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SUMMARY 

This paper presents a new rnethod to identify influential subsets in linear regression 
problems. The procedure uses the eigenvalues of an influence matrix which is defined as the 
uncentered covariance of a set of vectors which represent thc changes on the fit produced 
by the deletion of each point. This matrix is normalizecl to include the univariate Cook 's 
statistics in the diagonal. It is shown that points in an influential subset will appear 
with large weights in at least one of the eigenvectors linked to the largest eigenvalues in 
this influence rnatrix. The rnethod is illustrated with se~eral well-known examples in the 
literature, and in all of them it succeeds in identifying the relevant influential subsets. 
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l. INTTIODUCTION 

Many proceclurcs are available to identify a single outlier or an isolated influcntial 
point in linear regrcssion. Deckman and Cook (1983) and Chatterjee and Ila<li (1986) 
survey some of these procedures. The ddcction of influential sttbscts or multiple oulliers 
is more difficult, because the masking an<l swamping problems. t-.fasking occurs when one 
outlier is not detected because of the presence of others; swamping when a non- outlier is 
wrongly i<lentified <lue to the effect of some hi<lde11 outliers. 

Thc proce<lures for clealing with multiple outliers or influcntial subset coul<l be clas­
sified in four groups. The first includes sequential methods which are designed to a,·oid 
the masking proLlem. Marasinghe (1985) and Kianifar<l and Swallow (1989, 1990) have 
suggested a sequcntial testing stratcgy to identify a set of k points, where the maximum 
number of outliers in tlic sample, k, must be fixe<l in a<lvance. The main weakness of thesc 
procedures is to be very sensitive to the choice of k, bccause the exact number of outliers 
is almost never known. The second group of methods are based on extensive checking of 
a large number of subsets, and includes the procedure propose<l by a Cook and \i\'cisberg 
(19S2), among others. Although these metbods are att~active, the computational burden 
involved made them not suited to analyze samples of medium or large size. The third 
group of metho<ls are based on robust estimation. For instance, Rousseeuw and Leroy 
(1987) and Rousseeuw and Zomeren (1990) have suggested to overcome the masking prob­
lem by using robust estimates with high breakdown for the regression parameters. These 
estimates are computed using a resampling scheme. Hawkins, Bradu and Kass (1984) have 
proposed a diágnostic procedure which is also based on a resampling scheme. These pro­
cedures have proved to be very effective in dealing with masking problems, however they 
require extensive computations which become prohivitive when the number; of carriers is 

· large. Finally, the fourth group of tecl~niques try to identify influential subsets by looking 
at the multivariate structure of the data points. Gray and Ling (1984) proposed the use of 
cluster analysis overa modified hat matrix to identify influential sets, and H~cking (1984) 
has suggested to compute the eigenstructure of the matrices X'X and (Xy)'(Xy) where 
y is the vector of responses and the matrix X contains the explanatory variables. 

In this paper we presenta new method to idcntify influential subsets by l~oking at thc 
eip;envalucs of an "influence matrix". This matrix is <lefinc<l as the uncenterc<l covariancc 
of a set of vectors which represent the effect 011 the fit of the deletion of eacl1 <lata point. 
This matrix is normalized to ha.Ye the uniYariate Cook's statistics in the <l\agonal. Thc 
methocl seems to work very well in ali the data sets in which it has been tested. 

The papcr is organized as follows . Section 2 define:; the influence matrix. Scction 3 
gives an heuristic justification of why the eigenvectors linkcd to non- null eigenvalues can 
be used to identify influential subsets. Section 4 applies the procedure to severa! examples. 

2.THE INFLUENCE MATRIX 

Consi<ler a linear regression mo<lel between an indepen<lent variable Y and p carriers 
X 1 , ... ,Xp, and suppose that there aren data points (y¡,:r¡1 , .... x¡1,), 1 :::; i:::; n. 

T he following notation will Le use<l in the rest of. the paper: y = (y1 , ... , y,.)', X¡ = 
(x¡1 , ... ,x¡p)', X is the n. x p matrix with rows x'1, .. . ,x:,, Then accor<ling to the standard 
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linear modcl assumptions, 

y= Xb + (, 
wherc b = ( b1, ... , b,,)' is thc vector of regression coefficients and the vector of rcgrcssio11 
crrors E = (E¡, ... , En)', where the E¡ 's are independent random variables with . distt'ibution 
N(O, a 2 

). 

