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Abstract

Two tasks need to be completed in order to generate a surplus. The fea-

sibility and difficulty of the tasks is ex ante unknown. This paper studies the

optimal way to tackle these tasks and how this will differ from the way two

partners with task specific skills and no commitment would organize the work.

The no commitment solution might be associated with higher probability of

partial success.

1 Introduction

Some enterprises require solving multiple problems to be successful. As an ex-

ample, consider an electric car company. To be successful the company might need

to first solve a technical problem (say something related to the battery) as well as

a marketing problem (how to sell electric cars to average consumers). A scientific

paper, on the other hand, might require developing a convincing model and apply-

ing an appropriate identification strategy in order to be accepted for publication in

a general interest journal. For these ‘multi-task’ ventures, it is natural to think in

terms of partnerships among individuals with complementary skills: an engineer

and a marketing specialist; a theorist and an econometrician.

This paper studies a model of search with complementary tasks: Two successes

are required to generate some fix surplus. The order of the successes is not deter-

minant. Moreover, we consider a setting with uncertainty about the task feasibility
∗Department of Economics, Universidad de San Andrés and Northwestern University. I’m grate-
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and difficulty. An unfeasible task will never be completed, while for a feasible one

there is uncertainty about its difficulty (i.e. how long it will take to solve it).

In a dynamic and uncertain setting, the incentives to stay in the relationship and

contribute to the joint venture might change over time. Renegotiation is of cen-

tral importance in explaining how the current and future revenues will be shared

among the partners: once an individual solves his task, all the effort he put into it

is sunk. This lowers his negotiation power vis-a-vis his not-yet-successful partner,

who would request a higher share of the future pie to continue putting effort.

When the tasks are symmetric, the first best involves solving the tasks sequen-

tially: only start to work on the second task once the first one is solved. This result is

formally presented as Proposition 1. When we consider task-specific partnerships,

the first best cannot be achieved without commitment. The reason is a clear hold-

up problem: To achieve the first best, one of the partners should work in the first

task in the sequence. Once this task is solved then the cost of the effort is sunk and

will not be considered in the negotiation of how to split the surplus. The second

partner cannot commit not to renegotiate and therefore the first one would prefer

to quit earlier than what would be optimal. This result is formally presented as

Proposition 2.

The partners can always, however, work in simultaneous. Proposition 3 shows

that there is always an equilibrium in which the partners work only when the other

partner is also working. I compare this equilibrium with the first best and find that

for some parameters the probability of partial success for partnerships is larger than

that of the first best. The reason is that before any success the first best requires

to explore the less promising task. In the partnership equilibrium both tasks are

explored at the same time, what brings the probability of success up. This result

contrasts with the classical hold-up models, which feature underinvestment and

therefore worst average performance.

Arrow [1962] and Awaya and Krishna [2019] provide explanations for the ap-

parent phenomenon that innovation happens more often in challengers rather than

incumbent firms. This paper gives another possible explanation: established firms

can pay wages to their employees to compensate them for their effort and achieve

the first best. Startups, on the other hand, usually use shares and options as in-

centives: contracts contingent on eventual revenues. The inability to commit can
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lead to more partial successes happening in startups, even though these are less

profitable.

Finally, I compare the partnership with the case of a decentralized relationship.

The conceptual difference lies in the timing of negotiation: In the decentralized

relationship the tasks are carried away independently and negotiation happens ex-

post, only when both tasks have been solved. In the partnership, the negotiation is

dynamic and evolves with the arrival of new information.

A plausible concern is that even with the ability to write a contract and com-

mit to a contingent split of the surplus, partners might find it profitable to inflate

the difficulty of their assigned tasks by hiding early successes to get, in this way, a

higher share of the revenues. It turns out that a simple sufficient condition guar-

antees that the simultaneous equilibrium is achievable even when successes are

voluntarily disclosed. This condition is satisfied when the cost of effort is relatively

large.

The paper develops as follows: Section 2 introduces the first best i.e. the indi-

vidual decision maker problem. In Section 3 the different strategic settings are dis-

cussed: ex-ante, ex-post and continuous bargaining. Finally, we introduce asym-

metric information in Section 4, considering specifically voluntary disclosures of

successes. Section 5 concludes.

