreversibilities had no effects. Given the small
variability of aggregate productivity shocks, the nonnegative constraint on invest-
ment never became binding. Arguing that aggregate uncertainty underestimates
the uncertainty faced at more disaggregate levels, they proceded to analyze a two
sectors business cycle model. They found similar results: irreversibilities mattered
only when shocks displaved an implausible large variance. This paper goes a few
steps further with the level of disagregation. Davis and Haltiwanger (8] showed
that there are large emplovment flows across establishments in the manufactur-
ing sector, suggesting a considerable amount. of idiosyncratic uncertainty at the
establishement level. It seems natural to ask wether irreversibilities at this level
of disagregation can have major implications for the aggregate dynainics imnplied
by the theory. This paper pursues this question.

The model considered here is similar to the one in Veracierto [22} except. that it
allows for partial investment. irreversibilities at the establishment level. The basic
framework is analogous to the neoclassical stochastic growth model with indivisi-
ble labor analyzed by Hansen {14] and for a particular parametrization the model
reduces to his. Output, which can be conswuned or invested, is produced by a large
munber of establishinents that use capital and labor as inputs under a decreasing
returns to scale production technology. Establislunents receive idiosyncratic pro-
ductivity shocks that determine their expansion, contraction or death. They are
also subject to an aggregare productivity shock (common to all establishments)
that generates aggregate finctuations in the economy. IFor simpiicity, both entry
and exit are treated as exogenous.

Labor is perfectly mobile across establishinents but capital is not. Once capital
is in pilace at an establishinent there are costs associated with detaching and
moving it. These costs imply that a {raction of the productive services of capital
are Jost. in the process of uninstalling it. This is analogous to the general case noted
by Arrow (2] and analvzed by Abel and Eberly {1]. where the saie price of capital
is smaller than its purchase price. In the face of tiiese partial irreversinilities.
the optimal investment behavior of establishments is to foliow two sided (S.s}
decision rules. The dynamics of the model are compiicated since one must keep
track as an endogenous state variable tie fuil distribution of establishinents across
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idicsyncratic productivity levels and capital stocks. I show how to overcome this
difficulty below.

The model economy is used to study the quantitative importance of invest-
ment irreversibilities for macroeconomic dynamics. For this purpose, economies
with different. degrees of irreversibilities are calibrated to U.S. data and their ag-
gregate fluctuations simulated and compared. Parameter values are selected so
that. their deterministic steady states reproduce key observations from U.S. data.
These observations come from the National Income Accounts and from establish-
ment level dynamics, as reported by Davis and Haltiwanger [8]. The process for
aggregate productivity shocks is chosen so that measured Solow residuals display
similar properties in the model economy as in the U.S. data.

The equilibrium fluctuations of the economy with perfectly reversible invest-
ment are found to be broadly consistent with U.S. business cvcles, displaying simi-
lar features as those found in previous real business cycle models. The main result
in the paper is that economies with different. degrees of investinent. irreversibilities
display somewhat different. aggregate fluctuations, but that these differences arce
quantitatively unimportant. We conclude that for studying aggregate flnctuations
‘we can safely abstract from investment. irreversibilities at. the establishment level.
This result seems striking since Abel and Eberly [1) found that relatively small de-
grees of irreversibilities lead establishments to ranges of inactivity that are similar
to those corresponding to complete irreversibility. On the other hand, Caballero.
Engel and Haltiwanger [6] concluded that non-linearities are extremely important
for aggregate dynamics. In light of thicse findings. it seemed natural to speculate
that even small degrees of investinent irreversibilities would have mattered [or
equilibrium aggregate dynainics.

The paper is organized as follows: Section 2 describes tlie econoiny, Section 3
discusses the competitive equilibritun and the solntion strategy used to solve for
it, Section 4 describes the observations used to calibrate the model. and Section
9 presents the results of the experiments.

2. The model economy

The economy is populated by a continmun of ex-ante identical agents with names
in the unit interval. Their preferences are described by the following utility func-
tion:

EY £ [log (e} + (] (2.1)
=0
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where ¢; and 1; are consumption and leisure respectively, and 0 < § < 1 is the
subjective time discount factor. Every period agents receive a time endowment
equal to w. Following Rogerson [20] and Hansen [14], it is asswmed that there
is an institutionally determined workweek of fixed length which is normalized to
one, so leisure can only take values w or w-1.

Output, which can be consumed or invested, is produced by a large nuinber of
establishments. Each establishment uses capital (k) and labor (n) as inputs into
a production technology given by:

Y = e*skln] (2.2)

where § + 4 < 1, s is an idiosyncratic productivity shock and z, is an aggregate
productivity shock common to all establishments. Realizations of the idiosyncratic
productivity shock s, take values in the set {0,1,A} and are independent. across
establishments. Over time. s, follows a first order Markov process with transition
matrix I, where 7 (s, s’) is the probability that s, = s' conditional on s, = s.
This process is assumed to be such that: 1) starting from any initial value, with
probability one s, reaches zero in finite time, and 2) once s, reaches zero, there
is zero probability that s, will receive a positive value in the future. Given these
assumptions, it is natural to identify a zero value for the productivity shock with
the death of an establishment.? The aggregate productivity shock z, [ollows a law
of motion given by:

2441 =PI+ €4 (.3)

where 0 < p < 1, and ¢, is i.i.d. with variance o? and zero mean.

Labor is perfectly mobile in this economy, but capital is not. On one hand,
the amount. of capital k., in place at an establishinent at date ¢ + 1 must be
decided at. period t before the realization of s becomes known. On the other
hand, investinent. is partially irreversible at. the establishment level. 1 particuiar,
whenever capital is detached from the floor of an establishment it Joses a fraction
(1 - q) of its remaining productive services. To be more precise. let. 0 < é < 1 be
the depreciation rate of capital. In order to increase an establishunent’s next period
capital ki, above its current level net of depreciation (1 — §)ic. an investment of
ke — (1= 8)k, units is needed. On the contrary, when an establisiiient decreases
its next period capital k.., below its enrrent level net of depreciation (1 —6}%,, the
amount of investinent goods obtained from the establishment is oniy a {raction ¢

2Given that there are no fixed costs to operate an establishment already created. exit will
take place oniy when the idiosyncratic productivity shock takes a value of zerc.




of (1 = 8)k — kyyy. The parameter ¢ is 2 measure of the degree of the investiment
irreversibilities in the economy and will play a crucial role in our analysis.

Everv period, agents receive an endowment of new establishments which arrive
with zero initial capital in place. Initial values for s across new establishments
are distributed according to ¥. This exogenous birth of new establishments com-
pensates the ongoing death of existing establishments (as they get absorbed into
zero productivity) and results in a constant long run number of plants.?