The least squares estima.te (LSE) of b is givcn by 

the vector of fitted values y = (ij¡, ... , y11 )' by 

y= Xb = Ily, 

where H = X(X'X)- 1 X' is the hat matrix, and the vector of residua.ls e 
1

; (e 1 , ... ,e 11 )' 

~ ! 
e¡= y - Xb = (I - H)y. 

Let b(i) be the LSE when the i-th data point is deleted, then the change in the LSE 
is given Ly (see Cook and vVeisberg,1982, page 110 ) 

(1) 
e¡(X' x)- 1 X¡ 

1 - h¡¡ 

where h¡j is the ij-th element of H. Consequently if we denote by 'Yj(i) the new fit.ted value 
far obserrntion j, we gel 

(2) A A h;jei 
Yi - YJ(i) = l / · 

- t¡¡ 

Masking occurs when there are several influential data points which produce similar 
effect on the least squares fit. In this case, the deletion of just one of them <loes not produce 
much change on the fit, and this explains why the procedures based on single delation fail 
in detecting t his type of influential sets. . 

Put Y(i) = (Y1(i), ... , Y11(i))', then the vector t¡ = 5'- Y(i) summarizes the dfoct 0 11 the 
fit of deleting the obserrntion i-th. 

\Ve will say that two oLscrvations i and j ha.ve similar effects on the least squarcs fit 
when t¡ ~ >.tj for sorne scalar >. > O and opposed effects when >. < O. Then, in arder to 
dctcct possiLle sets of influential obserrntions ha\'ing similar or opposed cffcct on tlic fil., 
it seems plausible to look at the unccnterccl co,·ariance matrix of the t¡'s. Thereforc, ,,·e 
define the n X n influence matrix AJ as thc nonnalize<l version of this covariance matrix 

giYen by (--~ ·. ~,f- . ·_·. . . . I::_¿ _:¡ 
A1 = ~ . ·.- _r¡/IÍ ::· ¿__ ~w fs;l. 

whcre s 2 = I:;~1 e~ /(n - ¡.,). ("- t ;t l ~ {lk. 

3 



Using (2), ami thc fact that H is idem¡;otent it is immecüatc to show that if wc dc11otc 
by T7!ij thc 1j-th elemcnt of M, then 

171jj = 

Since H is a semi positive dcfinite matrix of rank Jl, Af has this property too, exccpt 
when cither sorne e¡ or sorne h¡ ¡ vanishes. Observe that the diagonal elements of 1'.1 are 
thc Cook's statistics. 

3. A PnOCEDURE FOR DETECTING INFLUENTIAL SETS 

Let I be an indcx set corresponding to a subset of data points. Cook an<l \:Veisberg 
(1980) proposed to measure the joint influence of the data points with index in I by 

where ben is the LSE computed after <leletion of the data points with in<lex in J. 
It may be shown that this statistics can be written as 

where the components of e¡ are the least squares residuals and H1 the submatrix of H 
corresponding to thc set J. 

Thcoretical influence curves ( see Hampcl, 197 4) corresponcling f.o infinitesimal frac­
tions of outliers are linear. Since the empirical influence curve is given by the n(b(i) - b )'s 
and it converges to the theoretical one, it seern plausible to use the following linear ap­
proximation when tlic size of I is small rclatÍ\'e to n 

(3) (L - hu¡)~ ¿(b - b(i))· 
iEI 

Usiug (1) a11cl (3) ,,·e get thc following approximation 

(4) D¡ ~ C'¡ = L ¿ nljj, 

iEI jE/ 

Thercforc as long as thc approximation gi\'en by ( 4) holds, one way of detect ing 
influential sets is by scarching large values of C1. This may be done for example using 
integer programming algorithms, howcver this alternative is not further pursued here. 

