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Abstract

I discuss basic fairness and internal consistency standards that are de-
sirable in the case of incomplete tournaments. I present a parsimonious
family of scoring methods that satisfies these standards. It includes the
win percentage method as a special case. I then calibrate this family of
scoring methods to match, as closely as possible, the actual rankings that
were used to determine the teams that would go on to compete for the
championship of the NCAA division 1 american football tournament be-
tween 2011 and 2017. I find that the rankings used by the NCAA in all
seven years were unfair.

Keywords: Incomplete paired comparisons, tournament ranking, scoring
methods, Fairness Criteria.

1. Introduction
In May of 2016, against all odds (5,000 to 1 to be precise), Leicester City

won the English Premier League football title. It did so by winning 23 games,
drawing 12 and losing only 3, despite fielding a roster of players whose aggregate
wage bill was the fifth-lowest in the 20-team league. The team that came in
second had won 20, drawn 11 and lost 7. The title was uncontroversial. Just a
year later another underdog (this time 1,000 to 1 odds), the University of Central
Florida, did not win the NCAA division 1 (American) football title despite
winning all 13 of its games in a league of 130 teams. The team that was awarded
the title had won 13 games and lost 1. The title remains highly controversial.
There are several factors that both fuel the controversy surrounding the outcome
in the US while justifying the outcome in England, but the most glaring one
is given by the very basic structures of the two tournaments: In the first one
there are 20 teams that play 38 games each (twice against every opponent) and
in the second one there are 130 teams that play less than 15 games each (and
teams don’t even play the same number of games). The first is a case of a twice-
complete tournament and the second a case of an incomplete tournament. The
fundamental question is straightforward: How to establish a final ranking of the
teams that play in a given tournament in a fair and reasonable way. Intuitively,
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it seems like a very simple task to do this for the first case but not necessarily
to do so for the second.2

In this work I present basic fairness and internal consistency criteria for
developing scoring methods that, through rewards and punishments for winning
and losing, assign each team a final score which is then used to establish the
final ranking of teams. I also present a particular family of scoring methods
that is intuitively simple and satisfies the fairness and consistency criteria. It is
then calibrated to match (as closely as possible) the actual rankings used by the
NCAA (between 2011 and 2017) in order to determine whether these rankings
were fair.3

A Benchmark Scoring Method

In a complete tournament all teams play each other once. As a result, there
is no advantage by any team over any other in terms of the quality of opposition
faced. For this reason, the scoring method that has been used in all types of
competitions where a complete tournament is played is a system of points where
all wins count equally and all losses count equally, but less than a win.4 The
final scoring is simply given by the sum of all points assigned to each team.
Additionally, if, for example, we want to compare the scoring of two different
complete tournaments where the number of teams is different, then a simple
solution is to use points per game as a measure instead. This is also known as
(or isomorphic to) the win/loss record, or, more precisely, the win percentage.

The simplicity of the win percentage scoring method is its main strength.
When thinking about creating a scoring method that is reasonable, our first
instinct is to reward winners and punish losers. Because we want to be unbiased
and fair, we want our reward for a win to be the same for any team that wins
and our punishment for a loss to be the same for any team that loses. Adding
up rewards and punishments gives us a very natural way to compare different
teams that played the same amount of games. Normalizing by the number of
games played is just a minor adjustment that is reasonable when teams have
not played the same amount of games.

However, a key to feeling comfortable with this simple method is that at the
end of the tournament, all teams will have faced the same competition. Thus
if one team faces weak competition early on and as a result ranks high on the
scoring table, we feel at ease because the remaining schedule will either pull it
back down where it belongs or prove that this team is at least as good as it’s
current position suggests. In other words our approval of the win percentage

2A different issue altogether is the optimal design of a tournament, which is not addressed
in this work. For example, the playoff (or knock-out) format is the most efficient way to
determine a champion, but a very poor mechanism to determine a complete final ordering of
teams.

