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Abstract: This paper studies a version of the neoclassical growth model wliere 
hetcrogeneous establishment.s are subject. to partial irreversibilities in investmeut.. 
Un<lcr snch investmcnt. teclmology, the optima! <lecision rules of establishment.s 
are of the (S,s) variet.y. A novel contribution of t.he paper is the analysis of the 
general equilibrium dynanucs arising from aggrega.te pro<luctivity shocks. This is 
a <lifficult task given the rugh dimensionality of the state vect.or, wlúch inclu<les 
the distribution of establishments across capital levels an<l ictiosyncrat.ic shocks. 
The paper overcomes t.his difficult.y by developing a suit.able compnt.at.ional ap­
proad1. The mo<lel is used to stn<ly the importauce of investment. irreversibilit.i~ 
for macroer.onomic dynamics. lL is found t.hat. invest.ment. irreversibilities liave uo 
major implicat.ions for aggregat.c flnct.11atio11s, even though they a.re crúcial for 
cst.ablishmeut. leve] <lynamics. This result contradict.s previous concl11sio11s in t.hc 
lit.crat.me whid1 rdy ou partía! equilibrium analysis. 
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1. Introd uction 

Since the early and influential paper by Arrow [2] there has been a considerable 
arnount of theoretical m.icroeconomic work on irreversible investment (see Dixit. 
ami Pindyck [9] for a survey). Arrow [2] recognized that investment. is in general 
costly reversible, the purchase price of capital being larger than its resale price 
(due, for example, to the costs of detaching and moving machinery). For simplic:­
ity though, he suggested concentrating in the case where the sale price of capital 
is zero, i.e. where investment is completely irreversible. Most. of the literature fol­
lowed this suggestion. In an interesting paper, Abe! and Eberly [l] have recently 
analyzed the more realistic and general case of partial irreversibilities in invest.­
ment. ln particular , they stu<lied the problem of a firm facing a positive resale 
price of capital, wl.iich is lower than its purchase price. They showed that the opLi­
mal investment decision of the firm is a two-triggers (S,s) policy, and characterized 
the range of inactivit.y as a function of the we<lge between the purchase and resale 
price of capi t.al. A surprising resnlt. st.emming from their quanti t.nt.ive analysis. is 
that •even relatively small wedges bet.ween the purchase and sale price of capital 
can make the range of inactivity extrernely similar to the one nnder complete 
irreversibilit.y. Tltis fincting leads t.o the conclusion that. small irreversibili ties can 
matter a lot, and that rnodelling investment as being completely irreversible prob­
ably provides a better description of actual investment behavior t.han assuming it. 
t.o be perfec:t,ly reversible. 

There are not. only theoretical reasons to emphasize investment irreversibilities: 
the empirical lit.eratnre h~ also fo1md evidence that. investment. is lumpy and 
irúrequent. at the establishment level. Doms an<l Dmme [10] using LRD data on 
manufact.uring plants over 17 years fmmd that. the distribution of investment rntes 
across plant.s is highly skewed, with 80% of the plant.s displaying annual capit.al 
growth rates below 10% ( accowiting for 45% of aggregate investmcnt.), wltile only 
6% of the plant.s displaying capital growth rates over 30% (acco1mting for 25% 
oí aggregat.e investment). They also fomid that. over 50% of the establishments 
display capital growth rates of at. least. 37% in a single yeti:, und t.hat about. 
25% of a plant's cumulative investment. over the 17 years is coucenr.rat;ed in ~ 
single year (suggesting sporadic investruent. spikes at. ti::.e plant. lev~l). Moreover, 
they report that tlie number of plants going througii large investment episodes i~ 
dosely re!ated t.o aggregate investment.. Cooper, Haltiwanger an<l Power [7] found 
analogous res11lts using a similar data set. 

More direct. evidence of the empirical importance of inve.ctment irreversibilities 



has beeu provided by Ramey and Shapiro [19). Using data from an eq11ipme11t 
auction performed by an aerospace firm, they estimated t.he weclge bet.ween the 
purchasc price an<l resale price for different. t.ypes of capital. They founcl that. 
rnachine t.ools sel! al. abo11t. 31 % of their purchase value, while structural eq11ip­
ment sell at only 5%. These estirnates suggest. substantial levels of investment 
irreversibili ties. 

An ünportant issue whicb received mud1 at.tention in tbe literature is tbe 
relevance of microeconomic irreversibilities for macroeconomics dynamics ( e.g., 
Caballero and Engel [5], Caballero, Engel and Halt.iwanger 16], and Bert.ola and 
Caballero l3], [4j). Aggregating the behavior of heterogeneous establishrnents 
subject. to aggregate shocks, this li t.erature foun<l considerable support. for the 
view that microeconomic irreversibilities are important for aggregat.e dynamics . 
For e.xample, Caballero, Engel and Haltiwanger 16] using plant. leve] LRD data 
found that. non-linear a<ljustment rules at the plant. leve! subst.antially improves 
the abilit.y of their aggregat.e invest.ment. eq11at.ion t.o keep track of act.11al aggregate 
invcst.mcul. uchavior. lu particular, 1.hc 11011-lincarit.ics appcar t.o be r.rnc:ial at. 
periocls of large deviat.ions from t.rencl i11 act.11al invest.ment.. 

All thc studies mentioned above are partial eq11.ilibri11.m mo<lels of sect.oral 
iuvestmcni.. To f11lly analyze the macroecono1nic implicat.ious of microeconomir. 
irreversibilities a general equilibrium analysis is req11ire<l. The lit.erat.me has long 
avoided st.11dying stocliastic general eq11ilibri11m economics with het.crogc11eo11s 
agcms following (S.s) <lecision rnlcs siuce this cla.ss of problems seem extrerncly 
difficult t.o solve. This paper develops a methodology suitable to conduct. s11cl1 an 
analysis and explores the quantitative import.ance of plant. leve! irrcversibilitic.s 
for eq11ilibri11m b11siness cyclc dynamic-.s. 1 

Prcvio11s general eqnilibrinm st.11<lies havc foc11sc<l on invest.mc11t. irrevcrsibil­
ities al. thc aggregat.e leve!. i.e. t.he r.ase whcre capital goo<ls have no \!Se in 
co11sumptio11 (e.g. Sarge11t. 121], Olson [17], ancl Dow a11d Olso11 [11]). Sargcnt. 
[21] considered a standard one sector growt.11 model subject. to i.i.d. prod11ctivit.y 
shocks, where agents snpply labor inclastically, and aggregate invest.ment. is sub­
ject. to a non-negativit.y const.raint. However, bis emphasis was in the problems 
associated wit.b 11sing a q-theory invest.menl. fw1ct.ion for cconometric policy eval­
uations, and not. in the implicat.ions of. irreversibilities for aggregat.e dyna.rnics. 
Olson [17] generalizecl the class of productivit.y shocks considered by Sargent. [21] 
and established the cxistence of a n11iq11e invariaut <listribntiou for the st.ock of 

1 A notaulc cxc;cptio11 is Fislicr a11CI Hornsl.ciu 112], who stu<ly thc gc11cral cq11ilibri11111 <ly­
namics of an economy with rctailers which follow one sided (S,s) inventory policies. 
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capital. lnt.erestingly, he showe<l that. irreversibilit.ies can <lampen t.he response of 
investrnent to lmge aggregaLe pro<l11divit.y sliocks. 

The closest prece<lent. to the current. paper is Do\\' an<l Olson [11], who int.ro­
d11ced aggregate investment. irreversibilities int.o the real business cycle studied 
by Hansen [14]. For a similar aggregar.e pro<l11ct.ivii.y process as Hansen's, the:· 
found t.hat. aggregate invest.ment. irreversibilities ha<l no eifocts. Giveu the small 
variability of aggregat.e productivit.y shocks, the nonnegative constraint on invest.­
ment never became binding. Argu.ing that. aggregate W1certaint.y underestimates 
the uncertaint.y faced at more disaggregat.e levels, they proceded to analyze a t.wo 
sectors business cycle mo<le!. They foun<l similar resnlt.s: irreversibilities mattered 
only when shocks <lisplaye<l an iinpla11sible large variance. This paper goes a few 
steps furt.her with t.he leve! of disagregat.ion. Davis and Halt.iwanger [8] showe<l 
that there are large employment. flows across establishment.s in the marnúact.nr­
ing sector, s11ggest.ing a considerable amonnt of idiosyncratic ,mcertainty at. the 
est.ablishement. lcvel. lt seems natural to ask wether irreversibili t.ies at. this leve] 
of disagregation can have major implications for t.he aggrcgat.e <lyuamics imµiie<l 
by the theory. This paper purs11es this q11est.ion. 

The model considered here is similar to the one in Verncierto [22] except. t.hat it 
allows for partial invest.ment. irreversibilit.ies at. t.he establishment. leve!. The basic 
framework is analogo11s to the neoclassical st.ochastic growt.h mo<lel with indivisi­
ble labor analyzed by Hansen [14] aud for a part.icnlar parnmet.rization the model 
reduces t.o bis. 011t.p11t, wliicl1 can be cousiuuc<l or invest.e<l, is pro<luced by a large 
munber of est.ablishmcnt.s tbat. use capi ::al an<l labor as inp11t.s 11mler a <lecrci\Sing 
ret.urns t.o scale pro<l11ct.ion t.ecllllology. Est.ablislunent.s reccive i<liosyncrai.ic pro­
d11ctivit.y shocks t.hat. determine their cxpansion, contract.ion or dcat.h . They are 
also snbject t.o an aggregar.e pro<luctiviry shock (common t.o all establishmcnt.s) 
that. generat.es aggregat.e f111ct.11at.ions in the economy. For simplicit.y, both ent.ry 
and cxit. are t.reat.ed i\S exogenons. 