1.1 Related Literature

This paper introduces perfect complements to the search literature. Klabjan et al.

[2014] considers a DM who can learn about different attributes of a product before

making a decision. The payoff of the DM is linear in the attributes. In contrast, this

paper considers a unit payoff when both tasks are completed. This can be also be

rewritten as the payoff being the product of two underlying attributes and some

action, and an uncertain time required to learn about these attributes.

The first best problem in this paper can be seen as a multi-armed model with

dependent arms. Gittins [1979] and Weitzman [1979] are the classical references.

As it was pointed out in the introduction, the ability to renegotiate generates a

clear hold-up problem. The hold-up problem was extensively studied in the indus-

trial organization context since the seminal contributions of Klein et al. [1987] and

Rogerson [1984].
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There are recent papers that study multistage projects, where the order is fixed.

Toxvaerd [2006] and Green and Taylor [2016] consider multistage project where the

order of the tasks is fixed and known. The set up is related to the experimentation

literature with Poisson success arrivals. In most of these papers the effort choice is

unobservable. Bonatti and Hörner [2011] consider a model with collective projects

but where the efforts of the agents are substitutes instead of complements. The

most relevant issue is therefore free-riding.

Finally, there is a recent set of papers that consider the optimal dynamic infor-

mation acquisition before decision making. Among these some relevant papers are

Ke and Villas-Boas [2019], Che and Mierendorff [2017] and Zhong [2018].

2 Individual Decision Maker (First Best)

There are two tasks, labeled with i ∈ {A,B}. A fixed surplus of 1 is generated

when there is a success in both tasks. Feasibility of tasks i is denoted θi ∈ {0, 1}.
Assume that the feasibility of tasks are independent with prior probability pi. At

each instant the DM chooses which tasks, if any, to explore ai ∈ {0, 1}. Notice that

by exploring only one task you don’t learn anything about the feasibility of the

other task.

The rate of success arrival for task i is aiλiθi. This structure gives us a decreasing

unconditional hazard rate λipi,t where pi,t is the posterior probability of the task

being feasible using Bayes’ rule.1 The flow cost of working on tasks i is ci > 0.

The fundamental question is what is the optimal way to tackle these tasks. Once

one of the tasks i is solved, the continuation must be the solution to the single-task

case: explore the unsolved task j until the unconditional hazard rate falls below cj .

The interesting question is what is the optimal thing to do before the first success.

In the extreme cases you have multitasking, where you try to solve both tasks at the

same time, and sequential, where you stick to one task and only jump to the other

one after a success. So far, there is no reason why the optimum should be one of

these two extreme cases.

1The solution for generic decreasing hazard rate function is left for future research.
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2.1 Simple discrete example

Consider a discrete version of this model where λi is now interpreted as the

probability of success at each period of time. Moreover consider the specific case

where λA = pB = 1 and λB, pA < 1. That is the feasibility of task A is uncertain,

but not its difficulty given feasibility: if task A is feasible, it will be solved the first

time the agent tries to solve it. This makes learning very fast for task A: after one

try you can conclude whether the task is feasible or not. For task B the feasibility is

guaranteed, so there is no learning. However, there is uncertainty about how long

it would take to solve the task. Assume that task B is worth trying to solve when

A was already solved (λB > cB) and that task A is sufficiently likely to be feasible

pA >
λBcB

(λB−cB) .2

It will never be optimal to try task A more than once. Also, the conditions guar-

antee that it will be optimal to abandon only after learning that task A is not fea-

sible. Therefore, the optimal strategy can be characterized by the time task A is

explored. Consider the strategy that tries task B for n times before trying strategy

A. Notice that there is no learning after a failure in B, so quitting before trying

task A is never optimal. If tasks A is feasible, the ex-post payoff is 1 − cA − cBτ ,

where τ is the ex-post realization of the first success of task B (we call this the

‘realized difficulty’ of task B). If task A is not feasible, the payoff for the DM is

−cA − cB min{τ, n}. n only affects the payoff by decreasing it when the task A is

unfeasible and τ large. The optimal n is clearly 0, since pA < 0 and all τ ∈ N have

positive ex-ante probability.