3Allowing, for example, to objectively weigh-in on the 2017 NCAA Football controversy.
4Typically one point is assigned for a win, half a point for a draw and zero for a loss (or its

equivalent 2, 1 and 0 respectively) as, for example, in the case of chess tournaments. For the
specific case of association football this system was changed to 3, 1 and 0 points respectively
in 1995.
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scoring method is directly tied to the notion that a complete tournament is itself
a fair type of tournament.

When moving away from a complete tournament, the win percentage scoring
method loses its appeal immediately. The tournament itself is no longer fair.
A team that faced weak competition got an unfair advantage and a team that
faced tough competition received an unfair disadvantage so, naturally, the win
percentage will provide a biased measure of performance. The problem becomes
compounded by the fact that the strength of the competition is itself an unknown
variable that must be obtained using the same information (the results of all
the games played) as the scoring of each team.

With the understanding that when it comes to incomplete tournaments, the
very nature of such tournaments is biased (and therefore unfair), the family of
scoring methods studied here seeks to correct the bias as much as possible, while
preserving the very simple structure of additive rewards and punishments. In
other words, I will discuss methods that assign points to teams for wins and
losses, but these points are not necessarily confined to being 1 for every win and
0 for every loss.

A Non-Trivial Scoring Problem

To be clear, the games considered here are always between two teams and
the objective for any given team is to beat its opponent. That is, when one
team wins, the other team necessarily loses and if no team wins then no team
loses, which (if allowed) defines a draw.5 There is no added information that
will be used to score teams, that is, there will be no way in which a win can
be qualified as better or worse other than from knowing which team won and
which team lost. Interestingly there seems to be overwhelming consensus across
different leagues of different sports and competitions that, despite there being
multiple ways of further qualifying a given win (goals or points difference, judges
scores, speed of victory, etc), none of these qualifiers should be used other than
to break a tie in win percentage at the end of a complete tournament.6 In other
words, the way in which a win is secured does not matter. At the end of the
match, one team walks away with the win and the other with a loss. Whether
this is done to give appropriate closure to a match or to avoid teams running
up scores against weak opponents or simply as a way to discourage cheating is
irrelevant. The operating assumption in this work is that the only information
that can be used to score teams is which teams played against each other and
who won each game.

The results of all the games played in a given tournament of n teams can be
summarized by an n × n matrix W, labeled the win matrix and also referred
to as the matrix of tournament results, where any entry wij represents the total
number of times i beat j. Thus, any game between any two teams i and j that

5for the remainder of this work we will avoid draws for ease of exposition, but they can be
easily included in the analysis.

6There are few exceptions like, for example, in Rugby Union which has a system of bonus
points for scoring a sufficient number of tries or losing by a sufficiently low points margin.
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has been played in the tournament gets recorded either as a win by i (adding 1
to wij ) or a win by j (adding 1 to wji).

7 This also implies that any row i shows
all wins by team i, any column j represents all losses by team j and the diagonal
entries are all zero because teams don’t play against themselves. A matrix that
records the games played by each team but not the results of those games is
referred to as the games matrix and is defined as G ≡W + W> so that every
entry gij shows the number of times that team i plays against team j.8 It will
also be referred to as the tournament schedule in reference to a tournament that
has not been played yet.

Other useful matrices and vectors are the games played diagonal matrix DG

which records the total games played by any team i along its diagonal entry dii.
Multiplying W and G by a vector of ones u gives us the total wins vector w
and the total games played vector g respectively. And if we pre-multiply the
wins vector by the inverse of the games played diagonal matrix, each total wins
entry gets divided by the total number of games played by the respective team,
which gives us the win percentage vector ŵ.