The presence of idiosyncratic productivity shocks and irreversible investment
at. the establislunent level suggests indexing establishments according to their
current productivity shocks s and current. stock of capital k. In what follows, a
measure z, over current productivity shocks and capital levels will describe the
number of establishments of each type at period t. Also, a measurable function
n, will describe the number of workers across establishment. types, a measurable
function g, will describe the next period stock of capital across establishment
types, and 7, will denote the fraction of the population that works.

Feasibility constraints conswunption as follows:

6 & / { s k'ny (k, s)" = g (K, 8) = (1 = 8)k] Qlgesr (ko s) — (1—6)k] }dIl

+/(1 55 5t (g . 0) dzis (2.4)

where Q () is an indicator function that takes value 1 if its arguinent. is positive,
and value ¢ (the irreversibility parameter) otherwise. The first term, is the sum of
output minus investment across all types of establislunents. taking into account
the capital losses due to the investinent irreversibilities. The second term on the
right hand side corresponds to all those establishments that wlere in operation
the previous period and die during the current. period (transit to an idiosvncratic
shock equal to 0), getting to sell a fraction ¢ of their stock of capital g, (k,s) net
of depreciation.

Similarly, the total munber of workers at plants is constrained not to exceed
the fraction of the population that works 7n;:

/”-1 (k,s) dz( <y (2.5)

3Even though the entry and exit decisions of establishments are not endogenously determined
in this econotny, it seerns important to incorporate them at least exogenously. A significant
probability of death will probably aflect how establishinents respond to aggregate productivity
shocks in the presence of investment irreversibilities.




Finally, the law of motion for the measure z, must be consistent with the
capital decisions at the plant level. That. is, {or every Borel set. B:

Ti41 (B, s') = / m(s,s') dz, + v (s) x(0€ B) (2.6)
(kys):ge41(k,8)EB

where x () is an indicator function that takes value 1 if its argnment. is true. and a
value of zero otherwise. In words, the mimber of establishments that next period
have a stock of capital in the set B and a productivity shock s', is given by the sum

f two terms: 1) all those establishments that transit from their current shocks to
the shock s and choose a next period stock of capital in the set B, and 2) in the
case that 0 € B, all new establishments that arrive with an initial productivity
shock s’ (note that new establishments are borned with a zero initial svock of
capital).

3. Competitive equilibrium and solution method

Following Hansen [14] and Rogerson |20}, agents are assumed to trade employment
lotteries. These are contracts that specify probabilities of working, and allow
agents to perfectly diversifv the idiosyncratic risk they face. Since agents are
ex-ante identical. they all chose the same lottery. The economy therelore has a
representative agent with utility function:

In Cii— a 1, (31)

i.e. ntility becomes linear with respect to the probability of working n; (for details
see Hansen [14]: and Rogerson (20]). Since this is a convex economy with no
externalities nor other distortions, its competitive equilibrium allocation can be
solved by analvzing the Social Planner’s problemn with equal weights.

The state of the economy’ is given by the current aggregate productivity shock
z. the current measure z across establishment types, the previous period measure y
across establishment types, and the previous period investment. decisions d across
establishment types (z,, z,. .-, and g, respectively in our previous notation).
The Social Planner’s Problem is described by the {ollowing Bellman equation:

V(d,z,y,2) = MAX (lnc-an+ B8 EV(d,z'v,2)} (3.2)

subject to

~1
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c< /{ es k' (I, s)" = [g (k,s) = (1= 8)K] Qg (k.s) — (1= 6)k] } dz

+/(1 —~8) d{k,s) q{s,0] dy (3.3)

/n(k,s) dz <7 (3.4)

z'(B.s') = / 7(s,8) dz + v (s) x(0€ B) (3.5)
(k.s):g(k,s)EB

d' =g (3.6)

y=z (3.7)

Z=p:+¢ (3.8)

where the maximization is over n() and g (). Note the high dimensionality of
the state space which seems to preclude any possibilities of computing a solution.
Below, T will show that this difficulty is only apparent: the problem becomes fully
tractable once it is redefined in terms of a convenient. set. of variables.

To understand the rationale for the transformed problem, it will be convenient.
to analyze the structure of the problem that establislunents face at the competi-
tive equilibrium. The individual state of an establishment. is given by its current
productivity shock s and its current stock of capital k. The problem of an es-
tablishment. with individual state (k,s) when the aggregate state is (d,z,y.z) is
given by:

J(k,s,d,z,y,2) = MAX { s k"n"—w (d, z,y,2) n—

K= (1= 6k Qk - (1= 6)k

LEfi(d 3,y 5d, 2y, 2) ) (K, o d 2y, 2] ) (3.9)
subject to:
s~ 1Tl (3.10)
2=pz+¢e (3.11)
8




(drlzlly’) =H (d;I1ynz) (3.12)

where w () is the equilibriuin wage rate, i () are the equilibrium prices of Arrow
securities, H () is the equilibrium law of motion for the aggregate state of the
economy. and where the maximization is over the scalars n and k' . Note that the
decision rule for capital that corresponds to the solution to this Bellman equation
is of the (s,S) type. It is characterized by a pair of lower and upper capital
thresholds a(s), A(s) such that:

k¥ = af(s), if (1= 6)k < a(s)
= A(s), if (1-26)k> A(s) (3.13)
= (1-06)k, otherwise

where the dependence of a(s) and A (s) on the aggregate state of the economy has
been suppressed to simplify notation (Figure 1 shows a picture of these decision
rules). Note that there is a pair of lower and npper threshold (a(s), A (s)) for
every possible idiosyneratic productivity shock s. Hereon we will denote (a, A) as
being the vector (a(s), A (s)),.,., across idiosyncratic shocks.

Our strategy will be to keep track of long histories of (a, A) as state variables
instead of the actual distributions z and y and use them to construct approximate
distributions for ¢ and y using the law of motion in equation (2.6).* In principle,
as we make the length of the history of (a. A) arbitrarily large we would obtain
an arbitrarily good approximation for z and y. An important. question will be
how jarge to make this length in practice (I will return to this issue below). Our
solution method will require solving independently for the deterministic steady
state of the economy. Appendix A describes how this is performed.