In this paper we propase a procedure to detect sets I with large C I based on the eigen­
values and eigenvectors of 111. The following limit case will give an heuristic justification 
of the proposed procedure. 
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Let 1·¡j be thc unccntc>rccl correlat.ion cocfiicicnt betwccn t¡ ancl ti, titen 

111 ij 
7'ij = 1/2 1¡2· 

111¡¡ 11ljj 

Suppose that there are l: groups of inílucntial obscrvations 11 , ... , h, such that 
(i) If i, j E h, then lr·¡j I . l. This means that the effects on the least squares fit 

produced by the deletion of two points in the same set h have correlation 1 or -1. 
(ii) If i E lj and l E h with j f. h, then r¡¡ = O. This means that the effects produced 

on the least squarcs fit by observations i and j belonging to different sets are uncorrelat.ed . 
(iii)If i <loes not belong to any h, then r¡j = O for ali j . This means that dat.a points 

outside these groups have no influence on thc fit. Then, according to (i) we can split each 
set Ih in Il and Il such that: 

(1) If i,j E I%, then r¡i = 1 
(2) If i E Il and j E J~, then r ¡j = -1 
Let V1 = (vlJ, .. ,,v1 0 )', ... ,vk = (vk¡, .. . ,l'kn)' be defined by 

mii 

{ 

1/2 

t'hj = -ml_/2 
}) 

if j E Il 
if j E Il 
if j ~ h. o . 

Then it is easy to show that if (i)-(iii) hold, then 

k 

l\1 = L V¡V~, 

i= 1 

and since the v¡'s are orthogonal, this implics that the eigenvectors of 111 are v 1 , . .. , Vk, 

and that the corresponding eigenvalues ,\1 , ... , ,\k are given by 

,\h = ¿m¡¡. 

iE / h 

It is clcar that when the matrix Al satisfies (i)-(iii), the only sets I with large C1 
are I%, 1 ~ h ~ k, q = 1, 2, and these sets may be found by looking at th~ eigenvect.ors 
associated to non-null eigenvalues of Af. ! 

For real elata sets, (i )- (iii) <lo not hol<l exactly. However the masking cffe~t is typically 
_pro<luced by the presence in the sample of blocks of influential observations prÓducing sim­
ilar or oppose<l effects . These blocks are likcly to produce a matrix Aí with a struclure 
close to the one described on (i)-(iii). In fact, two inAuential observations i, j producing 
similar effects should haYe r¡j close to 1, and close to -1 when they have opposecl effects. 
lnfluential obscrvation·s with non correlated effects have lriil close to O. The same will 
happen with non influential obser\'ations. In this case the eigenvectors will have approxi­
mately the structure <lescribe<l aboYe, all(l the null components will be rcplaced by small 
values. 
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This suggcsts the following proce<lmc t.o idcntify iuíluential sct.s: 
( a)Find thc cigcnvectors correspondiug to the p non-null eigen\'alues of the influence 

ma.trix Af. 
(b )Considcr the eigcnvectors corrcsponding to large cigcnvalues, an<l define thc seis 

I} an<l IJ by those components with large positive and negativc weights respcctivcly. 
In Section 4 we apply t.his proccdure to se\'cral exarnples where the methods bascd 011 

individual dcletion foil due to masking effccts. In ali thc cases our procedure succecds in 
detecting the influential sets. 

4. EXAivf PLES 

Example l. This first example is designed to show the interpretation of thc eigen­
vectors of the influential matrix in three simple masking schemes (see table 1 and figure 
1). In the three cases we have eight good points generated by y = 1 + x +. u where u is 
a normal random variable with mean O and standard deviation 0.1 and two high leverage 
points. In case ( a) we have the standard masking scheme in which both outliers produce 
the same effect and one is masked by thc other, in (b) the two outliers produce opposite 
effects, in ( c) we have swamping, t.hat is, the 9- th point appears as outlier because of the 
effect of the 10- th point. : 

Table 2 presents the largest eigenvalue of the influence matrix and the corresponding 
eigenvector in three cases. In case ( a) the largest eigenvalue is roughly three times the next 
one and gives the largest weight to the two outliers. Also the two outliers ha.ve positive 
weight, whereas all the good points ha.ve a small and negative one. Therefor,e, the analysis 
shows the presence of two different sets of points. In case (b) the two outliers are again 
clearly identified: they appear in the eigenvector corresponding to the largest eigenvalue 
with large values and opposite sign, whereas the rest of the points are given ·zero weight. 
Finally, in case (c) thc outlier is given a large and positive weight, whereas ali the good 
points have negative weight, with the greatest value at the good high leverage point. In 
summary, the components of the eigenvector corresponding to the largest eigenvalue show 
in all cases the relevant structure of the data set. 