The optimal strategy is therefore to try taskA, if failure then quit. If success then

continue to task B until success.

2.2 Symmetric tasks in continuous time

Going back to continuous time, consider a symmetric setting, that is take pA =

pB = p0, λA = λB = λ and cA = cB = c.

The set of pure strategies is the set of functions specifying at each point in time

what to do as a function of history, i.e. past actions and outcomes. For the indi-

vidual decision problem, consider only strategies that depend on past outcomes.

2This last condition guarantees that the DM will not immediately abandon.
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Moreover, after a success the optimal continuation is the solution to a single-task

problem: continue to explore the uncompleted task until the beliefs about its fea-

sibility reach c/λ. We define t̄ as the threshold time after which the belief c/λ is

reached:

t̄ =
1

λ
log

(
p0

1− p0

1− c/λ
c/λ

)
. (1)

Any strategy that satisfies this second stage optimality can be characterized by

the behavior before the first success. Let si : R+ → {0, 1} be the function specifying

for each time t whether task i is being explored, given no success so far. Moreover,

consider without loss of optimality strategies that never leave gaps where the agent

doesn’t do anything: Let S̃ be the set of all pairs of functions (sA, sB) that satisfy

second-stage optimality and such that sA(t) = sB(t) = 0 implies sA(t′) = sB(t′) = 0

for all t′ > t.

For s ∈ S̃, Lemma 1 shows that the ex-post payoff π̂(s, τ) is pinned down by the

stopping times ts = (tA(s), tB(s)) defined as

ti(s) :=

∫ ∞
0

si(t) dt

Lemma 1. Let s, s′ ∈ S̃ two strategies with the same stopping times (ts = ts′) and

τ ∈ R̄2
+ the realized difficulty of the tasks, then the ex-post payoff is the same for

both strategies, i.e.

π̂(s, τ) = π̂(s′, τ)

Proof. The proof is simply noticing that for a strategy and a success time pair τ ∈
R̄2

+, we can write the ex-post payoff function π̂ as

π̂(s, τ) =


1− cτ τ 6 (t̄, t̄) and ¬(τ � ts)

−cts τ � ts

−c(t̄+ min{τA, τB}) ¬(τ 6 (t̄, t̄)) and ¬(τ � ts)

(2)

Finding the optimal strategy is equivalent to finding the optimal stopping point

ts ∈ R2
+. This result is very useful because tells us that the only payoff relevant
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decision is the stopping point and equivalently, the ‘path’ that leads to that point is

irrelevant. Therefore, we can define a function π(t, τ) := π̂(s, τ) for some swith ts =

t. We will use V (t) := E(π(t, τ)) for the ex-ante expected value given a stopping

time.

Let p(t) be the posterior function after time t exploring a task unsuccessfully,

p(t) :=
p0e
−λt

1− p0 + p0e−λt
. (3)

It will be useful to define the second stage payoff v(t)

v(t) := p(t)

∫ t̄−t

0
λe−λt̃[1 + c(t̄− t̃)] dt̃− c(t̄− t) (4)

By Lemma 1, the problem for the individual decision maker boils down to choos-

ing a stopping time that maximizes the expected payoff:

max
ts∈R2

+

V (ts) (5)

Definition 1. We say that a strategy s ∈ S̃ is sequential if ¬(ts � 0). We say that

a strategy s ∈ S̃ is simultaneous if ts is in the 45 degree line (ts = me for some

m ∈ R+).

The following Lemma gives three possible candidates for the solution to the

problem.

Lemma 2. The optimum stopping time (the one that solves Equation (5)) is one of

the following candidates:

• (t̂, t̂) where t̂ is uniquely defined by p(t̂)v(t̂) = c/λ.

• (0, t∗) or (t∗, 0) where t∗ is uniquely defined by p(t∗)v(p0) = c/λ.

Intuitively, the point (t̂, t̂) is the optimal stopping when the individual is forced

to work always on both tasks at the same time (multitasking) while the corner
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t t*

t

t*

Figure 1: Regions with positive continuation value.