Let (g, A) denote the history of thresholds {a,. A¢},_, . for some large hori-
zon T, where (a,. 4¢) were the thresholds chosen t periods before the current date.
Also, let (a“. A¢) be the thresholds for the current period. Since we know that
the optimal decision rules of establishments are of the (S,s) variety, there is no
loss of generality in defining the Social Planner’s problem directiy in terms of the
current thresholds (e, A°) and the fraction of people that work 7 as follows:®

Vig, A zj = MAX {Injc(a, 4. z,0% A n} —a n+ BEV (¢, &', 2)]}  (3.14)

iNote that vesterdav’s (a, A) defines vesterdayv's decision rule d.
Note that problem (3.14) reduces to the original probiem (3.2) as T goes to infinity.
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) (s). for £=12...T«1and s= LX (3.13)
5] = a%(8), for s =1,

)

)

a -

|
h N

8] fort=1.2,.., T—lands=1A
2}, fors=1,A (3.16)

Z=pz+¢ (3.17)
where equations (3.15) update tomorrow'’s histories given the current choices. The
function ¢ (a. A. z. a°. A%, n) gives the maximum consiunption that can be obtained
given the history of thresholds (a, A), the current aggregate productivity shock z.
the current choices of thresholds (a, A¢), and the decision of how many agents to

currently put to work n. Formally, ¢(a, 4, z, a%, A%, 1) is given as the solntion to
the following problemn:

c@ﬁgmﬂ#nﬁ=MAX/{€sHMhﬂ"

—jglk.s)= (1 =8k Qlg(k,s) = (1 =6)k} ) dx-'r-/(l—é)d(ﬁ:.s) ¢ 7i{s.0) dy

(3.18)
subject to:

/n.(k.s) dz <7 (3.19)

where the maximization is with respect. to the function n (k.s), and where ¢. z,
d, and y are obtained from (g, A. z, a%, A°) in the following way:

(1) The current. investment decision rule are the ones implied by the current
thresholds (a¢, A°):

g(k,s) = a°(s), if (1 —6)k < ac(s)
A(s), f (1= 8)k > A%(s) (3.20)
= (1—8)k, otherwise

Il

(i) The (approximate) current measure across establishment types z is ob-
tained by initializing this measure T periods before the current period (z7) to be

10
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the deterministic steady state measure z*, and updating it recursively by iterating
on the Jaw of motion given by:

Fi-i [Bys) = / 7 (s,8') dz, + v (s) x(0€ B) (3.21)
(ks):gu(k,s)eB

fort =T,T -1,...,1. The (approximate) current z is then given by .

The investment. decision rules (g;), t periods away (for t = T, T — 1,....1).
that are used in this law of motion are the ones implied by the corresponding
thresholds (a;, A;) in the history (a, A):

alk,s) = als), if (1 =206)k < ays)
= (1 —-96)k. otherwise

(iii) The previous period measure across establishment. types y, and the pre-
vious period decisions over current capital levels across establishment. types are
those returned as z; and g; in (ii). .

Note that the Social Planner’s problem in equation (3.14) bas linear con-
straints, and that the deterministic steady state values for the (endogenous) state
variables are all strictly positive. We can then perform a quadratic approxima-
tion to the return function about the delerministic steady state, leaving us with
a standard linear quadratic (L-Q) problem which can be solved by ordinary value
function iterarion.®

Let now return to the question of how long the history of thresholds (a,.4)
should be to get a good approximate solution to the original problem (3.2). Ap-
pendix B shows that there exists a length J for thresholds histories such that
solving by L-Q inethods the planner’s problem (3.14) corresponding to length J,

The quadratic approximation is obtained by imposing zero errors of approximation of the
recurn function at the grid points that lie just above and below the steadv state grid points
computed in the Appendix. The procedure to obtain numerical derivatives foliows clasely the
one described in Kydland and Presott [13]. We are left with a standard linear quadratic problem
if the return function is concave with respect to the thresholds (a.A). 1t hapens o be that the
problem is actually not concave with respect to these variabies. But if instead of directiv werking
with the thresholds (a(s), A (s)) we work with a transformation (a(s)” . A(s)") of these original
variables, the problein does become concave. In all the experiments analyzed a vaive of 7 =
0.999 was sufficient to make the problem concave. 1 must thank Larry Jones for making me this
suggestion.
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gives exactly the same sclution as solving by [-Q methods the pianner’s prob-
lern 3.14 corresponding to any other length 7 > J.” It follows that the only
approximation error introduced by the sohition method stems from applying L-Q
methods and not. from keeping track of a finite history of thresholds.

4. Calibration

This section describes the steady state observations used to calibrate the parain-
eters of the model. In this section, the irreversibility parameter ¢ will be assumed
fixed at some particular value. Given a fixed q. the rest of the parameters we need
to calibrate are 3, 6,7, 6. a.v,¥(1), A, the transition matrix I1, and the parameters
determining the driving process for the aggregate productivity shock: p and ¢’.
The first. issue we must address is what actual measure of capital will our
model capital correspond to. Since we are interested in investment irreversibilities
at the establishment level it seems natural to abstract from capital components
such as land, residential structures and conswner durables. The empirical coun-
terpart for capital was consequently identified with plant and equipment. As a

- result, investment was associated in the National Income and Product Accounts

with non-residential investinent. On the other hand, the empirical counterpart
for consumption was identified with personal consumption expenditures in non-
durable goods and services. Output was then defined to be the sun of these
investment. and consumption measures. The annual capital-output ratio and the
investment-ontput ratio corresponding to these measures were found to be 1.7
and 0.15 respectively. The depreciation rate § was selected to be consistent with
these two magnitudes.

" The anuual interest rale was selected to be 4 per cent. This is a comproiise
between the average real return on cquity and the average real return on short-
term debt for the period 1889 to 1978 as reported by Mehra and Prescoti [16}.
The discount. factor § was chosen Lo generate this interest rate at steady state.
Given the interest rate 1 and the depreciation rate ¢, the parameter § was selected
to match the capital-output ratio in the U.S. economy. The labor share parameter
was in turn selected to replicate a labor share in National Income of 0.64 (this
is the standard value used in the business cycle literature). On the other hand,
the preference parameter a was picked such that 80% of the population works

"Moreover, J is easily determined and in all experiments perforimed below, it happens to be
a relatively small number (never exceeded 45).
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at steady state (roughly the [raction of the U.S. working age population thai s
emploved).
The transition matrix I was chosen to be of the following forn:

1 0 0

¢ o(1-¢ (1-4)(1-() (d.1)

¢ 1-0)(1=-0 o(1-¢)
i.e. a process that treats the low and the high productivity shocks syinmetri-
cally. The rest of the parameters to calibrate are then ¢, (. v, (1), and A. The
parameters {, ¢, and A were selected to reproduce important observations on job
creation and job destruction reported in Davis and Haltiwanger {8]. These are:
(i) that the average annual job creation rate due to births and the average annual
job destruction rate due to deaths are both about 2.35%, (ii) that the average
annual job creation rate due to continuing establishments and the average annual
job destruction rate due to continuing establishments are both about 7.9%. and
(iii) that about 82.3% of the jobs destroved during a vear are stili destroved Lhe
following vear. The parameter determining the munber of establishments being
created every period was chosen so that the average establishment size in the
model economy is about 65 emplovees. same magnitude as in the data.

Next, we must. determine the distribution ¥ over initial productivity shocks.
If we would allow for a large number of possible idiosyncratic productivity shocks,
it would be natural to chose a ¥ to reproduce the same size distribution of estab-
lishments as in the data. With only two values for the idiosyncratic shocks this
approach does not seem restrictive enough since we can pick any two arbitrary
employvment ranges in the actunal size distribution to calibrate to. For this reason I
chose to {ollow the same priuciple as in the choice of I1 and pick v = (0.5, 0.5). i.e.
a distripution that treats the low and the high productivity shock syvmmertrically
(note that these choices of I1 and ¥ impiy that at steady state there will be as
many establishinents with the low shock as with the high shock!.