Labor is perfect.l? mobile across est.ablishment.s but. capital is not.. Once capital 
is in pince at. an esr.ablishment. t.here are cost.s assocint.e<l wit.h det.a.ching an<l 
rnoving it. Thesc costs imply t.lrnt. a fract.ion of the product.ive services of capital 
are losr. in t.hc process of 1minstalling iL. This is annlogons t.o t.lie general case noi.ed 
by Arrow j2j an<l a.nalyze<l by Abel and Euerly [1]. where thc saii;: price of capit.ar · 
is smaller t.ha.11 it.s pmchase price. In the face oí tii•.::se part.ial irrcversioilit:ies. 
the optima! investment. behavior of establ..ishment.s is t.o folim\' t.wo sjde<l ( S .s) 
decision rules. The dynamics of tlie modc.>l are complicat.ed si11ce one mnst. keep 
trac.k asan endogenons stat.e variable t.iic foil distribution of establisjunent.s across 

3 



r 

idicsyncratic productívit.y levels aud c;i.pit.al stocks. I show how to overcome thís 
<lifficul t.y below. 

The mo<lcl economy is use<l t.o study t.he quantít.atíve ímport.ance of invest.­
ment irreversibilities for macroeconomic dynamics. For t.his purpose, economies 
with diÍlerent. degrees of irreversibilities are calibrated t.o U.S. data aud tbeir ag­
gregat.e fluctuatíons simulated and compare<l. Parameter values are selected so 
that. their deterministic steady stat.es reproduce key observat.ions from U .S. data. 
These observations come from the Nat.ional Income Acco1mts and from establish­
ment leve! <lynainics, as reported by Da.vis and Haltiwanger [s;. The process for 
aggregate productivity shocks is chosen so that. mea.snred Solow resi<luals ilisplay 
similar properties in t.he mo<lel economy as in the U .S. <lat.a. 

The equilibrium flnctuations of the economy wi th perfectly reversible invest.­
ment are found t.o be broa<lly consist.ent. with U .S. business cycles, <lisplaying simi­
lar features a.s t.hose fo11nd in previous real business cycle models. The main result. 
in the paper is that. econornies with difíerent. degrees of investment. irreversibilities 
display somewhat. <lifforent. aggrcgat.e íl11ct.11at.io1Js1 b11t. t.hn!. thesc <lifforcnccs are 
quantitatively mumport.anl.. \Ve concl11de t.hat. for st.udying nggregat.e fl11ct.11at.io11s 
we can safely abstract from investment. irreversibilit.ies at. tite estnblislunent leve!. .. , ~ 

Tlus result seems striking since Abe! a.nd Eberly [l] foun<l that relat.ively small de-
grees of irreversibilities lea<l establisltments t.o ranges of inact.ivit.y that. are similar 
t.o those correspouding to complete irreversibility. On tite ol.lier hand, Caballero. 
Engel and Halt.iwanger [6] conclude<l t.lwt. non-linearit.ies are ext.rernely import.ant. 
for nggregat.e dynarrucs. In light of t.licse findings, it. seemed nat.Úral t.o spernlate 
tliat even small <legrees of invest.ment. irreversibilit.ies wonl<l llave mat.r.ere<l for 
eq11ilibri11m aggregnt.e <lynamics. 

The paper is organizc<l as f ollows: Secl.io11 2 describes t.lic ec.onorny, Ser.r.io11 3 
<lisc11sses t.hc compctit.ivc eq11ilibri11m nnd t.l1e sol11t.io11 strnt.egy 11scd t.o solve for 
it., Section 4 describes t.he observat.ions 11sed t.o calibrat.e t.lie model. an<l Sect.ion 
5 present.s the resnlt.s of the experiment.s. 

2. The model econon1y 

The· economy is popu.lated by a cont.inuiun of ex-ant.e identical agents with names 
in the un.it interval. Their preferences are <lescribe<l by the following 11tilir.y func­
tion: 

oc 

EL (Jl [log (ce)+ 11 (le)] (2.1) 
l=O 
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where c1 ancl 11 are conswnption ancl leisure respectively, and O < /3 < l is the 
subjective time discount. fact.or. Every period agents receive a time endowmem 
eqnal to u1. Following Rogerson 120] and Hansen [14], it. is ass1uned tlia t. there 
is an instit.utionally det.ermined workweek of fi.xed lengt.h which is normalized to 
one, so leisure can only take values w or w-1. 

Ont.put. which can be consumed or invest.ed, is pro<luced by a large number oí 
establishments. Each establishment. uses capital (k) and labor (n) as inputs into 
a pro<luction technology given by: 

z, J·º -, Yt = e s1 ,1 n.1 (2.2) 

where 0 + 1· < 1, s1 is an idiosyncratic pro<lnctivit.y shock ancl z1 is an aggregate 
productivity shock common t.o ali establishment.s. Realizat.ions of the idiosyncrntic 
product.ivit.y shock s1 t.ake values in the set. {O, 1, >.} and are independent. across 
establishment.s. Over time, s1 foilows a first order Marko,· process wi t.h transi tion 
matrix I1, where 7í (s, s') is the probabilit.y t.hat s1+1 = s' condit.ional on s1 = s. 
This process is assnmed t.o be such t.hat.: 1) st.arting from a.11y initial val11c, wit.h 
probability one s1 reaches zero 111 finit.e time, and 2) once s1 reaches zero, t.here 
is zero probability t.hat s1 will receive a posit.ive val11e in t.he future. Given these 
assumptions, it is natural to i<lcntify a zero value for the product.ivit.y shock wit.h 
thc <leath of an est.ablishmcnl..2 The aggregal.e prod11ct.ivit.y shock z1 follows a law 
of mot.io11 givcn by: 

(~.3J 

whcre O < p < l , ancl E1 is i.i.d. with variance <7; ancl zcro mean. 
Labor is pcrfect.ly moGile in this economy, but. capi t.al is noL. On one lian<l, 

t.he amo11nl. oí capi1.al k1..,1 in place at. an establishment. at. dat.c l + 1 m11sr be 
dccided at. pcrio<l t before the realizat.ion of s1+1 becomes known. On the 0Ll1er 
han<l. invest.ment. is part.iall:· irreversible at. t.he establishment. lcvel. b1 partic11iar. 
whenever capital is <ler.acl1ed from t.he floor of an establishment. it. ioses a frnc1.io11 
(1 - q) of it.s remaining pro<luct.ive servic:es. To be more precise. Jet. O < é < l be 
the depreciation ral.e of capit.al. In order t.o increase an est.ablislunent·s llCXt period 
capital k1+1 above its current. level nct. of clepreciat.ion (1 - ó)h1. a11 investrncnt o'f 
h1+1 - (1 - ó)k: unit.s is ncedc<l. On t.he conr.rary, when an est.ablisi1111e:1t decre~l:'s 
its next period capital J..:1+1 below it.s cmrcnt. level nct. of <lepreci1~tion (l -ó)h1, t.he 
amount. of invcstment goods obt.aincd from the esr.ablislunent. is only a írac:tiou <J 

2Gi\'ell thnt there are no f1..xed costs to operatc an C.$Lnblishment alrendy creat.eci , cxit will 
take place only when the idiosyncratic productivi ty shock takes a value of zerc. 
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of { 1 - ó)k1 - k1+ 1. The parnmetcr q is a measure of the <legree of the investment 
irreversibilit.ics in t.he eccnomy and will play a crucial role i11 onr a11alysis. 

Every period, ageuts receive an endowment of new est.ablishrnents which arrive 
wit.h zcro in.itial capital in place. lnit.ial values for s across new establishmeut.s 
are d.istribut.ed accord.ing to iµ. This exogenous birth of new establishmems com­
pensates the ongoing <leath of ex.isting est.ablishments ( as they get. absorbed into 
zero productivit.y) ancl resnlts in a const.anL long rnn number of plants.3 

The presence of idiosyncratic productivit.y shocks and irreversible investment. 
at. the establishment. leve] suggest.s indexing est.ablishments accor<ling to their 
current. productivit.y shocks s and current. stock of capit.al k. In what follows, a 
measure Xt over cnrrent. productivit.y shocks a.n<l capital levels will describe the 
11umber of est.ablishment.s of each t.ype at. period t. Also, a measurable funct.ion 
n1 wili describe the number of workers a.cross establishment. t.ypes, a measurable 
function 9t+J will describe the next. period st.ock of capit.al across est.ablishment. 
t.ypes, and r¡1 will denot.e the fraction of the population that works. 

Feasibilit.y constraints consnmption as follows: 

ci $ j { e''s 1/ni(k, s)' - [91+ 1 (k, s) - (1 - ó)k] Q [91+1 (k, s) - (1 - ó)k] } dx1 

+ /(1 -ó) 91 (k., s) q rr (s , O) dx1_ 1 (2.4) 

where Q () is an in<licator f11nc.t.io11 that. t.akes val11e 1 if it.s argnmeut. is positive. 
and value q (t.he irreversibilit.y parameter) otherwise. The first. t.erm. is the s11111 of 
out.pu!. mim1s investment. across ali t.ypes of est.al>lishmems. taking int.o acconnt 
the capital losses <lue to the invest.ment. irreversibilit.ies. The sec.oncl t.erm on t.he 
right. ha11cl si<le correspon<ls t.o ali t.hose est.ablishment.s tbat wl1ere in operat.ion 
the previo11s perio<l all(I die <lming the current. period (trnllsit. t.o an i<liosyncratic 
shock equal t.o O), get.ting t.o sell a fract.ion q of t.heir stock of capi t.al 91 ( k , s) net. 
of depreciat.ion. 

Sirnilarly, the t.ot.al nnrnbcr of workers at. plant.s is const.raine<l not. t.o exceed 
the fraction of t.hc popuJation t.hat. works r¡1 : 

(2.5) 

3Even though the entry and exit decisions of establislunents are not endoge11ously determined 
in this economy, it seems important to incorporate them at leas t exogenously. A significant 
probability oí death will probably affect how establishments respond to aggregate productivity 
shocks in the presence of investment irreversibilities. 
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Finally, the law of motion for the measnre x1 m11st. be consistenL wi th the 
capital decisio11s at. the plant leve!. That. is, for every Borel set. B: 

x,+1 (B , s') = J 1r(s,s') dx1 + v,p(s') x(0E E) (2.6) 
(k,J):91+ 1 (k,J)E B 

where x () is an indicator function that. takes value 1 if it.s argument. is true. aml a 
value of zero otherwise. ln words, the munber of establishments that next period 
have a stock of capital in the set E anda productivity shock s' , is given by the sum 
of t.wo terms: 1) ali those est.ablislunents that transit. from their current shocks to 
the shock s' and choose a next. period st.ock of capital i11 t.he set B, and 2_) in t.he 
case that O E B, ali new establishment.s that. arrive with an i11itial product.i\'it.y 
shock s' (note t.hat uew establislunents are borne<l with a zero in.itial stock of 
capital). 