The candidates to the optimal stopping point are

the three red dots.

points are the optimal stopping points when the order of the tasks is given (se-

quential). We can see the relationship between these times in Figure 2. The thick

black curve represents the function c/λp(t). The dashed line represents the func-

tion v(t) so these two intersect at t̂. c/λp(t) reaches value equal to 1 at t̄. Finally, the

dotted line is v(0), intersecting c/λp(t) at t∗. Here is a sketch of the proof:3

Proof. • To simplify notation consider the unconditional hazard rate h(t) =

λp(t).

3For this proof we don’t need the extra structure given by the feasibility and constant conditional

hazard rate. Any decreasing unconditional hazard rate where the functions cross once from above as

in Figure 1 will suffice.
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v(t)

c
λ p (t)

v(0)

t t* t
t

1

Figure 2: Different relevant times.

• Take the function f : R+ → R+ defined by f(t) = v−1
(

c
h(t)

)
and its inverse

f−1(t) = h−1
(

c
v(t)

)
. These two functions define the boundaries of the regions

with positive myopic continuation value as in Figure 1. f and f−1 cross each

other once at (p̂, p̂) by symmetry and concavity of f . Moreover the zero of f

is larger than the zero of f−1.

• The optimal stopping point has to be such that one of the myopic payoffs is

negative and the other one is zero, i.e. in the boundary of the shaded area in

Figure 1. The intuition is that strictly outside the shaded area the individual’s

last exploration second was not optimal independently of what he was doing:

he could have done better but quitting earlier. Strictly inside the shaded area

the individual quit too early. There were continuation strategies with strictly

positive continuation value in at least some direction.

• Finally, if at the stopping point the myopic payoff of a task is negative, then

the cumulative time spent exploring that task should have been zero. Re-

member that all paths lead to the same payoff (by Lemma 1) but a path that

ends up with the negative myopic exploration has to be suboptimal.

• This last insight discards all points in the boundaries except for the corners

and the point in the 45 degree line (the red points in Figure 1).
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Proposition 1 concludes our characterization of the first best for the symmetric

case. (t̂, t̂) is a saddle point of the function V (t), and therefore the two optimal

points are the corners that give the same value by symmetry. We prove a stronger

result in Lemma 3: every interior stopping time t gives lower value than a point in

the axes.

Lemma 3. Let t� 0, then V (t) < max{V ((tA + tB, 0)), V ((t̄, 0))}

A formal proof of this lemma can be found in Appendix A.1. For an intuition

consider a t � 0 with tA > tB and tA + tB < t̄ as in Figure 3. We will show that in

this case V (t) < V (t′) where t′ = (tA+ tB, 0). As we argued in Lemma 1, the path is

irrelevant. In particular, both strategies could start exploring taskA for a period tA.

The remaining question is what is optimal after time tA with no success. Strategy

t switches to explore task B for time tB but t′ continues exploring A for the same

time tB .

The proof considers the ex-post realizations of τ that would generate different

payoffs for the two strategies (shaded areas in Figure 3). The lightly shaded areas

cancel out (part D in Appendix A.1): if both tasks are feasible, then the past is irrel-

evant and the continuations give symmetric payoffs. The dark areas don’t cancel

out, however, since these include the possibility that one of the tasks is not feasible.

If the continuation for t′ was to stop at t̄ − tA after a success in task A, the payoffs

will be the same but with lower probabilities for the vertical dark rectangle, what

gives an advantage to strategy t′. The strategy with the optimal continuation does,

of course, even better. (Part E in Appendix A.1.)

This result immediately gives us the solution to the individual decision maker

problem from Equation (5). The result is formally presented in the following propo-

sition:
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tA tA+tB ∞

tB

t-tA

t

∞
tA tA+tB

tB

Figure 3: Shaded areas where the two strategies

lead to different ex-post payoffs. The lightly shaded

areas correspond to part D and cancel each other.

The dark gray areas correspond to part E .

Proposition 1. The optimal exploration is sequential. Moreover,

arg max
t
V (t) = {(0, t∗), (t∗, 0)}

.