Finally, we must determine values for p and ¢?. The strategy for selecting
values for these parameters was to chose them so that measured Solow residuals in
the model economy replicate the behavior of measured Solow residuals in the data.
Proportionate changes in measured Solow residnal are defined as the proportionate
changes in aggregate output minus the sum of the proportionate change in labor
times the labor share 4, minus the sum of the proportionate change iu capital
times (1—+). Note that these changes in measured Solow residuais do not. coincide
with changes in the aggregate productivity variable z in the medel (the aggregate
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production function in the model economy is not a constant returns Cobb-Douglas
function in labor and aggregate capital). Using the measure of output described
above and a share of labor of 0.64, measured Solow residuals (in the data) werc
found to be as highly persistent as in Prescott [18] but the standard deviation of
technology changes came up somewhat smaller: 0.0063 instead of the usual 0.0076
value used in the literature. Given a fixed irreversibility parameter g and the rest
of the parameters calibrated as above, values for p and o? were selected so that
measured Solow residuals in the model economy displayed similar persistence and
variability as in the data. It happened to be the case that values of p = 0.95
and ¢? = 0.0063? were consistent with these observations in all the experiments
reported below.

Parameters values corresponding to economies with several different possible
values for ¢ are reported in Table 1.

5. Results

To have an idea of the quantitative behavior of our model, let first consider the
economy with perfectly reversible investment (¢ = 1) as a benchmark case and
analyze the business cycles that it generates. Table 2 reports suminary statis-
tics (standard deviations and correlations with output) for the aggregate fluc-
tuations of this benchmark economy and compares them to those of the actual
U.S. economy. Before any statistics were computed, all time series were logged
and detrended using the Hodrick-Prescott filter. The statistics reported for the
U.S. economy correspond to the output, investment and consumption measures
described in the previous section, and refer to the period between 1960:3 and
1992:4. For the artificial economy, time series of a length of 136 periods (same
as in the data) were computed for 100 simulations, the reported statistics being
averages across these simunlations. We see that the benchmark economy displays
salient features of the U.S. business cycle. Output fluctuates about as much in
the model economy as in actual data. Investinent is about § times more vari-
able than output in the model while it is about. 4 times as variable in the U.S.
economy. Consumption js less variable than output in both economies (though
consumption is less variable in the model than in the U.S.). The variability of
the aggregate stock of capital is about the same in both economies. On the other
hand, hours variability is only 70% the variability of output in the model while
they vary as much as output in the actual economy. Productivity fluctuates less
in the model than in the U.S. economy. In terms of correlations with output, we
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see that almost all variables are highly procyclical both in the model and in U.S.
data. The only exceptions are capital (which is acyclical both in the model and
the actual economy) and productivity (which is highly procyclical in the model
while it is acyclical in the data). In a broad sense, these features are similar to
those commonly found in previous real business cycle models.

We turn next to the main question addressed in this paper, that is: what
are the implications of investment irreversibilities for aggregate fluctuations? In
terms of our model economy the question can be restated as follows: are the equi-
librium fluctuations in our benchmark economy (perfect reversible investment)
substantially different from those corresponding to an economy calibrated to an
empirically plausible value of ¢?

Instead of arguing in favor of the empirical plausibility of any particular value
for ¢, the strategy here will be to report results for different economies with
¢’s in a wide range of values. Table 3 summarizes the equilibriwun fluctuations cf
economies with ¢’s ranging between 1 and 0. The results are striking. Irreversibil-
ities tend to decrease the variability of output, investment and hours, and increase
the variability of consumption.® However, these differences are suprisingly small.
For example, the standard deviation of output. decreases monotonically as ¢ goes
from 1 to 0 (as one would expect given the adjustment costs introduced), but
it goes from 1.41 when ¢ = 1 to only 1.39 when ¢ = 0. This is a small dil-
ference considering that we are moving from the perfectly reversible case to the
complete irreversibilities scenario. Overall, the properties of the business cveles
generated by all these economies are extremely similar. We conclude that. at ieast
in terms of the standard statistics which the real business cycle literature focuses
on. investment irreversibilities at the plant level play no crucial role for aggregate
dynamics.

Let now consider the importance of irreversibilities for plant level investment
dynamics. Figure 2 shows the distribution of plant. level gross investment rates (f{or
continuing establishments) across all realizations, under different values for the
irreversibility parameter ¢.° We observe that when there are no irreversibilities (¢
= 1.0), there is a large number of establishments which do not. adjust their stock
of capital (their net investment is zero), and there is a small number of firms

®1nterestingly, Dow and Olson [11) found that when aggregate preductivity shocks are vari-
able enough. aggrezate investment irreversibilites hind and output, consurnption, investment
and hours are affected in a qualitatively similar way as here.

9These histograms correspond to the same simulations as those underlying Table 3.
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with both sharp increases and sharp decreases in their stock of capital.’’ On
the contrary, when the irreversibility parameter g becomes zero: 1) the number
of establishments displaying close-to-zero adjustment is larger, 2) there are no
establishments with sizable negative investment rates, and 3) capital increases are
not as sharp as they were under ¢ = 1.0. It is interesting to note that when ¢ = 0,
although only 2% of the establishments have investment rates larger than 20%,
thev contribute to 38% of aggregate gross investment. Investment irreversibilities
then bring the distribution of investment rates closer to the features emphasized
by Doms and Dunne {10]. Also, note that the histogram of investment rates that
arises when g = 0.95 is very similar to the one under ¢ = 0. This is related to the
finding by Abel and Eberly (1], that relatively small degrees of irreversibility give
rise to similar plant level adjustments as under complete irreversibilities. From
this figure, we see that even though irreversibilities are not. important in terms
of the standard RBC statistics, they appear to be crucial for establishment level
investment dynamics.

A feature of the data which has been believed to have important implications
for aggregate investment dynamics, is that the fraction of plants going through
large investment episodes is positively correlated with aggregate investment (see
Doms and Dunne (10}, and Cooper, Haltiwanger and Power [7]). Table 4 reports
(for the different economies) the correlations with aggregate investment of: 1)
the fraction of plants with investment rates greater than 20%, and 2) the average
investment rate among plants with investment rates greater than 20%. We see
that for economies with low irreversibilities, the fraction of plants making large
capital adjustment. is uncorrelated with aggregate investment, while the average
investment. rate of those making large adjustment is positively correlated. The
opposite is true in economies with Jarge irreversibilities, bringing them closer to
actual dara in this dimension. Since all these economies look similar in terms
o their RBC statistics we conclude this feature does nol. necesarily have major
unplications for aggregate dynamics.