3. Competitive equilibrium and solution method 

Following Hansen ll4J and Rogerson !20], agents are assumed t.o tra<le employment. 
lot.teries. These are contrnct.s t.hat. specify probabilit.ies of working, an<l allow 
ageuts t.o perf ect.ly <liversify the idiosyncrat.ic risk t.hey face. Si11ce agent.s are 
ex-ant.e i<lcntical. they ali d1osc t.he same lot.t.ery. The eco11omy thcrefore has a 
rcpr~enl.at.ivc ageut. wit,h 11t.ilit.y f11uc:t.io11: 

ln c1 - a· 11r (3.1) 

1.e. 111.ilil.y becomes linear wit.h respect. t.o the probabilit.y of work.ing r¡, (for <let.ails 
see Hansen ll4j ; ancl Rogerson [20]). Since this is a convex economy with no 
ext.emalit.ies nor ot.her dist.ort.ions, its compet.it.ive eq11.ilibri11m allocation can be 
solvecl by analyzing the Social Planner's problem with eqnal weights. 

Thc stat.e of the economy is given by the curren!. aggregat.e productivit.y shock 
z. t.he current. measme x across est.ablishment. t.ypes, the previous period measnre y 
across establishment. t.ypes, an<l the previous periocl investment. cler:islons d a.cross 
establishment. t.ypes (z1 , x1• x 1_ 1 ancl 91 rcspectively iu onr previous notat.ion) . 
The Social Planner's Problem is described by t.he following Bellrnan equa1;ion: 

subject \;o 

V(d, x, y, z) = M AX {lu e - a· r¡ +/JE \l(d', x', y', z')} (3.2) 

i 
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e~ j { e= s k0n (k. s)1 - [g (k, s) - (1 - ó)k] Q [g (k , s) - (1 - ó)k) } dx 

x' (B, s') = 

+ j(l-ó) d(k,s) q 11(s,O) dy 

j n ( k, s) dx ~ T] 

J r. (s, s') dx + v ¡/J (s') X (O E B) 
(k.s):g(k,,)EB 

d' = g 

y'= X 

z' = pz + E1 

(3.3) 

(3.4) 

(3.5) 

(3.G) 

(3.7) 

(3.8) 

where the maximization is over n () and g (). Note the h.igh <Lrnensionalit.y of 
the stat.e spacc which secms t.o preclude any possibilities of comput.ing a sol11tion. 
Below, I will show t.hat. t.lús diffic11lt.y is only apparent: t.hc problem becomcs foil:· 
t.rac.Lable once it. is redefi11ed in t.erms of a conven.ient. set. of variables. 

To underst.and t.he rat.io11ale for the transformed problem, it. will be convenient. 
to analyze the st.rnct.me of tlie problem t.hat. est.ablislunent.s face at the compct.i­
t.ive eqtúlibrium. Tlie individual st.at.e of an establishment. is given by it.s cnrrent. 
prodnct.ivit.y shock s aud it.s curren!. stock of capit.al h. The problem of an es­
t.abiishme11t. wi t.li in<livid uul st.at.e ( k, s) wlien t.lie aggregat.e st.at.e is ( d, x, y, z) is 
given by: 

J(k, s, d, x, y, z) = 1\.-l AX { e= s k0n-r-w (d, x, y , z) n-[k' - (1 - ó)k] Q [k' - (1 - ó) k] 

+E [i (d, x, y, z; d', x', y', 2 1
) J (k', s'; d' , x', y', z')] } (3.9) 

subject. to: 
s' ~TI (3.10) 

z' = pz + E1 
(3.11) 
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(d',x',y') = H(d,x,y,z) (3.12) 

where w () is the eq11.ilibri1un wage rat.e, i () are the eq1úlibri11m prices of Arrow 
secmities, H () is the equilibri11m law of motion for the agg:regat.e st.at.e of the 
economy. and where the max.imizat.ion is over the scalars n and k' . Note that. t.he 
decision rule for capital that corresponds to the solution t.o th.is Bellman eq11ation 
is of the (s,S) type. It. is characterized by a pair of lower an<l upper capital 
threshol<ls a(s), A(s) snch that: 

k' = a(s), 
= A(s), 
= (1-ó)k, 

if (1 - ó)k < a(s) 
if (1 - ó)k > A(s) 
ot.herwise 

(3.13) 

where the depen<lencc of a(s) an<l A (s) on the aggregnte st.at.e of the economy has 
been s11ppressed to simplify notation (Figme 1 shows a pict.urc of these decision 
rules). Not.e t.hat. there is a pair of lower and upper threshold (a (s), A (s)) for 
every possible i<liosy11cral".ic prodnctivit.y shock s. Hcreon we will <leuoLe (a , A) as 
being t.he vect.or (a (s), A (s)),=u across idiosyncratic shocks. 

Our st.rat.egy will be to keep t.rack of long hist.ories of ( a , A) as st.ate variables 
ins1.ead of t.be actual dist.ributio11s x and y ancl use them t.o coustruct approximate 
<list.ribut.ions far x a11<l y using the law of mot.ion in equatiou (2.6). 4 ln principie, 
as we mnkc t.he lcngth of t.he history of (a, A) arbit.rarily largc we wo11ld obt.aiu 
an arbir.rarily goo<l approximat.ion for x ancl J/ . An import.a111. qnestio11 wil! be 
hO\\' iargc t.o makc t.his lcugt.h i11 prnctice (! will ret.11ru t.o this iss11e below). Onr 
sol11tio11 mct.hocl will reqnire so!viug indcpe11clent.ly for t.he detcrminist.ic st.ea<ly 
st.al.<:> of the cc.o11omy. Appenclix A describes how this is pcrforme<l. 

Let. (g, d ) denor.e t.he hist.ory of t.hreshol<ls {a,. At} t=t. ... :r· íor sorne lnrge hori­
zon T. whcre (a1 • A.,) were t.he t.hreshol<ls choscn t periods beforc Lhe curren1. date. 
Also. lcl. (a'. N) be Lhc threshol<ls for the cnrrent. perio<l. Since we k.110\,. thn.t. 
t.he opLimal decision rules of est.ablishmcnts are of thc (S,s) varict.y, t.hcre is no 
loss of ge11erali1.y i11 <lefirúng the Social Planner's problem <lirect.iy in t.crms of the 
curren t. t.hresholds ( a,c, A e) ancl the fract.io11 of peo ple that. work 1¡ as follows: 5 

( 3.14) 

4 J',;otc tha: :vesterday's (a, A) defines yesterda~·•s <lecisio11 rule el. 
~Note that problem (3.14) reduces to the original probicm (3.2) as T goes to infinit:,·. 



subjcct. l.o: 

1 • ) 
ª:+1 (s = o., ( s) . for t = 1,2, .... T- l and s = l , >- (3.15) 

a~ (s) = a'(s), for s = l..>-
A; ... 1 (s) = Ai (s), for t = 1.2, ... ,T- l and s = l ,>-

A'¡ (s) = A' (s), far s = l , >- (3.16) 

z' = pz + E:
1 (3.17) 

wherc equat.ions (3 .15) upclate t.omorrow·s hist.ories givc11 t.lie cmrent. choir.cs. The 
funct.ion e (g, A,::. aC, A', 11) gives t.he maximmn consnmpt.ion thnt. can be obt.ained 
give11 the hist.ory of threshol<ls (g,, A}, t.he cmrent. aggregat.e produc:t.ivit.y shor.k =· 
tlie cnrrent. d1oices of thresholds (a', A'), an<l t.he decision of how many agent.s to 
current.ly pnt. t.o work r¡. Formally, c(Q:,A,z,a',A',17) is givcn n.c; t.hc sol11t.iou t.o 
thc followiug problem: 

-ig(h,s)- {1-é)h] Q[g(h,s)- (1- ó)kj} dx+ j(l-ó) d( k.sl q 7i Ís.Ol dy 

(3.18) 
snbject. to: 

j n. (h. s) dx ~ r¡ (3. 19) 

where the maximizat.ion is with respect. t.o t.hc fnnr.t.ion n (h. s) , an<l where y. x, 
d, an<l y are obt.aine<l from (g , A. z, a', Ac) in the followi11g way: 

(i) The currem. investment. decision rnle are the ones. implie<l by t.he curren t. 
tlireshol<ls (a', A'): 

g(k, s) = ac(s), 
= A'(s), 
= (1 - ó)k, 

if (1 - ó)k < ac(s) 
if (1 - ó)k > Ac(s) 
otherwise 

(3.20) 

(ii) The (approximate) curreut. mensure across establishment. t.ypes x is olr 
tained by initializing thls measure T periods befare the cnrrent perio<l (xr) to be 
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the determiuistic st.eady stat.e measnre x', au<l up<lating it. recnrsively by it.erat.iug 
on the law of motion given by: 

x,-1 (B, s') = r. (s, s') dx, + v 1j; (s') X (O E D) (3.21) 

for t = T, T - 1, ... , l. The (approximate) curren!. x is then given by :r.0 . 

The invest.ment. decision rules (91), t perio<ls away (for t = T, T - 1, ... , 1). 
that. are used in this law of motion are the ones implied by the correspon<ling 
thresholds (a1, A1) in tbe bistory Ü!, A): 

= a1(s), 
= A1(s), 
= (1 - ó_)k, 

if (1 - ó)k < a1(s) 
if (1 - ó)k > A1(s) 
otherwise 

(3.22) 

(iii) The prcvio11s period measnre a.cross establishment. t.ypcs y, aud t.he pre-­
vious period decisio11s ovcr current. capital levels across est.ablishmeut. t.ypes are 
those ret.umed as x 1 and 91 in (ii). . 

