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SUMMARY

This paper presents a new method to identify influential subsets in linear regression
problems. The procedure uses the eigenvalues of an influence matrix which is defined as the
uncentered covariance of a set of vectors which represent the changes on the fit produced
by the deletion of each point. This matrix is normalized to include the univariate Cook’s
statistics in the diagonal. It is shown that points in an influential subset will appear
with large weights in at least one of the eigenvectors linked to the largest eigenvalues in
this influence matrix. The method is illustrated with several well-known examples in the
literature, and in all of them it succeeds in identifying the relevant influential subsets.

Key words: Diagnostics; Influential Observations; Masking; Multiple Outliers.

Authors footnote. Daniel Pefa is Professor of Statistics, Universidad Carlos III de
Madrid, 28903 Getafe, Madrid, Spain and Victor J. Yohai is Professor of Statistics, Uni-
versidad de Buenos Aires, and CEMA. He is also a Resarcher at CONICET, Buenos Aires,

Argentina. This research was supported by the Direccién General de Polmca Cientifica,
MEC, Grant PB 87-0808.


hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea

hemeroteca
Línea


1. INTRODUCTION

Many procedures arc available to identify a single outlier or an isolated influential
point in linear regression. Beckman and Cook (1983) and Chatterjee and Hadi (1986)
survey some of these procedures. The detection of influential subsets or multiple outliers
is more difficult, because the masking and swamping problems. Masking occurs when one
outlier is not detected because of the presence of others; swamping when a non-outlier is
wrongly identified due to the effect of some hidden outliers.

The procedures for dealing with multiple outliers or influential subset could be clas- -
sified in four groups. The first includes sequential methods which are designed to avoid
the masking problem. Marasinghe (1985) and Kianifard and Swallow (1989, 1990) have
suggested a sequential testing strategy to identify a set of k points, where the maximum
number of outliers in the sammple, k, must be fixed in advance. The main weakness of these
procedures is to be very sensitive to the choice of k, because the exact number of outliers
is almost never known. The second group of methods are based on extensive checking of
a large number of subsets, and includes the procedure proposed by a Cook and Weisberg
(1982), among others. Although these methods are attractive, the computational burden
involved made them not suited to analyze samples of medium or large size. The third
group of methods are based on robust estimation. For instance, Rousseeuw and Leroy
(1987) and Rousseeuw and Zomeren (1990) have suggested to overcome the masking prob-
lem by using robust estimates with high breakdown for the regression parameters. These
estimates are computed using a resampling scheme. Hawkins, Bradu and Kass (1984) have
proposed a diagnostic procedure which is also based on a resampling scheme. These pro-
cedures have proved to be very effective in dealing with masking problems, however they
_require extensive computations which become prohivitive when the number,of carriers is
large. Finally, the fourth group of techniques try to identify influential subsets by looking
at the multivariate structure of the data points. Gray and Ling (1984) proposed the use of
cluster analysis over a modified hat matrix to identify influential sets, and Hocking (1984)
has suggested to compute the eigenstructure of the matrices X'X and (Xy)'(Xy) where
y is the vector of responses and the matrix X contains the explanatory variables.

In this paper we present a new method to identify influential subsets by l_boking at the
eigenvalues of an “influence matrix”. This matrix is defined as the uncentered covariance
of a sct of vectors which represent the effect on the fit of the deletion of each data point.
This matrix is normalized to have the univariate Cook’s statistics in the diagonal. The
method seemns to work very well in all the data sets in which it has been tested.

The paper is organized as follows. Section 2 defines the influence matrix. Section 3
gives an heuristic justification of why the eigenvectors linked to non-null eigenvalues can
be used to identify influential subsets. Section 4 applies the procedure to several examples.

2.THE INFLUENCE MATRIX

Consider a linear regression model between an independent variable Y and p carriers
X1,...,X,, and suppose that there are n data points (yi,7i1,....zip), 1 <i < n.