As a matter of fact, the importance of plant level non-linearities for aggregate
4vnamics has not been emphasized in terms of the standard RBC statistics. Ca-
balivro and Engel [5] and Caballero, Engel and Haltiwanger [6] have stressed that
for a given sequence of shocks, their statisticai models keep track much better of
actual agzregate investment when non-linear plant level adjustments are allowed
for. They report that non-linearities are particularly important in periods of large

19This is due to the fact that only two (positive) idiosyncratic shocks are considered, and that
they are very persistent.
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departures of aggregate investment from its mean, being able to generate brisk
expansions and (to a lesser extent) sharp contractions. Figure 3 explores this ar-
gument. It reports the histograms for the deviations of aggregate investment from
trend across all realizations, for the economies with ¢ = 1 and ¢ = 0. We see from
the pictures that investment irreversibility at the plant level does not generate
noticeable asymmetries nor lumpiness in aggregate investment behavior. Figure 4
goes one step further. It reports the realizations of aggregate investment for these
two economies, which arise from feeding into them the empirical realization of
Solow residuals for the period 1960:1 to 1993:4.1) We observe that the time series
for aggregate investment originated by the economy with large irreversibilities is
virtually identical to the one generated by the economy witli perfectly reversible
investment.

Finally, Figure 5 shows the impulse response functions for output (Y), con-
sumption (c), investment (I), and labor (n) to a one-time aggregate productivity
shock of one standard deviation, which correspond to the economies with ¢ =
1 and ¢ = 0. 1t shouldn’t be surprising by now that they look almost exactly
the same: the business cycles generated by economies with different degrees of
irreversibilities are extremely similar.

We'll now give a closer look to the lack of aggregate asymmmetries associated
with investment irreversibilities. For the economy with ¢ = 0.99, Figure 6 shows
the impulse respouse of the capital support of the distribution z; to a one-time
aggregate productivity sheck of one standard deviation, starting from the steady
state support. (Lhe steady state capital distribution z* is displaved in Figure 7).1*
We see that in response to a positive shock, the thresholds a(1), A(1) and a(2)
increase on impact, continue to increase for a number of periods and eventually
decrease, returning gradually to their steady state levels (not shown). Instead,
the capital levels pertaining to the range of inactivity between a(1) and A(1) are
not affected on impact. They follow the same dynamics as the upper threshold
A(1) but with a lag, which depends on the number of periods it takes A(1) to
depreciate to the corresponding capital level. Note that the support of the distri-

"There are 136 periods of observations for the Solow residuals. In this experiment, the distri-
bution across establishment types is inititalized to be the deterininistic steady state distribution.
Then, 136 periods are generated from the model economy but only the last §3 periods are re-
ported in the figure. As a consequence, the effects of initializing with tle deterministic steady
state distribution vanish cut.

12We chose to show the behavior of the economy with g = 0.99 over those wich a smalier g,
since it has a relatively small capital support (simplifving the {igures considerabiy). However,
similar patterns can be found in the other economies.

i7



bution responds symmetrically to positive and negative shocks. Since the state of
the economy behaves symmetrically, it is not surprising that the business cycles
generated by these shocks will inherit. similar features.!3

It seems safe to conjecture that this symmetry would be lost. if aggregate shocks
had an (empirically implausible) large variance. To be concrete, let consider how
the largest point in the capital support would respond to a large negative shock,
starting from its steady state value a*(2). Suppose that the shock is so low that
the threshold a(2) decreases on impact below (1 — §)a*(2). The highest point in
the support would then become (1 — §)a*(2), since it would fall in the range of
inactivity defined by the new value of a(2). What is important to note is that
negative shocks of larger magnitude would generate no further effects on impact,
since (1 — 6)a*(2) would still fall in a range of inactivity. On the contrary, there
would be no counterpart to this lack of further responsiveness when shocks are
positive. If a positive shock drives a(2) above (1 — 6)a*(2), the highest point in
the support would always jump on impact to the new value of a(2). This would
be true no matter how large the positive shock is.

Figure 8 illustrates these ideas by showing the impulse responses of the highest
point in the capital support to one-time aggregate shocks, ranging from one to
twenty standard deviations in magnitude.’ Let consider the responses in period
one to each of these shocks. We see that when shocks are negative, the largest
capital level in the support moves to smaller values as the shock becomes larger.
However, once the shock reaches fifteen standard deviations, it stops responding to
further shocks. On the contrary, when shocks are positive, this capital level always
moves to higher values as the shock gets larger. This pattern of response opens
interesting possibilities for the creaticn of asymmetries in aggregate fluctuations.
I particular, it suggests that aggregate investment would tend to decrease slowly
in resj.onse to large negative shocks, and increase sharply in response to large
positive shocks.!*

BStictly speaking, describing the response of thie capital support is not enough. The number
of estatlishments at each of these capital levels and idiosyncratic productivity shocks should
aisu be considered. However, at any point in time, the number of establishments at each of these
capital leveis can be read direct!y from the corresponding point in the steady state distribution
in Figure 7. The reason is that the process for the idyosincratic shocks is exogenous and the
paths illustraied in Figure 6 do not cross,

HThis figure is drawn only for heuristic purposes. If shocks were as large as those shown, the
Yinear quadratic aproximation performed in the paper would probably be of poor quality.

311 should e clear that a{1) would generate =imilar asymmetries, since it would mimic the
behavior of a{2). The analysis would be somewhat more complicated though, since capital leveis

18




In view of these arguments, we must view the lack of asymmetries the theory
predicts as arising purely from measurement. Measured solow residnals are not
variable enough for investment irreversibilities to create asymmetries in aggregate
business cycles: the associated fluctuations in capital thresholds are too small
compared with the drift introduced by depreciation.®

A. Appendix

This appendix describes the algorithm nsed to compute the steady state of the
deterministic version of the economy. We will show that the problem is reduced to
solving one equation in one unknown (after the relevant substitutions have been
made). First, it must be noticed that. (similarly to the neoclassnca.l growth model)
the steady state interest rate is given by:

1
l4+i== A1)
ﬁ ( /

Fixing the wage rate at an arbitrary value w, the value of the different types
ol establishments (as a function of w) can be obtained by solving the following
functional equation:

J(k.s;w) = MAX {5 k*n" —wn — [k = (1 - 8)k) Q [K' ~ (1 = 6) &]

in the lower portion of the range of inactivity would be affected by large fluctuations in a(1). In
particular, these points would collapse into a(1) under sufficiently large increases in a(l). but
will not be affected when a(1) decreases. This effect would tend to reinforce the asymmetries
described above.

The behavior of A(1) seems to work against these arguments. The capital levels in the upper
portion of the range of inactivity would collapse into A(1) under a sufliciently iarge decrease
in A(1), but will not be alfected when A(1) increases. However, when g becomes less than 0.9
the ranges of inactivity overlap and no establishment has a capital level close to A(l). For
these higher degree of irreversibilities, the behavior of A(1) becores irrelevant for aggregate
fluctuations.