{figure 1 about here) 

(table 1 a1H! 2 about here) 

Example 2 . As secon<l example we consider the <lata of international phone calls 
in Delgium used by nousseeuw and Leroy (1987). (See figure 2). The largest eigeurnluc 
of the influence matrix is 1. lG, lG.5 times grcat.er than the second one. Its eigem·ector 
(see table 3) gives a \'ery small weight to thc first fourteen good observations, large and 
negative weight to the six outliers and large and positive to the last four good points. The 
secon<l eigenvcctor gives a negative value to the first fourteen data points and a positi\'e 
\'alue to thc rest. ! 

(figure 2 about here) 
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( table 3 a l>ou t. her e) 

In summary, thc eigenvcctors show that tl1crc are 6 outlicrs which bchavc vcry diffcr­
ently from all thc other point.s. lt is int.crcsting to point out tha.t a measure of univariatc 
influence as Cook's D <loes not sl10w any C\'idcnce of influential sets due to thc masking 
effect: the largcst values of this univnriate statistics are rather small (see table (3) ancl 
corrcspond to point 20th, (D = .27) which is an outlier, and point 24th, (D = .22), which 
is not. 

Table 4 includes the va.lues of the multivariate test statistic and the F-value for the 
standard outlier test based on the <lecrease in the residual sum of square ~vhen the su bset 
is deleted (see Barnett and Lewis, 1978, p. 265). As it is well known, ~his F obsened 
value must be compared with the distribution of the maximum F over all ¡sets of the same 
size, and this distribution is unknown (see Beckman and Cook (1983)). However, the large 
value of the F for the set {15, ... , 20} suggests that this set contains ou~liers. Note also 
that this set is very influential. These values are only identified as outliers ,according to the 
F test when the five points are deleted, dueto the masking effect. On the qther hand, both 
sets {15, ... , 20} and {21, ... , 24} are very influential, although figure 2 sho\vs that the first 
includes outliers and the second good high leverage points. The swamping effect appears 
( table 4) in the value of the F statistics for set {21, ... , 24}, due to the presence of t.he outlier 
set {15, ... ,20}. ,vhen this later set is removed, the set {21, ... ,24} is still ;influential, and, 
given the largc value of thc F statistics, observation 21 could be considered an outlier, 
whereas the othcr three points seem to be correct . 

(table 4 about here) 

Example 3. Data of the Hertzsprung-Russell diagram of a star cluster, from Rousse­
euw and Leroy (1987). The data are plotted in figure 3, where four giant stars which 
correspon<l to points { 11, 20, 30, 34} can be seen as outliers. Table 5 shows the components 
of the eigenvector corresponding to the largest eigenvalue. These components are also 
plotted in figure 4. lt can be seen that points 11 , 20, 30 an<l 34 have a common and large 
cffect. lt is also shown that points {7, 14, 17} seem to have sorne effect, specially 7 and 
14, but with opposite dfect than the othcrs (see figure 3). Table 6 shows the valucs of the 
multiple Cook 's D statistic an<l the F. Yalue for different combinations of points in these 
sets. Decause of the rnasking effcct we need to delet.e the four points { 11, 20, 30, 34} in 
or<ler to see its joint effect clearly. The set { 7, 14 , 17} is neither influential nor outlying. 

(figure 3 about here) 

(tables 5 nn<l 6 about here) 

( figure 4 abo u t here) 
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Example 4. Wc will use thc well-known stack-loss data from Daniel nncl Woocl 
(1980). After a dctaile<l search they idcntific<l poinls (1, 3, 4, 24) as outliers. Cook (1979) 
using a sequcntial search foun<l (1, 2, 4, 21) as influential or outliers points. Gray an<l Ling 
using their k-clustering algorithm cndccl up with (1, 2, 3, 4, 21). Finally Roussccuw ami 
Zomeren (1990) also i<lentifie<l thesc fi\'e points. 