Note that the Social Pla1mer's problem in eq11at.ion (3.14) has linear con­
strai11t.s, and that. the determinist.ic st.eady st.ate values for the ( en<logenous) st.at:c 
variables are ali st.rictly posit.ive. We can the11 perform a q11a<lratic approxima­
tion t.o t.lic rc1.m11 f1111d.io11 abo11t. t.lie <lel.crmi11istic st.eady st.at.e, leaving 11s wi t.11 
a st.andard li11cnr q11a<lrnt.ic (L-Q) problcm whid1 can be solvcd by ordinary val11e 
flmct.ion it.erat.io11.G 

Let. 110w rctnrn t.o t.l1e quest.iou of how loug the history of thrcsholds (g, A) 
shoul<l be t.o get. a goo<l approx.imat.e sol11tio11 t.o the original problem (3.2). Ap­
pc11dix B sho\\'S that. t.herc exist.s a lengt.h J for t.hrcsholds histories s11d1 t.ha1 
solving uy L-Q methods the planner's problem (3.14) correspou<li11g to le11gt.h J, 

6The qua<lratic approxinll\tion is obtnined by imposin¡: zero errors of apµroximation of the 
rcturn function at thc grid points that lic just above and below t.hc stcndy state gri<l point~ 
computed in the Appendix. The procedure to obtain numerical deri\'at.ives foliows closel.,· t.he 
one <lescrii1cd in I<y<lland a11<l Presott 1131. We are lcf1 with a stamiar<l li11enr quaclratic proulcm .. 
if tite return fu11ctio11 is concave with respect to the threslml<ls (a. A). ll i1apen~ to be tiiat thc 
problem is nct.ually no:. coucave with rcspect to t.hcsc ,·ariablcs. !3ut if i11s1ca<l cf direct.iy wcrkilll'. 
with the threshul<ls ( a ( s) , A ( s)) wc work with n trauslorrnntion ( n ( s f , A ( s)' i oí the.sc originnl 
variables, the problem does become co11cave. 111 ali the cxperi1ne11ts analyzed a vaiue of -;-- = 
0.999 was sufficient to make the problem concave. 1 must thank Larry Jones for making me this 
suggestion. 
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gives exact!y t.he same sclution as sohiug by l.,-Q met.hods the pianner's prob­
lem 3.14 correspon<lini; to nlly other lengt.h T > J. 7 lt follows that. t.he only 
approximation error int,roduce<l by the soh1t.ion met.hod sr.ems from applying I.,-Q 
mctbocis ancl not. from keeping track of a finir.e history of thresholds. 

4. Calibration 

This section describes the steady st.ate obserYat.ions used t.o calibrat.e the parnm­
eters of the moclel. In t.lús section, the irreversibility paramet.er q will be assurne<l 
fe-<e<l at sorne particular value. Given a fixed q, the rest. of the parameters we need 
t.o calibrat.e are {J , 0, , ·, ó, o.. v , 1P( 1), A. the trnnsition matrix TI , and t.he parnmeters 
det.erm.ining the driving process for the aggregat.e procluctivit.y shock p and e;. 

The first. issue we nrnst. adclress is what. act.ual measure of capital wili our 
model capital correspond t.o. Since we are int.erest.ed in investment. irreversibilit.ies 
at. t.he establishment leve! it. seems nat.nral t.o abst.ract. from capital componems 
such as lau<l, resi<lent.ial strnct.ures a1JJ co11s11mcr dmables. The e111pirical c:01111-
terpart for capital was consequent.ly ident.ifie<l wit.h plant. an<l equipment.. As a 
resnlt, invest.ment, was associat.e<l in the Nat.ional lncome and Prod11ct. Acco11nts 
with n01i-resi<lential investment.. On the otlier hand, t.he empírica! co11nt.erpan. 
for co11stunpt.ion was identified wit.h personal co11s11mpt.ion expenditures in 1101i­
durable goo<ls and services. O11t.put was then defined t.o be t.he sum of t,hese 
invest.ment. a11d cons11mpt.io11 measmes. Thc a11n11al capit.al-out.¡rnt. ratio a11d t.he 
invcstmeut.-011t.p11t. rat.io corrt>.sponding t.o t.liese mensures were found Lo be l. 7 
and 0.15 respcctively. The depreciation rat.e ó was selecte<l to be consistent with 
these two ma¡_;nit.11des . 

· The annual int.erest. rat.e was select.c<l t.o be 4 per cent.. This is a co111promise 
bet.ween t.he average real rct.11rn 011 cq11it:y aml t.he average real ref.llrn Oll short­
term debt. for the period 1889 t.o 1978 as r~port.ed by lvlelu·a a11d Prescot.t. l lG]. 
The discount. factor {J was chosen Lo generar.e t.his interest rar.e a t. st.eady star.e. 
Given the interest rat.e i and the <lepreciation rar.e é, the paramet.er 0 was selected 
to match the capit.al-output. ratio in the U .S. economy. The labor share parmnet.er 
was in turn selected to replicate a labor share in Nat,ional lncome of 0.64 ( tlús 
is the standard value used in the business cycle literature). On the otber haud, 
the preference paramet.er a was picked such that 80% of the population works 

7Moreover, J is easily determiued and iu ali experiments performe<l below, it happens to be 
a relatively small number ( nevcr exceeded 45) . 
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at. st.eady st.a1.e (roughly the fract.ion of Lile U .S. working age pop11lat.iou 
cmploycd). 

The transit.ion matrix íl was choscn to be of t.he followiug forn: : 

(
~ ái{lO-() (1-dJ)O(l-()) 
( (1 - dJ) (1 - () d> (1 - () 

(4.1) 

i.e. a process that. treats the low and t.he high productiYit.y shocks s~:mmet.ri­
cally. The rest. of the paramet.ers to calibrate are then <jJ, (. t:, t/J( 1), and >.. The 
pararneters ( , </>, aud >. were select.ed t.o reproduce import.ant. observations on job 
creation and job destruction report.ed in DaYis and Haltiwanger IS). Tbese are: 
(i) that. t.he average annual job creat.ion rat.e d11e t.o births an<l t.he average annual 
job dest.ruc:tion rate d11e to deaths are bot.h about. 2.35%, (ii ) that. the average 
armual joi) creat.ion rate d11e t.o continuing est.ablishment.s a11d tiie a\'erage. mm11ai 
job destruction rat.e due to cont.inaing esLabiislunents are both abo11 t. i.9%. ancJ 
(iii ) tliat abo11t. 82.3% of t.l1e jobs dest.royed <lnrillg a yenr are s!.ill <lesi:royed l.be 
following year. The paramet.er <let.enn.ining the munber of est.ablishme11ts being 
creat.ed every perio<l was chosen so that. the average establishment. size in the 
mo<lel economy is abo11t. 65 employees. same magni t.11<le as iu the dat.a. 

Next, we must. determine t.he distrib11tion w over init.ial prod11ct.ivit.y shocks. 
If we wo11ld allow for a large number of possible idiosyncratic productivit.y shocks, 
it wo11ld be 11at.ural t.o chose a w t.o reproduce t.he same size distrib11t.ion of estab­
lishment.s as in the data. Vl'' ith only two \·alues for the idiosyncrat.ic shocks this 
approach <loes not. seem restrict.ive eno11gh siuce we can pick auy t.wo arbit.rary 
empio>·men:. ranges in the act.11al siie dist.ribmion t.o caliorat.e t.o. For t.his reaso11 1 
chose t.o follow t.he same priuciple as in t.he choice of TI and pick ¡j; = (0.5 . 0.5). i.e. 
a <listrio11Lion t.ha.1. t.reat.s t.he low an<l t.he high pro<l11ct.ivit-:· shock symmer.rically 
(note that. t.liese choices of TI and 1J; impiy t.bat. at. st.ea<ly st.at.c tliere will be as 
man:· est.ablislunenl.s wit.h t.he low shock as \\'it.h t.he high shock!. 

Fiually. we mus:. determine \'ah1es for p and a;. The sr.rat.egy for sclcct.ing 
val11es for these paramet.ers wa.s t.o chosc t.hem so t.hat. measnre<l Solo\\' residuals in 
the modei ec:onomy replicat.e t.bc beha\'ior oí measmed Solow resi<l11als in t.hc dat.a. 
Proport:iouat.e changes in measured Solow residual are defined as the proport.ionat.e 
chauges i11 aggrcgat.c 011t.p11t. mi1111s t.he s11111 of the µroport.io11al.e d1a11ge iu labor 
limes the labor sharc 1 , 1nin11s the sum of t.he proµort.iona1.e d:allgc iu capir.al 
times (1- 1 ). Not.e that. these clrnnges i11 mcasmccl Solow resi<l11ais do not. coi11cide 
with changes in the aggregat.e producLi\'it.y variubie z i11 the mcdel (1.he aggregn.t.e 
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production function in the model economy is not. a constant. ret.11rns Cobb-Douglas 
function in labor and aggregate capital). Using the rneasure of output. describecl 
above ancl a share of labor of 0.64, measured Solow residuals (in the data) werc 
found to be as highly persistent as in Prescot.t. ll8J but. the st.andarcl <leviation of 
technology cbanges carne up somewhat. smaller: 0.0063 insteacl of the usual 0.0076 
value used in the literature. Given a fixe<l irreversibility parameter q and the rest. 
of the parameters calibrat.e<l as above, values for p and a; were selected so that. 
measured Solow residuals in the model economy displayed similar persist.ence ancl 
variability as in the data. lt happened to be the case that. values of p = 0.95 
and a: = 0.00632 were consistent with these observations in ali the experiment.s 
reported below. 

Parameters va1ues correspond.ing t.o ecouomies with severa) clifierent possible 
values for q are reported in Table l. 