The following notation will be used in the rest of the paper: y = (y1,...,4a), Xi =
(Zi1y .y Tip)'y X is the n x p matrix with rows x1,...,x),, Then according to the standard
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linear model assumnptions,

Yy =2XDb+e,

where b = (by,...,b,)" is the vector of regression coefficients and the vector of regression
errors € = (€,...,€,)", where the ¢;'s are independent random variables with. distribution

N(0, o2).
The least squares estimate (LSE) of b is given by

= (X'X)"' Xy,
the vector of fitted values § = (g,,...,7,)" by

y=Xb=Hy,
where H = X (X'X)™!' X’ is the hat matrix , and the vector of residuals e = (e1y cesen)
. ei =y —Xb=(I-H)y. |

Let f)(,-) be the LSE when the i-th data point is deleted, then the change in the LSE
is given by (see Cook and Weisberg,1982, page 110 )

o - Ef(JY’X)_lx,'
]. — b g e e P
( ) b (1) 1— hii 2

where h;; is the ¢ 2_] ~th element of H. Consequently if we denote by Uj(i) the new fitted value
for observation j, we get

hise;
9 . T ijCi )
(2) Ui mUit) = T

Masking occurs when there are several influential data points which produce similar
effect on the least squares fit. In this case, the deletion of just one of them does not produce
much change on the fit, and this explains why the procedures based on single delation fail
in detecting this type of influential sets.

Put y(iy = (J1¢i)» -+ Un(i))', then the vector t; = § — y( ) summarizes the effect on the
fit of deleting the observation i-th.

We will say that two observations ¢ and j have similar effects on the least squares fit
when t; = At; for some scalar A > 0 and opposed effects when A < 0. Then, in order to
detect possfble sets of influential observations having similar or opposed effect on the fit,
it seems plausible to look at the uncentered covariance matrix of the t;'s. Therefore, we

define the n x n influence matrix M as the normalized version of this covariance matrix
iven by ! t

et b

where s? = 3" €?/(n - p).



Using (2), and the fact that H is idempotent it is immediate to show that if we denote
by mj; the 2j-th element of M, then

E.‘th,']‘
(1 —hi)(l— hjj)psr

m ij =

Since H is a semi positive definite matrix of rank p, M has this property too, except
when either some e; or some h;; vanishes. Observe that the diagonal elements of A are
the Cook’s statistics.

3. APROCEDURE FOR DETECTING INFLUENTIAL SETS

Let I be an index set corresponding to a subset of data points. Cook and Weisberg
(1980) proposed to measure the joint influence of the data points with index in [ by

p, - (b= b)) X' X (b — Dy))
I p82

b

where B(]) is the LSE computed after deletion of the data points with index in I.
It may be shown that this statistics can be written as

D = (I —H)'Hi(I —Hp) e

ps? ’

where the components of ¢; are the least squares residuals and H; the submatrix of H
corresponding to the set I, '

Theoretical influence curves (see Hampel, 1974) corresponding to infinitesimal frac-
tions of outliers are linear. Since the empirical influence curve is given by the n(fJ(,-) —b)’s
and it converges to the theoretical one, it seem plausible to use the following linear ap-
proximation when the size of I is small relative to n

iel

Using (1) and (3) we get the following approximation

(4) Dy welilye= ZZ"'U'

iel jel

Therefore as long as the approximation given by (4) holds, one way of detecting
influential sets is by searching large values of C;. This may be done for example using
integer programming algorithms, however this alternative is not further pursued here.

In this paper we propose a procedure to detect sets I with large C; based on the eigen-
values and eigenvectors of Af. The following limit case will give an heuristic justification
of the proposed procedure.



Let 7;; be the uncentered correlation coeflicient between t; and t;, then

My
-
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Suppose that there are k groups of influential obscrvations Iy, ..., Ix, such that

(i) If i,j € Iy, then |ri;] = 1. This means that the effects on the least squares fit
produced by the deletion of two points in the same set Ij have correlation 1 or -1.

(ii) If € I; and [ € I with j # h, then rj = 0. This means that the effects produced
on the least squares fit by observations ¢ and j belonging to different sets are uncorrelated.

(iii)If ¢ does not belong to any Iy, then r;; = 0 for all j. This means that data points
outside these groups have no influence on the fit. Then, according to (i) we can split each
set Iy in I} and I} such that:

(1) Ifi,j € I}, thenr;j =1

(2) If i € I and j € IZ, then rij = —1

Let vi = (v11y-y¥1n) s ooy Vi = (Vk1y 00y Uy ) be defined by

1/2 e oo T
mjf ifj eI}

Upj = -mj-f-? if jeI?

0 if 7 & In.

Then it is easy to show that if (i)-(iii) hold, then

k
M = Z vive,
i=]

and since the v;’s are orthogonal, this implies that the eigenvectors of M are vy,..., vy,
and that the corresponding eigenvalues Ay, ..., A\ are given by

Ap = Z ;.