16 Actually in none of the simulations reported, the rate of change of thresholds ever exceeded
the rate of depreciation. This result is closely related to Dow and Olson [11]. They found that
in the real business cycles model of Hansen [14], aggregate irreversibilities pley no roie since
productivity shocks are not variable enough to make the non-negativity constraint in aggregate
mvestment binding. An important dilference in this paper is that plant level irreversibilities do
bind. However, they bind due tc the amount o{ idiesvncratic risk that estabiishmente face, uot
because of the level of aggregate uncertainty 1 the cconomy. Aggregate productivity shocks
play only a minor role.
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I_HZJ m(s,5')} (A.2)

The solution to this problem is computed using standard recursive methods.
Note that the solution to this problem also gives the decision rules n(k, s; w) and
g(k, s w) as a function of w.

Given a w and the corresponding g(k. s; w), a measure z(w) across productivity
shocks and capital levels can be obtained from the law of motion for z:

:(B,siu)= [ w(ss) ds(w)+vy(s) x(0€B)  (A3)
(kis):o(k,sw)eB

In practice, this is solved by iterating on this law of motion starting from an
arbitrary initial guess for z(w).

Once a z(w) is obtained and given the previous n(k, s; w) and g(k, s: w) found.
we can solve for the corresponding consumption ¢(w) implied by the feasibility
condition: '

c(w)=fskE n (k, s;w)7~[g (k, s;w) = (1 — 6)k) Qg (k, 5;w) — (1 — 8)k] dz(w)

+/(1 —6) gk sw) g (s.0) do(w) (A.4)

A wage rale w corresponds to the steady state value if the marginal rate of
substitution between conswunplion aud leisure is satisfied. i.e.:
c(w) = = (A.5)
a
This is one equation in one unknown and is solved using standard root finding
methods.
The actual computer implementation of this algorithm requires working with
a finite grid of capital levels. In all experiments reported in the paper, the number
of grid points were between 1,000 and 1,800.

B. Appendix
This appendix shows that, when the planner's problem (3.14) is solved by L-Q

methods, carrying a finite history of thresholds (a,, Al)z;, in the state vector leads
to exactly the same solution as carrying an infinite history.
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Define h to be the vector [z, 1, (e, A°), (ay, A,)L,], and ~* the corresponding
deterministic steady state values. Let r(h) = In [¢ (1)] —a n be tlie return fimction
to the Social Planner’s Problem (3.14). Follewing Kydland and Prescott [13], the
quadratic approximation to r(h) is given by:

R(h)=r(R)+b (h=h)+(h=0")Q (h=h") (B.1)

where the elements of b and @ are given by:

r(h"+h') = r(h* = hY)

- r(h*+h)—r (h')z-;?r (R* = h') = r (h*) (B.3]

r(h* +h'+h)—r(h*+h' =) =r (" = h'+ W) +r(h* = h' = W)
gy =
(B.4)
and where h' is a vector with all components equal to zero, except for its ith
component. which is equal to 4; > 0, a small number.
To simplify notation, we’ll assume that the idiosyncratic shock s takes values
1 and 2. In addition, we'll suppose that (1 —6)a"(2) < A* (1), where (a*, A"}
are steady state values.’” Noting that a* (1) < a* (2), define J to be the smallest
natural number such that:

(1-8)a" (2) <a* (1) (B.5)

Suppose that T > J + 1. We'll show that the coefficients of b and @ corre-
sponding to the thresholds (a,, 4,)"_ s+ are all equal to zero. Before we proceed,
it will be useful fo show two Lemmas.

Lemma B.1. The capital support for the steady state measure z° is:

K* = {0, a* (1)) E; {1-6Ya(2) (B.6)

7The other case can be handled along similar lines.
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Proof. Since establishments are borned with k = 0, we know that {0} C K.
Depending on their current productivity shock s, establishments with k = 0
chose k' = a* (s). It follows that {0, a* (1), a"(2)} C K" .
We'll proceed by induction. Suppose that K* includes the set:

Kn = {0, a* (1)) ,-go {1-8)a") (B.7)

for some N (zero or natural) such that (1 — §)Va* (2) > a" (1). We'll show that:
(1) if (1 = 8)¥*'a* (2) > a* (1), then K* includes the set:

Kny =Ky Uu{(1 - 8" (2)} (B.8)

(2) if (1 = 6)M*1a” (2) € a* (1), then K* = Ky.

Case 1: Suppose that (1 — §)¥*1a* (2) > a* (1).

An establishment. of type (k, s), with k € I, will chose k' as follows:

(i) Suppose that s = 1:

If k <@’ (1), then k' = a*(1).

If k= (1-6)a*(2) for some 0 < j < N, then a*(1) < (1 = )k < A*(1). It
follows that k' = (1 — 6)’*'a* (2).

Note that for k = (1= 8§V a*(2) : &' = (1 = §)N*a* (2) ¢ K.

(ii) Suppose that s = 2:

For every k= Kn : (1 — &) k < a”(2). Hence, k' = a*(2) € KA.

Since Ky C K*, (i) and (ii) imply: Ky = Ky U {(l - 5N+ (2)} € K°

Case 2: Suppose that (1 — §)¥*'a* (2) < a* (1).

The analysis in case 1) applies, except for k= (1 — §)"a"(2) and s = 1. We
now have that (1 — 6) k& < a"(1) and consequently, that k' = a*(1) € Ky. It
follews that 'y = K* B

Let {:i‘} fort =T,T - 1,...,0, be the sequence of measures which satisfies

equation (3.21) for the history of thresholds (a,, A;][T:__l given in h. More precisely:
(i) zt =3
(i) for t = T,T - 1,...,1, zl_, is given by:

I

o= S 7 (s,8') zM(k,s)+vu(s) v

# —

(ks)eK, xS;g,"(k,ﬂ:k'

vrhiere:
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ar(k,s) a,(s), if (1 =06k < ay(s)
Als),  if (1—8)k > Als) (B.10)

(1 —6)k, otherwise

nn

Il

and K, is the (finite) capital support of z?.
Noting that we'll be interested in histories of the form h = h* 4+ h', we can
now proceed to our next Lemma.