5. Results 

To have an idea of the qua.ntitat.ive belwvior of onr model, Jet first. consi<ler tbe 
economy with perfectly reversible investment. (q = 1) as a benchmark case and 
analyze the business cycles that. it generates. Table 2 report.s summary statis­
tics (standard deviations and correlations with 011tp11t.) for t.he aggregat.e fluc­
tuations of this benchmark economy and compares them to those of the actual 
U.S. economy. Befare any statistics were comput.ed, ali time series were logge<l 
an<l detren<led using the Hodrick-Prescott fil ter. The statistics reporte<l for the 
U.S. economy correspond to the our.put, invesr.ment and consumption mea.sures 
described iil the previous section, and refer to the period between 1960:3 an<l 
1993:4. For the artificial economy, time series of a lengt.h of 136 periods (same 
as in the elata) were comp11ted for 100 sinrnlations, the report.ed statistics being 
averages across these simulations. We see t.hat. the benchmark economy displays 
salient features of the U .S. business cycle. Out pu t. fluctuat.es about as much in 
the mo<lel economy as in actual data. lnvestment. is about 5 t.imes more vari­
able than output in the moclel while it. is about 4 times as variable in the U.S. 
econorny. Consmnption is less variable than output. in both economies (though 
consumption is less variable in the model than in the U.S.). The variabilit.y of 
the aggregate stock of capital is about the same in both economies. On the other 
hand, hours variability is only 70% the variability of output in the model wrule 
they vary as much as output in the actual economy. Productivity fluctuates less 
in the model than in the U.S. economy. In terrns of correlations with output, we 
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see that alrnost all variables are highly procyclical both in the model and in U .S. 
data. The only exceptions are capit.al (which is acyclical both in the model and 
the actual economy) and productivit,y (which is highly procycl.ical in the model 
while it is acycl.ical in the data). In a broad sense, t.hese features are similar to 
those commonly foun<l in previous real business cycle rnodels. 

\Ve turn next to the rnain question addressed in this paper, that is: what. 
are the implications of investment irreversibilit.ies for aggregat.e fl11ctuations? In 
terms of our model econorny t.he question can be restated as follows: are the equ.i­
libri nrn fluctuat.ions in onr benchmark economy (perfect reversible investment) 
snbstantially different from those corresponding to an economy cal.ibrated to an 
empirically plausible valne of q? 

Instead of argu.i11g in favor of the empirical plausibility of any particular value 
for q, tbe strat.egy here will be to report. results for different economies with 
q's in a wide range of values. Table 3 summarizes the equil.ibritun fiuctuations cf 
econornies with q's ranging bet.ween 1 and O. The resnlts are striking. Irreversibil­
it.ies tend to decr~ase the variabilit.y of 011t,p11t., illvestment. an<l hours, aud iucreasc 
the variability of consnmption.6 However, these differences are s11prisingly smali. 
For example, the standard deviation of out.put, decreases monotonically as q goe.s 
from 1 to O (as one would expect given t,he adjustrnent. costs illtroduce<l), but. 
it. goes from 1.41 when q = l to only 1.39 when q = O. This is a small <lif­
ference considering that. we are moving from the perfect.ly reversible case to t.he 
complet.e irreversibilities scenario. Overall, the propert.ies of the business cycles 
generated by al1 these economies are extremely similar. We conclude that. at. ieast 
in terms of the st.andard st.at.istics which the real business cycle liternture focuses 
on. investment. irreversibilitíes at. the plant leve} play no crucial role for aggregat.e 
dynamics. 

Let. uow consi<ler t.be importauce of irreversibilit.ies for plant. leve} invest.ment. 
dynamics. Figure 2 shows tbe distrib11t.ion of plaut. level gross i11vestment. rat.es (for 
continuing establishment.s) across all realizat.ions. under <lifferent val11e:: for the 
irreversibilit.y parameter q.9 We observe t.hat. when there are no irreversibilities (q 
= 1.0), there is a large number of est.abLshment.s which do not. adj11st. their sLocJ.: 
of capital ( their net. investrnent is zero), and there is a small number of firms 

8Imeres tingly, Dow and Olson 111] found that when aggregale productivity sho¿;~ are vari­
able enough. aggrcgate investment irreversibilite.s bind and outpul, consumption, invcstmeut 
and ho11rs are affected in a qualitativcly similar way as here. 

9These histograrus correspond to the same :.;imulations as those underlying Ta;:,IP. 3. 
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with both sharp increases and sharp decreases in their stock of capital. 10 On 
tbe contrary, when the irreversibili t.y pararnet.er q becomes zero: 1) the number 
of est.ablishment.s d.isplaying close-t.o-zero adjnstrnent is larger. 2) there are no 
establishments with sizable negative investment rates, and 3) capital increases are 
not as sbarp as they were w1der q = 1.0. It is interesting to note that when q = O, 
altbough only 2% of the establishments bave investment rates larger than 20%, 
they contribute to 38% of aggregate gross investment. lnvest.ment irreversibilities 
then bring the distribution of investment rates closer to the features emphasize<l 
by Dorns and Dunne [10] . Also, note that. the h.istogram of invest.rnent. rates that 
arises when q = 0.95 is very si.rnilar to the one under q = O. This is related to the 
fi.nciing by Abe! and Eberly [1], that relatively small degrees of irreversibility give 
rise t.o similar plant leve} adjnstments as w1der complete irreversibilit.ies. From 
this figme, we see that. even though irreversibilities are not. import.ant in terms 
of the standard RBC statistics, they appear to be crucial for establishment leve) 
investment dynamics. 

A f eat.ure of the <lat.a which has been believc<l to have import.anl. implicatious 
for aggregat.e investment dynamics, is that t.he fraction of plauts going through 
large investment episodes is positively correlated with aggregate investment {see 
Doms and Dwme l10], and Cooper, Halt.iwanger an<l Power [71). Table 4 report.s 
(for t.be diíferent. economies) the correlations with aggregat.e invest.meut. of: 1) 
the fraction of planLs with investment rates great.er than 20%. and 2) t.he average 
investme11t rate among piants with investment. rates great.er tl.ian 20%. We see 
that. for economies with low irreversibilit.ies, t.he fraction of plants making large 
capital adj11stment. is uncorrelated with aggregat.e invesLment, wlúle the average 
investmenl. rate of those making large adjnst.ment is posit.ively correlat.ed. The 
opposite is trne in economies wit.h large irreversibilities, bringi11g t.hem closer to 
;,.c:.1,a.i dar.r. in tlús dimensiot!. Since ali t.hese economies look simi lar in t.erms 
o: t.heií RBC st.at.istics we conch1de t.his feat,m e <loes not. necesarily have majar 
impiications for aggregate dyn:imics. 

As a matter of fact, the importance of plant. leve) non-linearit.ies for aggregate 
-l_vn.1mics has not. been empbasize<l in t.erms of the standard RBC statistics. Ca­
ba!k:-o an<l Engel l5] a.11d Caballero, Engcl an<l Hal tiwanger [6] have stressed that. 
fo¡· a give1: sequence of shocks, their statisticai models keep tra.ck much bet.t.er of 
actuai aggregate investment. w!1en 11on-linear plant. leve} adj11stment.s are allowed 
for. They report t\rnt non-linearities are particnlarly importé!,nt in periods of large 

1º T lús is dueto the fact that only two (positive) idiosyncratic shocks are considcred, and that 
they a.re very persist.ent. 
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departures of aggregate investment from its mean, being able t.o general.e brisk 
expansions and (t.o a lesser extent) sharp contractions. Figure 3 explores this ar­
gument. lt reports the histograms for the deviations of aggregat.e invest.ment from 
trend across al! realizations, for the economies with q = 1 ancl q = O. We see from 
the pictnres that investment irreversibility at the plant. leve! <loes not generate 
noticeable asymmetries nor lumpiness in aggregate investment behavior. Figure 4 
goes one step further. It reports the realizations of aggregate investment for these 
two economies, which arise from feeding into them tbe empírica] realization of 
Solow residuals for the period 1960: 1 to 1993:4. 11 We observe that the time series 
for aggregate investment originated by t.he economy with large irreversibilities is 
virtually identical to the one generate<l by the economy wit.h perfectly reversible 
investrnent. 

FinaUy, Figure 5 shows the impulse response functions for out.put (Y), co11-
sumptio11 (e), invest.ment (1), and labor (17) t.o a one-t.ime aggregat.e productivit.y 
shock of one standard deviation, wlúch correspond to the economies with q = 
1 and q = O. lt shonl<ln 't be surprising by now that. they look alruost. exactly 
the same: t.he business cycles generat.ed by economies with <lifferent. degrees of 
irreversíbili ties are extremely similar. 

We'll uow give a closer look to t.hc lack of aggregat.e asymmet.ríes associat.e<l 
with investment. irreversibilities. For the economy wit.h q = 0.99, Figure G shows 
the impulse response of the capital support. of t.he distrib11tion x, t.o a one-t.imc 
aggregat.e pro<l11ctivir.y sÍ1ock of one standard deviation, st.arting from thc stea<ly 
st.at.e snpport. ( t.he st.eady stat.e capital dist.ribntion x· is displayed in Figure ,) .1~ 

We see that. in response to a posi ti ve shock, the thresholds a( 1), A ( 1) a:id a( 2 J 
increase on impact, continne to increase for a nmnber of periods and event.1m!I:· 
decrease, ret.urning gra<lually to their steady state levels (not. shown). lnstead, 
the capi t.al levels pert.ai1úng to t.he range of inactivi t.y bet.ween a( l ) and A ( l ) ar<:' 
not. affect.e<l on impact. They foUow the same dynamics as the 11pper thresliold 
A(l) b11 t. with a lag, wlúch depends on t.he number of perio<ls it. takes A(l) t.o 
depreciat.e to the corresponding capit.al level. Note that. the support. of the disr.ri-

l l There are 136 perio<ls of observations for the Solow rcsiduals. In this experi111ent, the distri­
bution across establishment types is inititali.zed to be the deterministic stead~· state distribution. 
Then, 13G periods are generatecl from the model ecor.omy but only the last 8;; ;.icrio<ls are re­
poned in the figure . As a consequence, the effects of initializing with tl,e detcrministic stea<ly 
state d:stribution vanish cut. 

l
2We chose to show the behavior of .the µ,conomy with q = 0.99 over those wich a smt1.Her q, 

sincc it ha., él. relatively small capital supp.ort (siruplif::ing th¡: íigures considerabiy). However, 
similar patterns can be fow1d in the other economies. 
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· bution responds symmetrically to positive and negative shocks. Since the state of 
the economy behaves symmetrically, it. is not. surprising tliat the business cycles 
generated by these shocks will inherit. similar features. 13 

l t seerns safe to conjecture that. this symmetry would be lost. if aggregate shocks 
had an ( empirically implausible) large variance. To be concrete, let. consi<ler how 
the largest point in the capital support wonld respond to a large negative shock, 
starting from its steady state value a• (2). Suppose tliat the shock is so low that. 
the threshold a(2) decreases on impact below (1 - ó)aº(2). The highest point in 
the support. would then become (1 - ó)aº(2), since it wonld fall in the range of 
inactivit.y de.6.ned by the new value of a(2). What is important. to note is that 
negative shocks of larger magnitnde would generate no further effects on impact, 
since (1 - ó)aº(2) would still fall in a range of inactivit.y. On tbe contrary, there 
would be no counterpart to this lack of further respons iveness when shocks are 
positive. If a positive shock clrives a(2) above (1 - ó)aº(2), the h..ighest. point in 
the support. would always jump on impact. to the new value of a(2). This woul<l 
be trne no mat.ter how large the positive shock is. 