1€y ;

It is clear that when the matrix M satisfies (i)-(iii), the only sets I with large C;
are I}, 1 < h <k, ¢ = 1,2, and these sets may be found by looking at the elgemectms
associated to non-null eigenvalues of M. ,

For real data sets, (i)-(iii) do not hold exactly. However the masking effect is typically
produced by the presence in the sample of blocks of influential observations producing sim-
ilar or opposed effects. These blocks are likely to produce a matrix M with a structure
close to the one described on (i)-(iii). In fact, two influential observations i, j producing
similar effects should have 7;; close to 1, and close to -1 when they have opposed effects.
Influential observations with non correlated effects have |ri;| close to 0. The same will
happen with non influential observations. In this case the eigenvectors will have approxi-
mately the structure described above, and the null components will be replaced by small
values.



This suggests the following procedure to identify influential sets:

(a)Find the eigenvectors corresponding to the p non-null eigenvalues of the influence
matrix A,

(1»)Consider the eigenvectors corresponding to large eigenvalues, and define the sets
I} and I} by those components with large positive and negative weights respectively.

In Section 4 we apply this procedure to several examples where the methods based on
individual deletion fail due to masking effects. In all the cases our procedure succeeds in
detecting the influential sets.

4. EXAMPLES

Example 1. This first example is designed to show the interpretation of the eigen-
vectors of the influential matrix in three simple masking schemes (see table 1 and figure
1). In the three cases we have eight good points generated by y = 1 + = + u where u is
a normal random variable with mean 0 and standard deviation 0.1 and two high leverage
points. In case (a) we have the standard masking scheme in which both outliers produce
the same effect and one is masked by the other, in (b) the two outliers produce opposite
effects, in (c¢) we have swamping, that is, the 9- th point appears as outlier because of the
effect of the 10-th point. 7

Table 2 presents the largest eigenvalue of the influence matrix and the corresponding
eigenvector in three cases. In case (a) the largest eigenvalue is roughly three times the next
one and gives the largest weight to the two outliers. Also the two outliers have positive
weight, whereas all the good points have a small and negative one. Therefore, the analysis
shows the presence of two different sets of points. In case (b) the two outliers are again
clearly identified: they appear in the eigenvector corresponding to the largest eigenvalue
with large values and oppaosite sign, whereas the rest of the points are given zero weight.
Finally, in case (c¢) the outlier is given a large and positive weight, whereas all the good
points have negative weight, with the greatest value at the good high leverage point. In
summary, the components of the eigenvector corresponding to the largest eigenvalue show
in all cases the relevant structure of the data set.

(figure 1 about here)

(table 1 and 2 about here)

Example 2. As second example we consider the data of international phone calls
in Belgium used by Roussceuw and Leroy (1987). (See figure 2). The largest eigenvalue
of the influence matrix is 1.16, 16.5 times greater than the second one. Its eigenvector
(see table 3) gives a very small weight to the first fourteen good observations, large and
negative weight to the six outliers and large and positive to the last four good points. The
second eigenvector gives a negative value to the first fourteen data points and a positive

value to the rest.

(figure 2 about here)
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(table 3 about here)

In summary, the cigenvectors show that there are 6 outliers which behave very differ-
ently from all the other points. It is interesting to point out that a measure of univariate
influence as Cook’s D does not show any evidence of influential sets due to the masking
effect: the largest values of this univariate statistics are rather small (see table (3) and
correspond to point 20th, (D = .27) which is an outlier, and point 24th, (D = .22), which
is not.

Table 4 includes the values of the multivariate test statistic and the F-value for the
standard outlier test based on the decrease in the residual sum of square when the subset
is deleted (see Barnett and Lewis, 1978, p. 265). As it is well known, this F' observed
value must be compared with the distribution of the maximum F over all sets of the same
size, and this distribution is unknown (see Beckman and Cook (1983)). However, the large
value of the F for the set {15, ..., 20} suggests that this set contains outllers Note also
that this set is very influential. These values are only identified as outliers accordmg to the
F test when the five points are deleted, due to the masking effect. On the other hand, both
sets {15,...,20} and {21,...,24} are very influential, although figure 2 shows that the first
includes outliers and the second good high leverage points. The swamping effect appears
(table 4) in the value of the F statistics for set {21,...,24}, due to the presence of the outlier
set {15,...,20}. When this later set is removed, the set {21,...,24} is still influential, and,
given the large value of the F' statistics, observatlon 21 could be considered an outher
whereas the other three points seem to be correct.