2.3 Extentions: asymmetric prior and discounting

The result in Proposition 1 can be extended to settings with asymmetric prior

(pA 6= pB) since the solution to the asymmetric problem is equivalent to the contin-

uation problem of a setting with symmetric prior. Consider for example pA < pB .
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For the symmetric case where p0 = pB one solution is sequential starting with

task A. Consider the history where task A is unsuccessfully explored for time

t′ = 1
λ log

(
pB

1−pB
1−pA
pA

)
, then the posterior pA(t′) is exactly pA, and the continua-

tion play of continuing exploring the same task has to be optimal. The optimal

exploration involves only exploring sequentially, starting with the task with more

pessimistic prior. Formally,

Corollary 1. With pA < pB , the solution to the problem is simply (t∗A, 0) where t∗A
solves:

pA(t∗A) v(pB) = c/λ.

The whole proof follows through if we add discounting, provided that the deci-

sion maker cannot speed up innovation by exploring both tasks at the same time.

If he could do so, simultaneous exploration has the advantage of a higher payoff

for a given realization of τ and the result could be inverted. If, on the other hand,

we restrict the agent to explore one task at a time the solution preserves the same

qualitative features as in the no discounting case.

The reason is that the discount only affects incentives by lowering the second

stage payoff, represented by the function v. With discounting we can redefine v as:

v(t, δ) := p(t)

∫ t̄−t

0
λe−(λ+r)t̃ − (1− p(t) + p(t)e−λt̃)e−rt̃c dt̃

The incentives previous to the first success are myopic: you want to continue

exploring one task if and only if it is myopically profitable to do so. This gives us

back Lemmas 1 and 2.

In the next section we explore strategic settings with task-specific individuals.

The cases of single decision maker with asymmetric conditional hazard rate and

costs are yet to be explored.

3 Task-specific decision makers

In this section we study different strategic settings. The common theme is that

there are two task-specific players, i.e. two agents with the ability to explore one of
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the two tasks. There is no private information: all actions and outcomes (successes)

are publicly observed.

Moreover, we maintain the fact that transfers are not allowed. The only thing

the players can do is split the surplus, only possible after both tasks are completed.

The differences among the setting will lay on the ability of the players to commit to

a contingent split of the generated revenues. In the decentralized relationship the

players explore independently and only after both successes they negotiate how

to split the surplus. In the partnership negotiation happens within each instant:

the players negotiate who will work and how to split the surplus. However, they

cannot commit to not renegotiate in the future. In the contract with commitment,

the players can sign a binding contract at the beginning of the relationship.

3.1 Decentralized relationship

Two players independently explore the two tasks. The negotiation happens ex-

post: only after they both succeed they negotiate how to split the unit surplus. The

symmetric Nash bargaining solution tells us that the payoff will be split in half

(the outside option is zero for both players since the scrap value ) 1/2 for each,

independently of the history, i.e. the realized difficulty of each task.

Any equilibrium of this game must feature under exploration: an abandonment

point t in the interior of the shaded area of Figure 1. The reason is the positive

externalities: a player cannot appropriate all the value generated by exploring his

task. This is the closest setting to the classical hold-up problem.

3.2 Contract with commitment

If the two partners could negotiate a (potentially random) contract at time zero

and there were no information asymmetries, the first best could be achieved. The

optimal contract could take the following form: First, randomize who will start ex-

ploring. Whoever is selected first must explore until t∗ and is promised all the value

in the relationship. The other player only explores after the first one completes the

task and gets pay exactly what leaves him indifferent between continuing explor-

ing or quitting right away.

Notice that the share of the pie for the player that explores second will have to

be increasing in the difficulty of his task. This means that, if he could choose, he
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would prefer to get a late success. We will analyze the incentives to delay disclosure

of successes in Section 4.

3.3 Partnership

The most interesting situation is when the players can negotiate in every period.

In a discretized version this would mean that at the beginning of each period the

players negotiate à la Nash which tasks are going to be explored on that period

and how are revenues going to be split in case there are any. After the first suc-

cess, the player who succeeded can decide to walk away and both players get zero.