Teams must be scored using only the win matrix as a source of information
so the win matrix can also be interpreted as the scoring problem. A scoring
function is a multivariate function Mn(·) that assigns any n×n scoring problem
an n×1 vector of scores vn. A scoring method is a collection of scoring functions
{Mn(·)}∞n=2, where each function Mn(·) is applied to any scoring problem with
n teams.9 Finally, we may want the scoring functions of a scoring method to
be based on the sum of points received as a result of each win or loss. For this
we define a scoring method to be points-additive if all its scoring functions can
be expressed through a points system where the points assigned to any team i
can be decomposed as the following sum:

pi ≡
∑
j [wij Fij(W) + wji Gij(W)]

where Fij and Gij are functions that assign a number to any scoring problem
W (with Fij representing the points assigned to i for every win against j and
Gij the points assigned to i for every loss against j). The score vi assigned to
team i is simply its assigned points pi divided by the number of games played.
In other words, we can obtain the scores vector v by pre-multiplying p by D−1

G .
It is important to note that without further restrictions, any scoring method

could be expressed as a points-additive method by appropriately selecting Fij
and Gij for each of its scoring functions. But this would require in some in-
stances selecting functions that are inconsistent with the re-labeling of teams.
The property that requires scoring methods to survive re-labeling of teams is

7If the tournament allows for draws then this can be captured by adding 1⁄2 to both wij
and wji, with a slight loss of generality that would come from not being able to distinguish
two draws from a win and a loss against a given team.

8Also, by definition, row i transposed is equal to column i and all rows (and columns) have
at least one entry that is not zero (or else the corresponding team would not play any games
and therefore not be part of the tournament).

9For the remainder of the work, unless it is strictly necessary, I will drop the subscript n
for easeness of exposition.
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known as anonymity10 and it is discussed at length in the literature11 but taken
for granted here. The intuition for it is very simple: Re-labeling team i as team
j and vice-versa (plus appropriately changing the win matrix to accommodate
this re-labeling of teams) should always result in the exact same scoring of all
teams (including i and j but where the new vi would equal the old vj and
vice-versa). Otherwise the scoring method is fundamentally unfair and of no
practical use. This is why all scoring methods that make any logical sense sat-
isfy anonymity and why the family of points-additive methods that also satisfy
anonymity is a subset of the set of all anonymous scoring methods.

This work concentrates specifically on anonymous points-additive scoring
methods. The first objective is to develop intuitively appealing standards of
fairness and internal consistency that are necessary for any such scoring method
to satisfy. Then, I present a family of scoring methods that is intuitively simple
and satisfies these standards.

2. Fairness Criteria:
Absent any other information to be used, it would not be fair to assign two

different teams a different amount of points for beating the same opponent. For
the same reason it would not be fair to assign two different teams a different
amount of points for losing to the same opponent. Thus, the first two fairness
criteria are:

1. Win fairness: A win against opponent j is assigned the same points to any
team that beat j.

Formally, this means that the points-additive method must satisfy the following:
Fij(W) = Fj(W) for all i, j.

2. Loss fairness: A loss against opponent j is assigned the same points to any
team that lost to j.

Formally, this means that the points-additive method must satisfy the following:
Gij(W) = Gj(W) for all i, j.

Notice that the win percentage method satisfies these two criteria, but the
criteria leave the door open to assigning different points for beating (or losing
to) different opponents. This will be crucial to a scoring method that is applied
to incomplete tournaments, which requires qualifying a win and/or loss through
the only sensible way: The identity of the opponent.

Allowing wins and losses to be assigned different points requires some cau-
tion: If we want to interpret a win as a positive signal (in the sense of being
superior to the opponent) and a loss as a negative signal (inferior to the op-
ponent) then the former should result in more points assigned than the latter.
Thus, our third fairness criterion is:

10Formally, a scoring method M(·) will satisfy anonymity if for any re-labeling (i.e: one-to-
one) function σ : {1, ..., n} → {1, ..., n} and its appropriately re-labeled win matrix Wσ , the
score of any team i, vi = vσ

σ(i)
, where v = M(W) and vσ = M(Wσ)

11See for example Slutzki and Volij (2005) or Chebotarev and Shamis (1998).
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3. Win dominance: Any win by any team should be assigned more points than
any loss by any team.