Figure 8 illustrates these ideas by showing t.he impulse responses of t.he liighest. 
point in tlle capital support to one-time aggregate shocks, ranging írom oue to 
tweut.y standard <leviations in magnit.11<le. 14 Let. consi<ler the responses in period 
one to each of these shocks. We see that. when shocks are negative, the largest. 
-:apir,al leve! in t.he support. moves t.o smaller values as the shock becomes larger. 
However , once the shock reaches fift.een standard deviations , i t. stops responding t.o 
farther shocks. On the contrnry, whcn shocks are positive, this capital leve! always 
moves to higher val 11es as the shoc!, get.s larger. This pat.tern of res pon se opens 
:nt.e;esting possibilities fo;- thc crcuticn of asymmet.ries in aggregat.e fl11ct.uat.ions. 
ln part.kular, i t. snggest.s that. aggregatc investment. wonld ten<l t.o decrease slowly 
in rt>s¡,onse to large negát.ive shocks, an<l increase sharply in response to large 
positive shocks. 1~ 

13St1ctly zpeaking, describing the response of the capital support is not enough. The nuruber 
oí estal;!ishme::t.s at each of these capital Jeveis and idiosyncratic productivity shocks shoulJ 
aiso ~e considered. However , at ruiy point in time, the number of establishments at el\Ch of thcsc 
capi~al l.:vels can be read <liiect\y from the corrP.sponding point in the steady state distribution 
in Fi(:me i. The reason is that the process for t he idyosincratic shocks is exogenous and the 
paths illust rn~ed in Figure 6 do not cross. 

l ◄This figure is <lr,Hvn onl~· for hcuristic purposes. lf shocks were as !a rge as those shown, the 
!inear quadrnlic aproximation performt!,:; in t he paper would probably b t of poor quality. 

15h shoul<l be clear thal o(l) woul<l ~cnerate ::-imilar asymmetries, sincc il would mimic lhe 
behavior oí a(2). The analysis wot:ld be somewhat more complicated lhough, sine.e capital levei~ 
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In view of these argurnents, we must. view the lack of asymmetries the theory 
preclict.s as a.rising purely from mcasurcment.. MeasmeJ solow resi<lnals are 1101. 

variable enough for invest.rnent. irreversibilit.ies t.o creat.e asymmet.ries in aggregat.e 
business cycles: the associated fluctuat.ions in capital thresholcls are too small 
compare<l with the drift introduced by depreciation. 16 

A. Appendix 

Trus appen<lix describes t.he algorithrn 11se<l t.o compute the st.eady state of the 
deterministic version of the economy. We will show that. the probleru is re<luce<l to 
solving one equation in one unknown ( after t.he relevant. s11bstitut.ions have been 
rna<le). First, it must be notice<l that. (similarly to the neoclassical growth mo<lel ) 
the steady state interest rate is given by: 

. 1 
1 + t = -

f3 
(A.l ) 

Fixing the wage rate at an arbitrary val11e w, the val11e of the different. t.ypes 
of establishment.s ( as a fnnction of w) can be obtaine<l by solving the following 
f unctional eq11ation: 

J(k. s; w) = M AX { s k8n"' - wn - [k' - (1 - 6)k] Q [k' - . (1 - 8) k] 

in the lowcr portion of the rangc of i.nactivity would be affected by large fluctuotions in a(l ). !n 
particular , thcse points would collapse into a(l) under sufficiently large increases in a(l1. but 
will not be affcclcd whcn a( 1) decreu.ses. This cffoct would lend to rcinforce the o.~ymmc tries 
described auovc. 

The behavior of .4( 1) stiems to work again_st. thcsc orgumer.t.s . The copilal levcls in the uppc~ 
portion of thc range of inactivity would collnpsc into A( l ) undcr n su!ficiently is.rge de~rcase 
in A(l), bu t will not be affected when A(l) increo.ses. Howevcr, when q becomes less tlian 0.9 
the ranges of inactivity overlap 011d no establishment has a capital level close to A( 1 ). For 
these higher dcgree of i.rreversibilities, the behavior of A(l) becomes irreleva1:t for ag.,crregate 
fluctuations. 

16 Actually in none of the s imulations reportecl , the rate of chru1ge oí th;esholcl~ ever exceecled 
the rate of depreciation. This result i~ closely rclated to Dow and Olson !ll ). They íoun<l that 
i11 the renl business cycles modcl of llansen jl4j, aggregate irrcversibili~ies p!1:y no roie s ince 
productivity shocks are not variable enough to m ake the non- ncgativity cc>,.:;tr.1111t in ag.i;:rcgnle 
investment uincling. An important diffcrence i11 t.his papn ji; thal plant lcvel ir!.?''er,¡:,¡¡¡t i~ d\.) 
bind. However, they bind <lue te the !\mouut .j[ idi0syncra~ic risk tha:. estabüsiim.ir.t.l: fo.ce, :,ut 
because of the level of aggregate uncertninty in die cronomy. Aggregate prociuctivit.r s h0cks 
play only a minor role. 
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- ------- - - - - -----------

(A.2) 

The solution l:o this problem ;s comput.e<l using st.andard recursive metho<ls. 
Note thl).t t.he solution to this problem also gives the decision rules n(k, s; w) and 
g(k, .:;; w) as a function of w. 

Given :\ w and tbecorresponding g(k, s; w), a measure x(w) across productivit.y 
shocks and capital levels can be obtained from the law of motion for x: 

x (B,s'; w) = J 1r (s, s') dx(w) + v ip (s') X (O E B) (A.3) 
(k,s):g(k,~;w)EB 

In practice, this is solved by iterating on th.is law of rnotion starting from au 
arbitrary irtltial guess for x(w). 

Once a x(w) is obt.ained and given the previons n.(k, s; w) and g(k, s: w) fo1md . 
we can solve for the corresponding consurnption c(w) irnplied by the feasibilit.y 
conclition: 

c(w)= j sk9n(k,s;w)7 -[g(k,s;w)-(l-ó)k] Q[g(k,s;w)-(1-ó)k] dx(w) 

+ j (1 - ó) g (h , s; w) q r. (s. O) dx(w) (A.4) 

A wage rate w corrcsponds to the st.ea<ly st.at.e value if the marginal rate of 
substitution between co11s1unpLion au<l lei~1u·e is satisfied. i.e. : 

w 
c(w) = - (A.5) 

o 
This is one eq11at.ion in one unkuown an<l is solved using standard root finding 

methods. 
The actual computer irnplementation of th.is algoritlun requires working with 

a frnite grid of capital levels. In aU experiments reported in the paper, the nwnber 
of grid points were between 1,000 and 1,800. 

B. Appendix 

Tlús appendix shows that, when the planner's problem (3 .14) is solved by L-Q 
m ethods, carrying a finite h.istory of thresholds (a,, At)¡==I in the state vector leads 
to exactly the sarne solution as carrying an in.fi.nit.e h.istory. 
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Define h t.o be the vector [ z, 1J , ( ac I Ac) 1 ( ª" Ac): 1), aucl h • thc correspondiu~ 
<leterministic st.eady st.at.e values. Let r(h) = In le (h)J- ar¡ be tite return f1mctio11 
to thc Social Plarmer's Problem (3.14). Following Kydlan<l and Prescott !13], t.h~ 
quadratic approximation to r(h) is given by: 

R(h) = r (h.)+ b' (h - h.)+ (h - h• )' Q (h - h.) (B.1) 

where the elements of b an<l Q are given by: 

r (hº + h;) - r (hº - h¡) 
b; = ----2-h¡-----

r (hº + h;) - r (hº) + r (hº - h;) - r (hº) 
q;,; = 2h2 

' 

(B .2) 

(B.3j 

r (hº + h; + hi) - r (hº + h; - hi) - r (hº - h¡ + hi) + r (hº - h¡ - hl) 
q¡ .j = -------------------------

8h;hj . 
(B.4) 

and where h¡ is a vector with all componeut.s equal to zero, except. for its ith 
cornponent. which is equal to h; > O, a smaU nwnber. 

To simplify notatio11, we'll assume that. the idiosyncratic shock s t.akes val11e; 
l and 2. lo addition, we'll suppose that. (1 - ó)a º (2) < Aº (1) , where (a°, A· ) 
are steady st.at.e values. 17 Noting t.hat a· (1) < a• (2) , define J to be the smallest 
natural number such that: 

(l. - óf a· (2) < a· (1) (B.5) 

Suppose that T > J + l. We'll show that. the coefficient.s of b and Q corre­
sponding to the thresholds ( a1 , A1);=J+'2 are aU equal to zero. Before we procee<l, 
il. will be useful t.o show two Lerrunas. 