The player that did not succeed on the other hand has a higher outside option: if

we walks away he saves the cost of effort. We don’t make any claims about the

bargaining power in the second stage, just that it is interior. Let’s parametrize by

α ∈ (0, 1) the relative bargaining power of the individual that did not succeeded

yet.

For this project we take a holistic approach and take the discrete version to the

limit. The player that has not succeeded yet gets therefore a fraction α of the re-

maining value. In case of success his payoff is α
(

1 + c
λp(τ2)

)
. Notice that the pay-

offs do not depend on the first players time of success. The player that acquires

information first will only retain (1 − α) of the value, independently of his disclo-

sure time. Therefore, the first best cannot be achieved in a partnership: it would

require one of the players to put costly effort for t∗, even though he will receive half

of the value. Close to t∗ effort is not worth it and the partner would prefer to quit.

Proposition 2. The first best cannot be achieved by a partnership.

The point (t̂, t̂), on the other hand, can always be achieved as an equilibrium.

Consider the following strategy for player B: Start working and keep working as

long as the player A is working or until t̂. If the other player stops before t̂ stop

immediately and only resume when he starts working again. If any of the players

succeeds, the continuation payoffs and strategies are the ones stipulated by Nash

bargaining. Its easy to check that this strategy is a best response against itself, as

long as the myopic payoff of the players remains positive. A player receives:
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λp(t)αv(t) + λp(t)(1− α)v(t)

So it makes sense to work as long as this expression is larger than c, that is until

λp(t)v(t) = c. That is exactly until t̂. We call this a partnership equilibrium.

Proposition 3. A simultaneous partnership equilibrium exists for every α.

We showed in the proof of Proposition 1 that the partnership equilibrium was

not efficient. It can, however, generate more value than the best sequential incen-

tive compatible path. Interestingly, the partnership equilibrium can induce a higher

probability of partial success than the first best. As we can see in Figure 4b for small

enough costs the partnership equilibrium is associated with higher probability of

reaching at least one success. The reason is that in the first best the task with lowest

probability of success is the one being explored, while in the simultaneous partner-

ship equilibrium both tasks are explored at the same time. For some parameters,

moreover, the total amount of time exploring before abandonment is larger in the

simoultaneous parnership equilibrium than in the first best (2p̂ > p∗).

As we can see in Figure 4a, the probability of a success in both tasks is, however,

lower compared to the first best for any c.4

4 Voluntary disclosure

Consider again partners with task specific skills. We are going to allow them

to write a contract specifying how to split the surplus but now they can hide suc-

cesses. The reason why they might want to hide a success is that the contract might

pay them more for later breakthroughs. We ask the question of whether the simul-

taneous partnership equilibrium is achievable with a contract when successes are

self-reported.

Since there is no moral hazard, we keep the assumption that effort is observable.

To delay the disclosure of a success a partner has to keep paying the cost. Moreover,

4This is not a general result. A general proof of this result or conditions under which is true or

not is left for future research.
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c
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(a) Joint success

0.1 0.2 0.3 0.4
c

-0.08

-0.06

-0.04

-0.02

(b) At least one success

Figure 4: Difference between probabilities of

success in simultaneous partnership equilibrium vs

first best for p0 = 0.9 and λ = 1.

we are going to focus on renegotiation proof contracts: the players cannot commit

to leave value on the table. Consider the following contract:

q2(τ1, τ2) = 1− c(t̄− τ1) (6)

Where τ1 and τ2 are the times of the first and second success and q2 is the share of

the pie that the second player to succeed gets. The first player to succeed gets the

residual: q1(τ1, τ2) = c(t̄− τ1).

This can be interpreted as the second player getting a fixed bonus 1 − ct̄ plus

compensation for his cost cτi, and the first player being the residual claimant. This

contract pays the second player the minimum he will receive in any renegotiation-

proof mechanism. He will have incentives for immediate disclosure since the marginal

revenue c is equal to the marginal cost. A sufficient condition for him to put effort

along the way is that p0 ∈ [c/λ, 0.5]5.