(table 4 about here)

Example 3. Data of the Hertzsprung-Russell diagram of a star cluster, from Rousse-
euw and Leroy (1987). The data are plotted in figure 3, where four giant stars which
correspond to points {11,20, 30, 34} can be seen as outliers. Table 5 shows the components
of the eigenvector corresponding to the largest eigenvalue. These components are also
plotted in figure 4. It can be seen that points 11, 20, 30 and 34 have a common and large
effect. It is also shown that points {7,14,17} seem to have some effect, specially 7 and
14, but with opposite effect than the others (see figure 3). Table 6 shows the values of the
multiple Cook’s D statistic and the F' value for different combinations of points in these
sets. Because of the masking effect we need to delete the four points {11,20,30,34} in
order to see its joint effect clearly. The set {7,14,17} is neither influential nor outlying.

(figure 3 about lere)
(tables 5 and 6 about here)

(figure 4 about here)
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Example 4. We will use the well-known stack-loss data from Daniel and Wood
(1980). After a detailed search they identified points (1, 3, 4, 24) as outliers. Cook (1979)
using a sequential search found (1, 2, 4, 21) as influential or outliers points. Gray and Ling
using their k-clustering algorithm ended up with (1, 2, 3, 4, 21). Finally Roussecuw and
Zomeren (1990) also identified these five points.

Table 7 gives the two largest eigenvalues and the corresponding eigenvectors of the
influence matrix. The first eigenvector is clearly dominated by the 21-th observation which
receives a weight 3.5 times the next largest one. The second eigenvector gives largest weight
to {1,2,3,4}. Table 8 summarizes the results of deleting different combinations of these
points. The most influential set is {1,2,3,4}, which can also be considered a set of outliers,
whereas point {21} could be outlier, although it is not very influential. !

(tables 7 and 8 about here)

Example 5. We use here the artificial data generated by Hawkins, Bradu and Kass
(1984). The model contains 75 data points in four dimensions (one response and 3 ex-
planatory variables). The first 10 data points are high leverage outliers, and the next four
points are good observations with high leverage. The rest of the observations are good
points with low leverage. ; o

The eigenvalues of M are A\; = 2.36, Ay = 1.63, A3 = 0.11 and A\; = 0.04. The
coefficients of the eigenvectors corresponding to A; and A, are shown in table 9 and figure
5.

The first eigenvector gives high positive weight to observations in the set {11,13,14]},
specially to observation 14. All these points are good high leverage points.

Two sets of large coefficients may be distinguished in the second eigenvalue:- the
set{1,...,10,14} with negative coefficients, and the set {11,12, 13} with positive coefficients.
Thus, the first set includes all the outliers and one good leverage point, and the second set
three of the good high leverage points.

It may be observed in table 9 that the only large values of the univariate Cook’s D
statistic corresponds to good leverage points, and therefore they do not detect any outlier
point.

Table 10 summarizes the results of deleting different combinations of these sets. Both
sets, Iy = {1,...,10} and I; = {11,12,13,14} have very large D;. However, once the
observations in I are deleted the F value for testing the set I, is not significant. Instead,
once the observations in I; are deleted, the set I, is very influential, and the large F value
suggest that their points are outliers.

(tables 9 and 10 about here)

(figure 5 about here)
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case | 1 2 3 4 5 6 7 8 [9a)]10(a)]|9(b)|10(b) | 9(c) | 10(c)
x 1 2 3 4 5 6 T 8] 12 12 12 12 12 12
y (20 29 39 51 62 69 7.8 9.1/ 19 20 19 7 13 7

Table 1. Data for Example 1.

(a) | 1.27 | 2.87 | -.1T —-06 -.00 -.00 -.02 -.10 -.22 -33 42 .79

(b) {3.78|3.783 | .00 -.00 —-.00 -.00 —-00 .00 -.00 —-.00 -.71 .71

(¢) 325 32 |(—-05 —-02 -.00 -00 -01 -02 —-.04 —-.10 -.50 .85

Table 2. Largest Eigenvalue, Ratio to the Next one and Eigenvector for Example 1.