Formally, it means that the points-additive method must satisfy the following:
Fij(W) ≥ Gkl(W) for all i, j, k, l.

This criterion will be key to avoiding nonsensical scoring outcomes like a
team that loses all its games (presumably to very strong opponents) being scored
higher than a team that wins all its games (to weak opponents nonetheless).
There is also a very practical reason for this type of criterion to be applied:
If teams are allowed to schedule opponents then without win dominance there
would be no incentives to schedule an a-priori very weak opponent against the
possibility of scheduling a very tough one that would guarantee a higher score
regardless of the result.

The above example on scheduling incentives is relevant because we implic-
itly assume that the scoring method will give higher rewards for beating better
opponents. If, instead, a victory against a weak opponent were to be assigned
more points than a victory against a stronger opponent then the scoring method
would be giving an unfair advantage to teams playing against the weaker oppo-
nent with respect to those playing against the stronger one. This leads us to our
last two fairness criteria. They require the scoring method to assign points for
victories that are non-decreasing in opponent strength and to assign points for
losses that are also non-decreasing in opponent strength. Notice that a reason-
able measure of the strength of an opponent is given by the opponent’s score,
after all, the scoring method is designed to assign scores that reflect the relative
importance of teams in order to rank them from best to worst. So we naturally
use the scores as measures of strength. As a result, the strength of an opponent
that is used for these two criteria is endogenous to the scoring method that the
criteria are being applied to. This concept is referred to in the literature as
self-consistency. Thus, our last two fairness criteria are:

4. Self-consistent win fairness: The points assigned for victories are non-
decreasing in the opponent’s score

Formally, this criterion requires for all i, j, k that Fki (W) ≥ Fkj (W)⇔ vi ≥ vj ,
where vi and vj are the ith and jth entries of the scores vector v = M(W).

5. Self-consistent loss fairness: The points assigned for losses are non-
decreasing in the opponent’s score.

Similarly, this criterion requires for all i, j, k that Gki (W) ≥ Gkj (W) ⇔ vi ≥
vj .

If a points-additive scoring method satisfies all five fairness criteria I will
label it a fair points-additive scoring method.

3. Consistency Criteria:
Having established basic notions of fairness, it is important to make sure

that a scoring method exhibit internal consistency. The criteria presented and

6



discussed here fit within the broader literature on pairwise comparisons. This
literature analyzes different scoring methods through properties that may or
may not be desirable for a given scoring problem that arises through a set of
pairwise comparisons. Competitive tournaments are just one possibility, others
being, for example, web-pages that link to each other or research works that
cite each other. Of course, each example of a scoring problem will have its
own idiosyncracies that result in some of the properties analyzed being either
desirable, irrelevant or undesirable. In some instances a given scoring method
can be uniquely defined by a set of independent properties. In this work I do
not seek out to establishing axioms for the family of scoring methods presented
here. Instead, in what follows, I go through the main properties analyzed by
the literature in addition to new ones I develop and discuss their desirability or
lack thereof for the specific case of incomplete tournaments of teams or players
that compete in head-to-head fashion each time.

In the literature on pairwise comparisons, similar or even the same property
may be given different names by different authors. For consistency I use the work
by Gonzalez Diaz, Hendrickx and Lohmann (2014) as a guide since first, their
work is comprehensive as it includes an analysis of multiple scoring methods
through more than 12 different properties and second, it is also written with
the application to competitive tournaments in mind.12 The only difference
between the work here and their work is that they assume that the win matrix
is irreducible, which ensures that all the scoring methods they study are well-
defined, whereas the application in mind in this work must allow for reducible
win matrices.13

The most basic properties analyzed by the literature on pairwise comparisons
(besides anonymity which was discussed here) are the following:

Homogeneity asks for the ranking of teams implied by the scoring method
to not change if the win matrix is scaled. A stricter version would also require
the scores to be the same. This is very intuitive: Assume that all the games of
a given tournament are played for a second time and that the results are the
same, then this should have no effect on the final scores. In other words, if we
scale all results proportionally then scores should remain the same.