Table 7 gives the two largest eigenvalues and the corresponding eigenvectors of the 
influence matrix. The first eigenvcctor is clearly <lominate<l by the 21-th observation which 
receives a weight 3.5 times the next largest onc. The second eigenvector gives largest weight 
to { 1, 2, 3, 4}. Table 8 summaiizes the results of deleting different combinations of these 
points. The most influcntial set is { 1, 2, 3, 4}, which can also be consi<lered a set of outliers, 
whereas point {21} could be outlier, although it is not very influential. 

(tables 7 and 8 about here) 

Example 5. ,ve use here the artificial data generatcd by Hawkins, Bradu and Kass 
(1984). The model contains 75 data points in four dimensions (one response and 3 ex­
planatory variables). The first 10 data points are high leverage outliers, and the next four 
points are good observations with high leverage. The rest of the observations are good 
points with low leverage. 

The eigenvalues of 111 ¡¡,re )q = 2.36, >.2 = 1.63, >.3 = 0.11 and '>.4 = 0.04. The 
cocfficients of the eigenvectors corresponding to >. 1 and -\2 are shown in tá.ble 9 and figure 
5 . 

The first eigenvector gives high positive weight to observations in the set {11, 13, 14}, 
specially to observation 14. Ali these points are good high leverage points. 

Two sets of large coefficients may be distinguished in the second eigenvalue: the 
set{ 1, ... , 10, 14} with negativc coefficients, and the set { 11, 12, 13} with posi tive coefficients. 
Thus, the first set includes ali the outliers and one good leverage point, and the second set 
three of the good high leverage points. 

It may be observed in table 9 that the only large values of the univai·iate Cook's D 
statistic corresponds to good leverage _points, and therefore they do not detect any outlier 
point. 

Table 10 summarizes the results of deleting different combinations <:>f t.hese sets. Both 
sets, I1 = {1, ... , 10} and h == {11, 12, 13, 14} have very large D¡. However, once the 
observat.ions in ! 1 are delete<l the F value far testing the set J~ is not significant .. Instead , 
once the obsen·ations in 12 are delctcd, the set 11 is very influential, and the largc F value 
suggest that their points are outliers. 

(tables 9 and 10 about here) 

(figure 5 about here) 
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case 1 2 3 4 5 6 7 8 9(a) lO(a) 9( L,) lO(b) 9(c) l O( e) 
X 1 2 3 4 5 6 7 8 12 12 12 12 12 12 
y 2.0 2.9 3.9 5.1 6.2 6.9 7.8 9.1 19 20 19 7 13 7 

Table l. Data for Example l. 

>-1 ). 1 / >-2 1 2 3 4 5 6 7 8 : 9 10 
(a) 1.27 2.87 -.17 - .06 -.00 -.00 -.02 -.10 -.22 -.33 .42 .79 
( b) 3.78 3.783 .00 -.00 - .00 -.00 - .00 .00 -.00 -.00 -.71 .71 
( e) 3.25 32 -.05 -.02 -.00 -.00 - .01 -.02 -.04 -.10 -.50 .85 

Table 2. Largest Eigenvalúe, Ratio to the Next one and Eigenvector for Example l. 

1-14. 15 16 17 18 19 20 21 22 23 24 
eigen vector -.002 < V< .07 -.13 - .15 -.20 -.26 -.35 -.48 .21 .34 .38 .43 

Cook D O< d < .01 .02 .03 .05 .08 .14 .27 .05 .13 .17 .22 

Table 3. Elements of First Eigenvector and Cook 1s Statistics for the International Phone 
Call Data. 



sel D F 
{15} 0.03 1.06 

{ 15, 16} 0.12 1.13 
{15, 16, 17} 0.40 1.48 

{15, 16, 17, 18} 1.03 2.20 
{15, lG, 17, 18, 19} 2.61 4.39 

{15,16,17,18,19,20} 6.74 5.48 
{21,22,23,21} 6.93 6.50 

{21} 0.05 0.87 
{22,23,24} 3.32 4.74 

{211{15, ... ,20}} 1.43 130.14 
{ 22, 23, 241 { 15, ... , 20} } 5.39 2.72 

{21, i2, 23,241 { 15, ... , 20}} 0.80. 31.44 

Table 4. Values of Cook's D for Multiple Cases and F Value for the Internatiónal Phone 
Calls Data. Tlie Notation { AIB} Means that Set B is Completly Deleted from lhe 