Lemma B.2. Let h = h* + h'. Suppose that i corresponds to a lower threshold
a;(2), where J +1 < 7 < T. Suppose that for some1 <t < J, a:j—‘_, is given by:

A (@) + )1 - 517) =3 ()0 =87 5)
:13;'_{ (0-(2)(1 _ 6)!_1,8) =0
z?_,(k,s) =z"(k,s), for every other k (B.11)
Then,

1) if a*(2)(1 = 8)* < a*(1): zt_,y=%".
2) ifa*(2)(1 - 6)' > a*(1), z_,_, satisfies:

£3

b (@@ +R)A=6)\s) =2 (@' (2)(1 - 8, s)
zh (a'(2)(1 - 8)', s) ={

1=t=1

I;‘_,_](ic}s) =z"(k,s), for every ather k (B.12)

Proof. Note that g)_, = g*. Then, £’_,_, is given by:

zh_iy (K. s') = v (s') x (K'=0) + Y 7 (s,5') 2" (k. )
(k) e{K*\{a*(2)(1=8)" 1)} x S:g* (k,s) =K

+r(Ls) 2l ((0*(2) +h)(1=6)7", 1) x (K = 9" ((0"(2) + h)(1 = 6¥7,1))

+ (2,8 2)- ((@"(2) + h)(1 - 6),2) x (K = g" ((a"(2) + h)(1 - 8)",2))
(B.13)
Also note that z* satisfies:
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z' (K, ) = vip (s') x (kK'=0) + > w(s,8")z"(k,s)
(k.s)e{K*\{a*(2)(1-6)! =1} ) x Sig* (k,s) =K’

+a(1,8) 2z (2" -8 1) x (K =g (a*(2)(1 - 8)71,1))

+7(2,8)z (21 - 6)72) x (K = 9" (" (2)(1 - 8),2)) (B.14)

Since I is small: a*(2)(1 = 6)' < (a'(2) + hi)(1 = 6)' < a*(2). Therefore,

g' ((e*(2) + h)(1 - 6)",2) = ¢* (a*(2)(1 - 6)",2) = a(2) (B.15)

From (B.11) and (B.15), it follows that the last term in (B.13) is identical to
the last term in (B.14).

Case 1): a*(2)(1 = 6)" <a’(1).

Since h; is small: a*(2)(1 = 6)' < (a*(2) + h;)(1 = 8)* < a*(1). Therefore,

9" ((@* (@) +h)(1 =67 1) = g* (@)1 - 6)",1) = a’(1) (B.16)

Trom (B.11) and (B.16), it. follows that the third term in {B.13) is identical to
the third term in (B.14). Hence, Ij‘_,_l =3

Case 2): a*(2)(1 = 8)" > a*(1).

Notz that: a*{1) < a’(2){1 ~ &) < (a*(2) + ;)(1 — §)'. Therefore:

Il

(a*(2) + hi)(1 = 6)* (B.17)
' (2)(1 - §)' (B.18)

9" ((a’(2) + h)(1 - 6)1,1)
9 (a'(‘z)(l ) 1)

a) Suppose that &' € {(a*(2) + h)(1 = 6)4,a*(2)(1 - &)'}.

Then, the third terms oi both (B.13) and (B.14) are equal to zero. It follov<
that: =_,_(k,s) = z°(k, ).

t) Suppose that k' = a*(2)(1 — ).

Then, all terms in (B.13) are zero. It follows that: z_,_, (a*(2)(1 — 6)*,s) = 0.

I
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¢) Suppose that k' = (a*(2) + h)(1 — 6)".
From (B.13) it follows that z)_,_, (K',s") is given by:

7 (1,8)zh, ((a°(2) + h)(1 = )7, 1) x (k' = ¢" ((a"(2) + D) (1 = 8)' 7", 1))
(B.19)
Note from (B.14) that z* (a*(2)(1 — §)',s') is given by:

7(Ls)z (a*@2)(1-6)",1) x (0’21 - 8) = ¢" (a*(2)(1-6)"",1)) (B.20)

From (B.11), (B.17), (B.18), (B.19), and (B.20), we have that:
)y ((°(2) + R)(1 = 8)',5) = 2*(a*(2)(1 - 6)',5). W
We are now ready to proceed to the main result of this appendix.

Proposition B.3. Let 1 > dim [z,n, (at, A°) ,(a;,Ag)f::]. Then,'®
bi=¢qi=0 (B.21)
Proof. From equations (B.2) and (B.3), it suffices to show that:

T (h' + iz{) =r(h" - }zf) =r(h") (B.2%2;

(
Let h = h* + h'. We’ll prove that r (k) = r(h*).”® It will suffice to show that
zy = z'. To see why, suppose that z§ = z*. Since i corresponds to a capital
threshold more than one period in the past: (a;. 4;) = (¢*. A*). Equation (B.9)
then implics that zj = z*. Since (a%, A¢) = (a*, A*) and n = ', equation (3.18)
imphies that both & and h* lead to identical consumption levels.

Assume w.l.o.g. that i corresponds to some lower threshold a;(3), for some

period j (where J +1 < j < T') and some shock 3.?° Since (a,, 4;) = (a*, A*), for

18For reasons of space, we will omit the proof that g;; = 0 for every j. Such a proof would
follow similar arguments as here.

19To show that r (h — h*) = r (h”) is exactly analogous.

1 i corresponds to some upper threshold. it would be easy to show that z} = z*. The reason
is that the deterministic capital support K* is finite, contains no upper thresholds and A' is
small. Making small perturbations to an upper threshold will not aflect the actual investroent
of any steady state establishment.
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every t such that j < t < T, it follows that a:j-‘ = z'. We'll proceed to find :z:;‘_l.
Note that: (i) g;'(k,s) = g°(k, s), for every k and every s # 3, and (ii) :
gr(k,3) = a*(3)+h, if (1=8)k <a’(3)+hy
= A*(3), if (1 =8)k> A*(3) (B.23)
= (1-6)k, otherwise

Z, (K,s) = vy(s) x(K =0+ S 7(s.5") z°(k,s)
(k.)€ * x {S\{3}):" (k.s)=k'
+ 3. 7 (3,8)) 2*(k.3) (B.24)

keEK*" :g;‘ (k,3)=k'

Also, note that z* safisfies:

g (K,s') = v(s) x(K =0+ S w(s.8") z'(k,s)
(kis)e = x {S\(5}):0" (k,s)=F'
4 % 7 (3,8) z°(k,3) (B.25)

k€K *:g* (k,3)=k'

Noticing that (B.24) and (B.25) differ only in their third terms, we'll proceed
to characterize £)_, in terms of z".

Case 1): k' < a*(3) or k' > a*(3) +

Since /i, is small: {k € I gj‘(k,sj = i:’}- = {k€ K" :4"(k,3) = k). Hence,
the third terms in (B.24) and (B.25) are the same. Consequently, xi‘_,(k’,s’) =
=* (k' 8).

Case 2): a*(3) < k' < a*(5) + h,:

First, note that: {k € K*:g)'(k.3) <a(3) + h.-} =@. Since a*(3) € K" and
K* is finite, I; can always be chosen small gnough so that no &' in the interval
(a*(3),a(3) + M) belongs to J(*. It follows that: {k € K*:g¢*(k3) =k} = 0.
Consequently: zj_,(k',s') = z"(k',s").