1-14 15 16 17 18 19 20 21 22 23 4
eigenvector | —.002 < v < .07 -.13 -15 -.20 -26 -.35 -.48 .21 .34 .38 .43
Cook D 0<d<.0l .02 .03 .05 .08 14 27 .05 13 A7 .22

Table 3. Elements of First Eigenvector and Cook’s Statistics for the International Phone

Call Data.




sel D F
{15} 0.03 | 1.06
{15,16) 0.12 | 1.13 |
{15,16,17} 0.40 1.48 '
{15,16,17, 18) 1.03 | 2.20
{15,16,17, 18,19} 2.61 | 4.39
(15,16,17,18,19,20) | 6.74 | 5.48
(21,22, 23,24) 6.93 | 6.50
{21) 0.05 | 0.87
{22,23,24) 3.32 | 4.74
(21|{15, ...,20}} 1.43 | 130.14
(22,23,24|{15,...,20)) |5.39 | 2.72
{21,22,23,24|{15, ...,20}} | 0.80 | 31.44

Table 4. Values of Cook’s D for Multiple Cases and F Value for the International Phone
Calls Data. The Notation {A|B} Means that Set B is Completly Deleted from the
Analysis of the Influence of Set A.

case If 11 14 17 20 30 34
Ay =1,05].20 =25 .28 .13 —-.36 —47 -.61
D 04 .06 .09 .05 .14 .23 4]

Table 5. Eigenvector Coeflicients Greater that .10 and Values of the D Statistic for the
Hertzsprung-Russell Data of a Star Cluster.

set D | F
{11, 20} 0.68 | 1.11
{30,34) 2.22 | 3.95

{11,20, 30, 34) 41.44 | 11.53
{7,14) 29 | 2.80
{7,14,17) 52 | 3.75

{11,20,30,34;13,14,17} | 33.71 | 7.21

Table 6. Cook’s D Statistic for Multiple Cases and F Value for Qutliers for the
Hertzsprung-Russell Data.



Case | Eigenvalue Coefficients | D
A = .88 Az = .39

1 —.21 -.51 15
2 12 31 -
3 —.25 —.42 A3
4 10 50 |.a3
5 ; : ;
6 A8 -
T - .20 -
8 - 12 -
9 - 22 -
10 - - -
11 —-.15 10 <
12 -.21 A8 -
13 - - -
14 - .
15 - -
16 - -
17 - .
18 - .
19 - -
20 - - -
2] .88 —=.12 .69

set D r
{21) 69 [ 11.09
{1,3) 111 | 343
{1,4} 0.52 | 3,60
{3,4} 42 | 4.50

(1,3,4) |21 | 734
(1,3,4,21) | 1.49 | 25.24
{1,2,3,4) 7.98 [ 9.96

(1,2,3,4,21) | 313 | 24.38

Table 8. Cook’s D and I Values for the Stack-Loss Data.

Table 7. Two Largest Eigenvalues and its Eigenvectors and Univariate Cook’s D for the
Stack-Loss Data. Values with Absolute Value Smaller than .1 are QOmitted.




Case | Eigenvalue Coeflicients D ]
Ay =236 | A\, =1.63
1 —.046 —.100 .040
2 —.076 —-.108 053
3 -.016 —.118 046
4 —.036 —.090 .031
] —.040 —.105 .039
6 —.053 —.103 052
7 —.092 —.121 079
8 —.044 =.121 052
9 —.030 —.098 034
10 —.020 —.115 017
13 15 297 035
12 -.01 .520 851
13 24 149 254
14 87 —-.138 2.11
rest | |v;] <.032 | v <.022 | D; < .10

Hawkins, Bradu and Kass Data,

sel D F
(11,13, 14) 11.03 | 28.59
{1-10} 33.74 | 109.69
{1 —10,14)} 33.18 | 98.79
{11,1‘2,13} 4.97 58.45
{11,12,13,14} 13.37 | 181.11
{1-10,11,12, 13} 37.42 | 8§2.79
{1-10,11,12,13,14} | 60.18 | 76.61
{11,12,13,14|{1 — 10} } | 24.33 | 0.63
{1 —10]{11,12,13,14}} | 834.89 | 3.86

Table 9. Two Largest Eigenvalues and its Eigenvectors and Univariate Cook’s D for the

|

1

Table 10. Cook’s D and I Values for the Hawkins, Bradu and Kass Data.
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