Now all rest to study is the incentives of the first player to succeed. When he

succeeds at time τ1, the expected payoff of immediate disclosure is

E[c(t̄− τ2)|τ2 > τ1]

5The necessary and sufficient condition is that f(p0) 6 f( c
λ
) where f(x) = 1

x
+ log( x

1−x ). f is

decreasing on (0, 0.5) and increasing on (0.5, 1). So the necessary and sufficient condition is p0 ∈ [a, b]

where a and b are the two roots of f(x) = f(c/λ). A sufficient condition is the one given.

Proof: c/λpt is convex in t: the second derivative is − c
p2t

∂pt
∂t

> 0. So, all need to prove is that at

time zero the incentives are correct: c/λp0 6 1− ct̂. This is equivalent to f(p0) 6 f(c/λ).
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At t̂, the player would like to disclose his success, since otherwise the other

player will stop (what brings a payoff of zero). Before t̂, the marginal incentive to

delay disclosure relies on the event that the other player succeeds and therefore

getting a higher payoff as a observably second player. The cost is having to keep

exerting effort for the period in which the player pretends to not have succeeded.

Here we compute the marginal net benefit of delayed disclosure at time t. A nec-

essary and sufficient condition for no delay is that this marginals are not positive

for all times before t̂.

We want for all t

p(t)

[∫ ∆

0
λe−λτ [1− c(t̄− t− τ)− cτ ] dτ +

∫ t̄−t

∆
λe−λτ c(t̄− t− τ) dτ

]
−(1−p(t)+p(t)e−λ∆)c∆

to be maximized at ∆ = 0 among all ∆ 6 t̂ − t. A necessary and sufficient

condition is the partial at zero to be non-positive for all t.

Taking partial and evaluating at ∆ = 0,

λp(t)[1− 2c(t̄− t)]− c 6 0 ∀t < t0

This is equivalent to

1− 2c(t̄− t) 6 c

λp(t)
∀t < t0

c
λp(t) is convex and both left and right hand side are equal to 1 for t = t̄. So a

necessary and sufficient condition is that at t̂ the inequality holds.

1− 2c(t̄− t) 6 c

λp(t̂)
(7)

In Figure 5 we can see examples of the condition being satisfied and violated. As

in Figure 2, the thick black line represents the function c/λp(t) and the dashed gray

function is the function v(t), so these two intesect at t̂. In the left picture the dot-

ted function 1 − 2c(t̄ − t) is below the intersection so the condition is satisfied and

therefore immediate disclosure is compatible with optimal behavior of the play-

ers. In the right picture the dotted function is above the intersection, so there are

incentives to delay disclosure of success.
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t t* t
t

1

(a) Immediate disclosure with p0 = 0.8,

λ = 1, and c = 0.24

t t* t
t

1

(b) Delay in disclosure with p0 = 0.8, λ = 1,

and c = 0.15

Figure 5: Sufficient conditions for immediate

disclosure

Proposition 4. If eq. (7) holds, the partnership equilibrium is achievable with vol-

untary disclosure of successes.

5 Conclusion

This paper provides an answer to a fundamental question: how to optimally

tackle tasks that are perfect complements when there is uncertainty about their fea-

sibility and difficulty. In the independent and symmetric case the tasks should be

completed sequentially. The more general question for the case with less structure

in the arrival rate and asymmetry is left for future research.

Incorporating in the analysis the incentives for partners with complementary

skills, I find that if the partners cannot commit to a contingent split of the sur-

plus or if the task completion is not publicly observable then the first best is not

achievable. An equilibrium where both partners work simultaneously is always

achievable in the no-commitment case and achievable for some parameters in the

voluntary disclosure case.

This equilibrium has some desirable properties, but it is not unique. What can

be said about the set of all equilibria or sets for relevant refinements is an important

step forward. This paper does not provide any insights for the case of voluntary

disclosure when the sufficient condition for simultaneous equilibrium is not satis-

fied.

18



A Proofs

A.1 Proof of Lemma 3

Proof. We just need to prove that (t̂, t̂) is not optimal. That there is an element in S

that dominates it. We are going to prove a more general claim: Grab t := (tA, tB)

with tA > tB and t′ := (tA + tB, 0). We will see that V (t′)− V (t) > 0.