Case 3): k' =a"(3)

Note that: {k € K*:g}(k,3) < a'(3) + h,'} = . Therefore, the third term in
(B.24) is zero. Since a*(3) > 0, it. follows that the first tern in (B.24) is zero. In
what follows, we'll argue that the second term in (B.24) is also zero.
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Suppose first that 3 = 1 and s = 2. Then, for every k € K* : g*(k,s) >
' (5j =¥

Suppose now that 3 = 2 and that s = 1. Suppose that there exists a k € K*
such that g°(k,1) = «*(2). Then, it must be true that k = (“T”—‘) € K°. A
contradiction.

It follows that: {(k,s) € K* x {S\{5}} : ¢" (k,s) =k} = 0.

Therefore, z}_,(a’(5),s') = 0.

Case 4): k' =a*(3) + h;:

Case 3) showed that:

{(k,s) € K* x {S\{3}} : 9" (k,s) =a’(3)} =0 (B.26)

Using identical arguments as in case 3}, we can also conclude that:

{(k,s) € K* x {S\{5})} : ¢" (k,s) =a*(3) + h,} = 0 (B.27)

Note that, since h; is small and " is finite:

{ke K" :g}(k3)=a"(3) + hi} = {k € K*: g"(k,5) = 0’ (3)} (B.28)
Also, since a*(3) + h; > @*(5) > 0, we have that:

x(a'(3) + h, = 0) = x(a’(5) = 0) = 0 (B.29)

From equations (B.24), (B.25),(B.26), (B.27), (B.28), and (B.29), it follows
that: zb_, (a"(3) + hi, s') = z"(a*(5), &').
From cases 1) through 4), we concinde that for every s

z!_\(a*(3) + hi,s") = z7(a"(3),¢) (B.30)
2o’ [5)/5T%=10
z,_y(k,s") = z'(k,5), for every other k.

If 5 =2, Lemma B.2 applies (for t = 1). It follows that z}_,_, = z*. Since
(a, A) = (@, A*) for t = 1,...,5 — J — 1, we have that z! =
Suppose that 3 = 1. We'll show that. :J:f;-'_2 = z"*. Since g;'_l = ¢*, then:




i

oo

:
:

ah , (K,s') = v Y(s') x(K'=0)+ Z w{s4") &'(ka)

’ (k) K *\{a* ()} ) xS:q* (ko) =k’
5w (s.s) 2)y(a’(3) + Iy s) x g7 ((a°(3) + huy5)) = K] (B.31)

S

Note that z)_;(a’(3) + hi.s) = 2*(a"(3), s) for every s. Then suffices to show
that for every s:

9" (a’(3) + hiys) = ¢" (a*(5). s) (B.32)

Consider first that s =3 = 1. Since A, is small, we have that:

(1- 5)a‘(§) < (1=268)(a"(5) + hi) < a'(3) (B.33)
Then, g" (a”(3),s) = ¢" (a*(3 )—.— li;, 8) = &*(3),
Suppose now that s =2 (and 3 = 1). Siuce 1, is small:

(1=48)a*(3) < (1 =6)(a’(3) + ) < a’(s) (B.34)
Then, ¢* (a () }= " (a*(3) + hi.s) = a’(s).
Therefore, z'_, = z°. Since (a;, 4;) = (a",A) for t = 1....,j = 2, it [ollows

e
that 27 = z* M
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TABLE 1

Parameter Values

| g=1.0 | ¢=0.99 I g =10.95 [ 0| q=0.75 | =050 | q=f:.=?§

B 099 0.95 1 0.99 | 0.99 099 | 090 095 |

6 | 0218 | 02185 | 02179 . 02174 | 02173 \ 02172 | 0.2168 i

oy | oe 0.64 0.64 ] 064 | 064 0.64 0.6: |

|5 | 002206 | 002184 | 0.02163 | 0.02146 | 0.02066 | 0.01914 | 0.01627 |

L o | 094 0.94 0.94 0.94 0.94 0.94 0.94 |

v 7257E-5 | 7.260E-5 | 7.257E-5 | 7.273E-5 | 7.278E-5 | 7.280E-5 | 7.287E <

vy |03 0.5 0.5 0.5 05 | 05 05 |

A L112 1127 1.195 1208 1.210 1.213 1220 :

¢ | 09 0.92 0.92 0.92 0.92 0.92 092 |

| | 0.00593 | 0.00593 | 0.00593 | 0.00593 | 0.00593 | 0.00593 | 0.0033

Cp 'l 0.95 0.95 0.95 0.95 0.95 0.95 0.95

of | 0006 | 0.0063% | 00063 | 0.0063 | 00063 | 0.0063° | 0.0063°
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TABLE 2

U.S. and benchmark fluctuations

U.S. Economy (60:1-93:4) Reversible Investment Economy

i Std. Deviation Correlation Std. Deviation Correlation
i OQutput 1.33 1.00 1.41 1.00
—Consumption 0.87 0.91 0.49 0.91
Investment 4.99 0.91 7.09 0.98
Capital 0.63 0.04 0.51 0.08
Hours 1.42 0.85 0.98 0.98
Productivity 0.76 -0.16 0.49 0.91




TABLE 3

Business cycles across cconomics

Standard Deviations:

q=1.0 | q=099 | q=095 | q=090 | =075 | q=050 | c=0.00C |
Output 1.41 1.40 1.39 139 1.39 1.39 1.39
Cons. 0.49 0.50 0.51 0.51 0.51 051 | 052
Investm. | 7.09 7.01 6.89 6.85 6.83 6.83 6.82
Capital | 0.51 0.50 0.49 0.49 0.49 049 | 048
Hours 0.98 0.97 0.95 0.94 0.94 0.94 0.94
Product. ||  0.49 0.50 0.51 0.51 0.51 0.51 0.52

Correlations with Qutput:

J a=10 ] q=099 | q=095 | q=090 | =075 | q=050 | q=0.00 |
Ouput | 1.00 1.00 1.00 1.00 1.00 1.00 1o |
Cons. | 0.9 0.91 0.9 0.91 0.91 0.91 0.9]
Investm. | 0.98 0.98 0.9 0.98 0.98 0.9 0.9
Capital | 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Hours 0.9 0.9 0.9 0.98 0.98 0.98 0.98
Product. | 091 | 091 0.91 0.92 0.92 0.92 0.92
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Corrclations with 1:

TABLE 4

Model Fraction of plants with Average i/k across plants
i’k > 0.20 with i/k > 0.20
q=1.00 0.00 0.75
q=0.99 0.01 0.61
g=0n5 0.49 -0.07
q=0.90 0.39 0.12
| q=0.75 0.38 -0.13 i
q=10.50 0.36 -0.15 _ |
. q=0.00 0.31 0.17 '
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FIGURE 4

Realizations of Aggregate Investment
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Impulse Response Functions
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FIGURE 7
Steady State Capital Distribution
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Negative Shock

FIGURE 8

Impulse Responses - Highest Point in Support
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