Lemma B.l. T lie capital support for tlie steady state measure x · is: 

(B.G) 

17The other case can be handled along similar ünes. 
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Proof. Since estabüshments a(e borned with k = O, we know that {O} C J( · . 
Depending on their current productivity shock s, establislunents with k = O 

chose k' = a· (s). lt follows that {O, a· (1) , a· (2)} e I<º . 
We'll proceed by induction. Suppose tlmt J(· inclncles the set: 

(B.i) 

for sorne N (zero or natural) such that (1 - ó)"' a• (2) > a· (1) . V,íe'll show tbat: 
(1) if (1 - ó)"'+1a• (2) > a• (1), then Kº includes the set: 

J{N+I = J(N U { (1 - Ó)N+la• (2)} (8.8) 

(2) if (1 - ó)N+la• (2) $ a• (1), then J<• = I<N . 
Case 1: S11ppose t.hat (1 - ó)N+la• (2) > a• (1 ). 
An establishment. of t.ype (k, s), with k E I<N, will chose k' as follows: 
(i) Suppose that. s = 1: 
If k $ a· (1), then k1 = aº(1). 
If k = (1 - ó)i a º(2) for sorne O $ j ·s N, then a º(l ) < (1 - ó)k < Aº(l) . l t. 

follows that k' = (l - ó)i+la• (2) . 
Not.e that for k = (1 - ó)N aº (2): k' = (1 - ó)N+la• (2) rf: J(N· 
(ii) S11ppose that. s = 2: 
For every k E J<,..,. : (1 - ó) k < a º(2). Hence. k' = a º(2) E I<N. 
Since J<.:,-.., e 1<", (i) ancl (ii) imply: KN+J = I<N U {(l -ó)N+1a· (2)} e!<". 
Case 2: Suppose that (1 - ót+1a· (2) :So." (1). 
The analysis i11 case 1) upplies , except. for J: = (1 - ó)"' a• (2) and s = l. We 

now have that. (1 - ó) k $ aº (l) and consequent.ly, that. k' = a · (1) E /\·,, .. l t 
follcws that. J(N = !( • 11 

Lc:L { x:•} for l = T, T - 1, ... , O, be the sequence of measmes which satisfies 

equation (3.2 1) for the history of t.hresholds (a,, A);=I give:11 in h. More precisely: 
(i) xg. = x' 
(ii) for t = T, T- 1, ... , 1, x:•_ 1 is given by: 

x~_ 1 (k', s'; = L íi (s, s1
) x~(k, s) + v íj} (s') \' (k' = O) (B.9: 

(k ,J)EKr xS:!J~ (lc,s)=I:' 

where: 
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gt(k, s) = at(s), 
= At(s), 
= (1 - ó)k, 

if (1 - ó)k < at(s) 
if (1 - ó)h > A,(s) 
otherwise 

and Kt is the (finit.e) capital support. of xl'. 

(B.10) 

Noting t.hat. we'll be int.erested in histories of the form h = h' + hi, we can 
now proceed to our next Lemma. 

Lemma B.2. Let h = hª + h;. Suppose that i corresponds to a Jower tbreslwld 
aj(2), wliere J + 1 < j s T. Suppose tlw.t for some 1 s t s J , xj_t is given by: 

Then , 

x7-t ((aª(2) +h¡)(l -ó)'-1,s) = x• (a'(2)(1-ór- 1,s) 
xJ_, (a"(2)(1-ó)t- 1,s) = O 

x7_,(k,s) = x'(lc,s), for every otber k 

1) if a"(2)(1 - ó)t < a"(l): xh_1_1 = x·. 
2) if a'(2)(1 - ó)' 2 a'(l), xJ_,_1 satisnes: 

x;_,_ 1 ( (a"(2) + h¡)(l - ó( s) = x'(a'(2)(1 - ó( s) 

x~'-1_ 1 (a'(2)(1- ó)'.s) = O 

íor every other h 

Proof. Not.e that. g~'-t = g·. Then, x;_t- i is given by: 

(B.11) 

(B .12) 

x~•-t-i (k',s') = v¡/J(s')x(k'=O)+ ¿ r.(s,s')x"(h.s) 
(k,J)E {f( • \ { a• (2)( l -6) 1- l) ) x S:9' (k,J)=k' 

+ 1r (2,s') xJ_t ((a'(2) + h¡)(l - ó)t-i ,2) X (k' = g' ((a'(2) + h;)(l - ó)1
-

1,2)) 
(B.13) 

Also note that x· satisfies: 
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x"(k',s')=v1/J(s')x(k'=0)+ ¿ ?T(s,s')x*(k,s) 
(k,3)E (J( • \ {a• (2)( 1-6)1- 1 }} xS:g' (k,3)=k' 

+ 7r(2,s')x" (a*(2)(1-ó)1
-

1,2) x (k' = g· (a•(2)(1- ó)'-1,2)) (B. 14) 

Since h; is small: a•(2)(1- ó)1 < (a•(2) + h;)(l - ó)' < a"(2). Thcrefore, 

g· ((a"(2) + h;)(l - ó)'- 1
, 2) = g' (a'(2)(1 - ó)'- 1

, 2) = a*(2) (B.15) 

From (B.11) and (B.15), it follows that the last term in (B.13) is identical to 
the la.st term in (B.14). 

Case 1): a*(2)(1 - ó)1 < a•(1). 
Since h; is small: a"(2)(1 - ó)' < (a•(2) + h;)(l - ó)1 < a*(l). Therefore, 

g' ( (a"(2) + h;)(l - ó)'- 1
, 1) = g' ( a '(2)(1 - ó)1

-
1

, 1) =· a"(l) (B. lG) 

From (8 .11) an<l (B.16), it. follows tlmt. tite third term in (B.13) is idenlical to 
the :hir<l term in (B.14). Hence, x~_,_ 1 = x ' . 

Case 2) : a' (2)(1 - ó)' ~ a•(1) . 
Not2 t.hat.: a ' {l) ~ a'(2)(1 - ó)' < (aº(2) + h¡)(l - ó)'. Therefore: 

g' ((aº(2) + h;)(l - ó)' - 1
, 1) = (a.(2) + h;)(l - ó)' (B.17) 

g· (a'(2)(1 - 8)1
-

1
, 1) = a'(2)(1 - ó)' (B.18) 

¡,_) Suppose that. ·k' f:. {(a*(2) -:- h;)(l - ó)', a*(2)(1- 6)'}. 
':::'hcn, the third terms 01 botli (B.13) and (B.14) are equal to zero. lt folloY:<: 

I ·¡,~•· -" (/· s) - x• (k s) •• c.. ,,. --"' j -t-1 \ "'1 - ' • 

ti) Suppose that k' = a"(2)(1 - ór 
':!'hen, ali terms in (B.13) are zero. It follows that.: x1_,_1 (a' (2)(1 - ó)', s) = O. 
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e) Snppose that k' = (aº(2) + h;)(l - ó( 
From (B.13) it follows that x~_1_ 1 (k', s') is given by: 

1r ( 1, s') x;_1 ( (a. (2) + h¡)( 1 - ór-1 , 1) X ( k' = g· ( (a' (2) + /t¡) ( 1 - ó)1
-

1
, 1)) 
(B.19) 

Note from (B.14) that x• (a'(2)(1 - ó)1
, s') is given by: 

n ( 1, s') x' (a· (2)( 1 - ó)1
-

1
, 1) x (a' (2) ( 1 - ó)1 = g" (a· (2)( 1 - ó)1

-
1

, 1)) (B .20) 

From (B.11) , (B.17), (B.18), (B.19), and (B.20), we have that: 
x~•-,_, ((a'(2) + h¡)(l - ó)t, s) = x ' (a'(2)(1 - ó)1

, s). ■ 
We are now ready to proceed to the main result. of this appendix. 

P roposition B.3. Let i > <lim [ z, 7J, (aC, Ac) , (ai, A1){,:/). TJien, 16 

b, = q¡; = O (B.21 ) 

Proof. From equations (B.2) and (B.3), it slúfices to show tbat: 

Let h.= J¡· + /{ We'll prove t.hat. r (h) = r (h ' ).19 It. will suffi.ce to show tiiar 
:;;~• = x' . To see why, suppose tbat. x~ = x·. Since i corresponds to a capit.ru 
threshold more than one period i11 t.be pa.st: (a1. A¡) = (G'. A'). Equation (B.9) 
t.he11 implies t.bat. x~ = x• . Sinc.e (oc.Ac) = (a' , A') and 7J = 11', equation (3.18) 
impiies t.hat. botb h an<l h • lcad to ider1tical consumption levels. 

Assume w .l.o.g. that i corresponds to some lower threshol<l ªJ (s), for some 
period j (where J + 1 < j ~ T) an<l sorne shock s.20 Since (a,, At) = (a·, Aº ), íor 

18 For reasons of space, we will omit the prooí that 9i,J = O for every j. Such a prooí would 
follo,,· similar arguments as here. 

19To show that. r (lt -hi) = r(lt') is exactly analogous. 
20 lf i corresponds to some upper threshol<l. it would be easy to show that x~ = x· . The reRSon 

is that the <leterministic capital support !(' is finite , contains no upper thresholds a.ud /¡' is 
small. Making small perturbations to an upper threshold will not aflect the actual investment 
of any steady state establishment. 
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every t such tha.t. j < t:::; T, it follows that xj = x'. We'll procee<l t.o fü1<l x~'- 1• 

Note that: (i) gJ(k, s) = g'(k, s), for every k an<l every s -/- s, an<l (ii) : 

gJ(k, s) a'(s) + h., if (1 - ó)k < a' (s) + h¡ 
= A"(s) , if (1 - ó)k > A'(s) (B.23) 
= (1 - ó)k, otherwise 

Then, x~_1 is given as follows: 

x;_1 (k' , s' ) = v 7/;(s') x(k' = O)+ ¿ ;r(s.s') x"(k,s) 
(k,.s)EJ( • x{S\{•}) :g"(k . .s )=k' 

+ ¿ r, (s, s') xª(k, s) (B.24) 
kEK":g7(k,,)=k' 

Also, not.e that x · sat.isfies: 

x· (k' , s') = v ,p (s') X (k' =O) + 

+ 
(k,.s)EK" X {S\ P} }:g"(k,.s)=k' 

1r(s,s1
) x"(k ,s) 

1T ( s, s') x • ( k, s) 

(B.25) 

Noticmg t.hat. (B.24) an<l (13.25) difier only in t.heir t.llir<l terms. we 'll procee<l 
to characterize x~'_ 1 in t.erms of x •. 