Anafysis of the InAuence of Set A. 

case 7 11 14 17 20 30 34 
,\ 1 = 1, 05 .20 -.25 .28 .13 -.36 -.47 - .61 

D .04 .06 .09 .05 .14 .23 .41 

Table 5. Eigenveclor Coefficients Greater that .10 and Values of t_he D Statistic for the 
Hertzsprung-Hussell Data of a Star Cluster. 

set D F 
{ 11, 20} 0.68 1.11 
{30,31} 2.22 3.95 

{11,20,30,31} 41.44 11.53 
{7,14} .29 2.80 

{7,14,17} .52 3.75 
{11,20,30,31;13, 14,17} 33.71 7.21 

_Table G. Cook's D Statistic for tvlultiple Cases and F Value for Outliers for the 
llertzsprung-Jlussell Data. 



Case Eigcnvalue Cocfíi cients D 
>-1 = .88 >-2 = .39 

1 - .21 - .51 .15 
2 .12 .31 -
3 -.25 -.42 .1 3 
4 .10 -.50 .1 3 
5 - - -
6 - .18 -
7 - .20 -
8 - .12 -
9 - .22 -

10 - - -
11 -. 15 .10 -
12 -.2 1 .18 -
13 - - -
14 - - -
15 - - -
l G - - -
17 - - -
18 - - -
19 - - -
20 - - -
21 .88 -.1 2 .69 

Table 7. Two Largest Eigenvalues and its Eigen\'eclors and Univuiate Cook's D for the 
Stack-Loss Data. Values with Absolute Value Smaller tl1a n .1 are Omitted. 

se t D F 
{21} .69 11.09 
{ 1, 3} 1. 11 3,43 
{ 1, 4} 0.52 3,60 
{3, 4} .42 4.50 

{1,3, 4} 2. 1 7.3·1 
{1, 3,4,21} 1.49 25.24 
{1, 2,3,4 } 7.98 9.96 

{1 , 2, 3,4,21} 3. 13 24.38 

Table 8. Cook 's D and F Values for t he Stack-Loss Data. 



·-
Case Eigenvalue Coefficients D 

..\¡ = 2.36 ..\2 = 1.63 
1 - .046 -.100 .040 
2 -.076 -.108 .053 
3 -.016 -.118 .046 
4 -.036 -.090 .031 
5 - .0-10 -.105 .039 
6 - .053 -.103 .052 
7 - .092 -.121 .079 
8 -.044 -.121 .052 
9 -.030 -.09S .034 
10 -.020 -.115 .0-17 
11 .15 .297 .035 
12 -.01 .520 .851 
13 . .24 .149 .254 
14 .87 -.138 2.11 

rest lvd < .032 lv¡I < .022 D¡ < .10 

Table 9. Two Largest Eigenvalues and its Eigenvectors and Univariate Cook's D for the 
Hawkins, Bradu and Kass Data. 

! 
i . 
1 . 

set D F 
{11,13,14} 11.03 28.59 

{1 - 10} 33.74 109.69 
{1-10,14} 33.18 98.79 
{11,12,13} 4.97 58.45 

{11, 12, 13, 14} 13.37 181.11 
{l - 10, 11, 12, 13} 37.42 82.79 

{l - 10, 11, 12, 13, 14} · 60.18 76.61 
{11,12,13,141{1-10}} 24.33 0.63 
{1 - 101{11, 12, 13, 14}} 834.89 3.86 

Table 10. Cook's D and F \'alues for the llawkins, Bradu and Kass Data. 
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Figure l. Data for f:x;imple 
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l. The Values are in Table 4 .1.: 
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Figure 2 . Data of Internati onal Phone Calls in Bel9ium 
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Figure 5. Plot of the Components of First and Second Eigenvect ors 
for the Influence Matrix of Hawkins, Bradu and Kass Data. 
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Figure 4. Pl ot of t he Components of Fi rst Eigenvector from Table 5. 