V (t′)− V (t) =

∫
[π(t′, τ)− π(t, τ)] dF (τ)

Notice that π(t′, τ) = π(t, τ) for τ > t, τ 6 (tA + tB, tB) and τA 6 tA. So we only

need to consider τ ∈ [tA, tA + tB]× [tB ×∞] and τ ∈ [tA + tB,∞]× [0, tB].

V (t′)−V (t) =

∫
[π(t′, τ)−π(t, τ)]1τ∈D∪E dF (τ)−

∫
[π(t, τ)−π(t′, τ)]1τ∈D′∪E′ dF (τ)

We divide the proof in two:∫
[π(t′, τ)− π(t, τ)]1τ∈D dF (τ) =

∫
[π(t, τ)− π(t′, τ)]1τ∈D′ dF (τ) (D)

∫
[π(t′, τ)− π(t, τ)]1τ∈E dF (τ) >

∫
[π(t, τ)− π(t′, τ)]1τ∈E′ dF (τ) (E)

PartD : Lets do the following change of variables: (x, y) ∈ [0, tB]× [0, t̄− t1− t2].

Then all elements inD can be written as t+(x, y) and the elements ofD′ as t′+(y, x)∫
[π(t′, τ)− π(t, τ)]1τ∈D dF (τ) =∫ tB

0

∫ t̄−t1−t2

0
p2

0λ
2e−λ(tA+x)e−λ(tB+y)[π(t′, t+ (x, y))︸ ︷︷ ︸

1−c(tA+tB+x+y)

−π(t, t+ (x, y))︸ ︷︷ ︸
−c(tA+tB)

] dy dx

∫
[π(t, τ)− π(t′, τ)]1τ∈D′ dF (τ) =∫ tB

0

∫ t̄−t1−t2

0
p2

0λ
2e−λ(tA+tB+y)e−λx[π(t, t′ + (y, x))︸ ︷︷ ︸

1−c(tA+tB+x+y)

−π(t′, t′ + (y, x))︸ ︷︷ ︸
−c(tA+tB)

] dy dx

Part E : Now consider (x, y) ∈ [0, tB] × [0,∞] so that all elements in E can be

written as (tA, t̄− tA) + (x, y) and the elements in E′ as (t̄, 0) + (y, x).

∫
[π(t′, τ)− π(t, τ)]1τ∈E dF (τ) >

∫
[π̂(t, τ)− π(t, τ)]1τ∈E dF (τ) =
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−
∫ tB

0
p0λe

−λ(tA+x)
[
(1− p0) + p0e

−λt̄
]
c(t̄+ x− tA − tB)

Where v̂ is the value of a strategy that suboptimally quits trying to solve task

B at t̄ − tA when τA ∈ (tA, tA + tB). The inequality comes from the fact that by

definition of t̄ the agent wants to continue exploring task B at t̄ − tA when in this

situation:

E[π(t′, τ)|τ ∈ E] =
1

Pr(τ ∈ E)

∫
π(t′, τ)1τ∈E dF (τ)

> E[π̂(t, τ)|τ ∈ E]

:=
1

Pr(τ ∈ E)

∫
π̂(t, τ)1τ∈E dF (τ)

On the other hand,

∫
[π(t, τ)− π(t′, τ)]1τ∈E′ dF (τ) =

−
∫ tB

0
p0λe

−λx
[
(1− p0) + p0e

−λt̄
]
c(t̄+ x− tA − tB)

Subtracting side by side,

∫
[π(t′, τ)− π(t, τ)]1τ∈E dF (τ)−

∫
[π(t, τ)− π(t′, τ)]1τ∈E′ dF (τ) >∫ t2

0
p0λe

−λxc(t̄+ x− t1 − t2)(1− p0)(1− e−λt1) dx > 0

A.2 Proof of Proposition 1

Given the candidates given by Lemma 2 and that Lemma 3 rules out the interior

point (t̂, t̂), the corners that give the same value by symmetry achieve the maximum

value.
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