Case 1): k' < a'(s) or k' > a'(s) + h, . 

Since h, is small : { k E ! ( ª : g~'( h, s) = h'} = { k E J( · : g" (k , s) = h'}. Hell(;e, 

the third terms in (B.24) and (B.25) are t.Jie same. Conseq11eutly, x~'-i (k' , s') = 
:;; ' ( k', s'). 

Case 2) : a.' (s) < k' < a'(s) + h, : 
FirsL. not.e that.: {k E J( · : g;' (k,s) < a' (s) + h;} = 0. Since a' (s) E J( ' a11d 

J<· is fiuit.e, h; can always be clioseu small i:nough so t.liat. no k' in t.he int.erval 
(a"(s),a"(s)+h;) belongs to J( " . It. follows tlint.: {J.:E !(' :g'(k.s) =k'} = 0. 
Consequently: x~_ 1(k' ,s') = x'(k',s'). 

Case 3): k' = a' (s) 
Note that: { k E K ' : g¡(k, s) < a' (s ) + h;} = 0. Therefore-, the third t.erm in 

(B.24) is iero. Since a"(s) > O, i!. follows t.hat. t.he first. tern: in (B.24) is zero. l.J1 
wbat follows, we'll argue that. th~ secon<l t.erm in (B.24) is ulso zero. 
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Suppose first that. s = l an<l s = 2. Then, for every k E J(·: g·(k,s ) > 
a· (s) = k' 

Suppose now that s = 2 and that. s = l. Suppose t.hat. t.here exist.s a h E I< ' 
such that. g' (k, 1) = aª (2). Then, it. m11st. be true that k = ;;~~~ E J( ' . A 
cont.ra<liction. 

It follows that: {(k,s) E J(· x {S\{s}}: g' (k,s) = k'} = 0. 
Therefore, xj_ 1(a'(s),s') = O. 
Case 4): k' = a•(s) + h;: 
Case 3) showed that: 

{(k ,s) E JC x {S\{s}}: g' (k,s) = a' (s)} = 0 (B.26) 

Using identical arguments as in case 3), we can also conclude that: 

{(k,s) E g· x {S\{s}}: g" (k,s) = a*(s) + /1-i} = 0 (B.27) 

Not.e that, since h; is small and J(' is finit.e: 

Also, since a'(s) + h; > a· (s) > O, we have that: 

X (a' (s) + h, = O) = X (a"(s) = O) = O (B.29) 

From equat.ions (B.24), (B.25),(B.26), (B.27), (B.28), and (B.29), it. follow::: 
ti t . h ( • (- \ ' I I) • ( • (-) /) . la . x J _ 1 a s J , t,, s = x a s , s . 

from en.ses l} t.hro11gh 4), we conclu<le t.hat for every s': 

x~'- 1 (aº(s) + h;, s') = x' (a"(s), s') (B.30) 

x~_ 1(aº(s),s') = O 

x~_1 (k, s') = x· (k, s'), for every other k. 

If s = 2, Lernrna B.2 applies (for t = 1). lt. follows t.ha!. x~-J-I = x ·. Since 
(a1,A) = (a•, A•) for t = 1, ... ,j- J - 1, we have that x~• = x· . 

Suppose that s = l. We'll show that. xJ_2 = x·. Since 9j'_1 = g·, then: 

------ --- - ----· - ·- .. 



1 ~ 

f 
; 

' J 

xJ_2 (k', s') = v 1/J (s') X (h' =O)+ ¿ ;r (s, s') x"(k, s) 
(k,s )E { K• \ {a•(:;))} x S:9' (k,•)=k' 

¿ r. (s, s') x~_1(aº(s) + h., s) x [g" ((a"(s) + h., s)) = k'] (B.31) 

Note that xj_1(a"(s) + h¡,s) = x'(a"(s) ,s) far every s. Tlien sulliccs t.o show 
that. for every s: 

g' (a'(s) + h¡ ,s) = g' (a'(s) ,s) 

Consi<ler firs t that s = s = l. Since h¡ is small, we have tliat.: 

(1 - ó)a'(s) < (1 - ó)(aº(s) + h;} < aº(s) 

Then, g' (a'(s), s) = g" (a"(s) + h., s) = a"(s). 
Suppose no,\· that. s = 2 (an<l s = 1). Si11ce h, is small: 

(1 - ó)a'(s) < (1 - ó)(a'(s) + h; ) < a'(s) 

(B.32) 

(B.33) 

(D.3.J) 

Then, g' (a'(s), s) = g' (a"(s) + h;, s) = a'(s). 
Therefore, x~'-2 = x'. Since (a1,Ai) = (a",A' ) for l = L ... ,j - 2, it. follows 

that. Xi' = x' ■ 
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TABLE 1 
Parametcr Valucs 

;.~ 

1 li q = 1.0 q = 0.99 q = 0.95 q = 0.90 q = 0.75 ¡ q = o.so 1 
q = () .:,íj ii 

t8 1 

1 ¡ 0.99 0.99 0 .99 0.99 0.99 1 
0.99 0.99 i 

1 

1 
1 

e ! 1 

1 
0.2186 0.2 185 0.2179 0.2174 0 .2 173 0.2172 ! 0.2 l 6S ! 

1 

1 1 

1 
0.64 

1 
0.64 0.64 

1 1: 1 y 
1 

0.64 0.64 0.64 0.6.; 

i 
1 

1 

1 i 
I' 

ó 1 0.02206 0.02184 0.02]6:; 0.02146 
1 

0.02066 0.01914 O.O 16:: li 
1 

1 0.94 0.94 0.94 a 
i 

0.94 0.94 0.94 0.94 
1 

1 

1 
\' i 7.257E-5 7.260E-5 7.257E-5 7.273E-5 7.278E-5 1 7.280E-5 7.287E-5 

1 
\ji( 1) 1 0.5 0.5 0 .5 

1 
0.5 0.5 0.5 

1 
0.5 

1 i 

;... 1 1.1 1 ~ 1.127 l.l 95 1.208 1.210 1.213 1.220 

4> \ 
0.92 0.92 0.92 0.92 0.92 0.92 0.9: 

1 ( 
¡ 

0.00593 0.00593 1 0.00593 0 .00593 1 0.00593 ! 0.00593 
1 

0.00593 
i 1 ' 

f-+-1¡ 0.95 0.95 
1 

0.95 0.95 0.95 0.95 
1 

0.9S 

1 \ 

0.0063: 
1 

0.0063: 0.0063: 
1 

0.0063: 0.0063: 0.0063: 
1 

0.006:3: 

31 

- l ----------



TABLE 2 
U.S. an<l bcnchmark fluctuations 

l □ 
U.S. Economy (60:1 -93:4) Reversible lnvestmcnl Econom~· 

Std. Deviation Correlation Std. Deviation Corrclation 

Output 1.33 1.00 1.41 1.00 

Consumption 0.87 0.91 0.49 0.91 

Investment 4.99 0.91 7.09 0.98 

Capital 0.63 0.04 0.51 0.08 

Hours 1 
1.42 0.85 0.98 0.9S 

! Productivity 0.76 -0.16 0.4Q 0.Q) 

~-- - -- . ----------------------------------· 



TABLE 3 
Dusincss cyclcs :1cross cconomics 

Sl:m<l:ml Dcvj:ilions: 

í 11 
' 1 1 ! q = o.oc•l\ q = 1.0 q = 0.99 q = 0.95 q = 0.90 1 q = 0.75 q = ü.50 

Ou1pu! 1.41 1.40 1.39 1.39 1.39 1.39 1 1.39 

Cons. 
1 

0.49 0.50 0.51 0.51 O.SI 0.51 i 0.5~ 
1 

lnveslm. 7.09 7.01 6.89 6.85 6.83 6.83 
1 

6.8:2 

Capi1a! 0.51 0.50 0.49 0.49 
1 

0.49 1 0.49 1 0.48 
1 

1 

Hours 0.98 0.97 0.95 0.94 0.94 0.94 0.94 ¡, 

Produc\. 
1 

0.49 0.50 O.S 1 O.SI 0.51 0.51 0.52 ! 

Corrclation~ wilh Outp ut: 

1 ¡: q = l .Cl 1 q = 0.99 1 q = 0.95 
1 

q = 0.90 1 q = 0.7~ 1 q = O.SO 1 q = (J _{)(l ji 

1 Ou1pul 1 1.00 1.00 1.00 1.00 1.00 
1 

1.00 l.Oü 
'. 

¡ 1 
1 

Cons. 
1 

0.91 0.91 0.91 0.91 0.91 0.91 0.91 1: 

i 
1 

lnvcs1m. 0.98 0.98 0.98 0.98 0.98 0.98 0 .98 i 
1 

Capital o.os 1 0.08 O.OS 0.08 o.os O.OS 0.08 ¡ 

' 
Hours 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

¡ 

1 

Product. 0.91 0.91 0.91 0.92 0.92 0.92 1 0 .92 1 
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TABLE 4 

Corrclalio11s wilh 11: 

1 

Mo<lel 

1 

rraclion o[ plalllS with A vera ge i/k across planls 
i/k > 0.20 with i/k > 0.20 

i 
q = 1.00 0.00 0.75 

q = 0.99 0.01 0.61 
1 

q = 0.95 0.49 -O.O, 11 

1! 

li 

q = 0.90 0.39 -0.12 

1 
' 

q = 0.75 0.38 -0. 13 1 

' 1 

q = 0.50 0.36 -0.15 

' 
1 

q = 0.00 0.31 -0.17 

. 1 

' j 
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FIGURE 2 
Investment Rate Distributions 
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FIGlTRE 3 
Distributions of Investment Deviations from Tren el 
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FIGURE 4 
Realizations of Aggreg::ite Investment 
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FIGURE 5 
lm pulse Response Functioas 
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FIGUIIB G 
Impulse Response-Capital Suppo rt 
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FIGURE 7 
Steady Sta te Capital Distribution 
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FIGURE 8 
Impulse Responses - Highest Point in Support 
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