6.1. Win-scaling consistency: Scores are invariant to scaling of the win
matrix.

Formally, this means that for any k > 0,M(kW) = M(W), where k is a
positive integer (although one could conceive of allowing k to be any positive
real number).

An even stricter version of this criterion would ask that if the tournament
schedule is repeated but with possibly different results each time then the re-
sulting scores should be the average of the ones assigned for each individual
tournament (thus, if the results were to be the same then the scores would too).

12Another comprehensive analysis of scoring methods, with a broader scope towards pref-
erence aggregation in general, is the work by Chebotarev and Shamis (1998)

13However, it must be noted that the properties themselves are mostly independent of
whether the win matrix is reducible or not.
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However, this does impose unnecessary linearity into the method’s mechanism
for obtaining scores, so it is not a property that must hold for the scoring method
to show consistency. Nevertheless, if a scoring method does satisfy it then it
can be considered a welcome addition:

6.2. Game-scaling consistency: Scores are average in the scaling of the
games matrix.

Formally, for k scoring problems W1, ...,Wk where Gi = Gj for all i, j the
following must hold: M(

∑
iWi) = (1/k)

∑
iM(Wi).

A related property asks that if two different scoring problems with the same
teams result in all players receiving the same scores -an outcome labeled flat
scores- then the same should be true of the combined problem.

7. Flatness preservation: Flat scores are preserved when combining scoring
problems.

Formally, for two scoring problems W1,W2 where M(W1) = γ1u and
M(W2) = γ2u with γ1 and γ2 real numbers and u a vector of ones, it must be
the case that M(W1 + W2) = δu for some real number δ.

Symmetry asks that the scores be the same for all teams if no team has
beat another team more than that team has beat it (a symmetric win matrix).
Define net wins for i against j as the number of wins minus the number of losses
against that opponent (that is, wij − wji). Then

8.1. Symmetry: If all net wins are zero then scores are flat.

Formally, define the net wins matrix N ≡ W −W>. Then if N = 0,
M(W) = γu, for some real number γ.

Symmetry is implied by a stricter property that requires the ordering of
teams to flip if all the results in the tournament are flipped (from victories to
losses and vice-versa):

8.2. Inversion: Scores are inversely related to those resulting from replacing
all wins with losses.

Formally, if v = M(W) and x = M(W>) then for all i, j, vi ≥ vj ⇔ xj ≥ xi.
Thus, if W is symmetric then it must be the case that v = x and symmetry
holds.

Next is a set of properties that I consider desirable in that they satisfy
basic common sense notions along the following dimensions: The merging of
tournaments, in relation to the specific roles that victories and losses play within
a scoring method and in comparison to a complete tournament.

Regarding the merging of tournaments, assume that we can partition the set
of teams in a given tournament into two subsets where no team in the first subset
played against any team in the second subset. Then we want the scores assigned
to be the same, whether they are obtained by treating the information as two
separate scoring problems or as a single merged scoring problem. The intuition
is simple: No additional information results from merging two tournaments
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(with different teams) so we should expect no changes in the scores if we do.
Thus, we have:

9. Merging consistency: The scores of the union of two scoring problems
with different teams is equal to the union of scores.

To formalize this requirement we briefly bring back the subscripts that indicate
the number of teams in a given tournament. If we have a tournament W1 with
n1 teams in it and another tournament W2 with n2 teams in it then the union
of the scores is equal to the scores of the union if[

Mn1 (W1)
Mn2

(W2)

]
= Mn1+n2

([
W1 0
0 W2

])
.

At a more fundamental level, this consistency requirement forces a scoring
method’s scoring functions to perform the same types of operations on the
respective scoring problems in order to assign final scores.14

Regarding the treatment of victories and losses, a well studied property
requires the score of any team to go up if all we do is turn any one of its losses
into a victory.

10. Positive response to the beating relation: A team’s score is non-
decreasing in replacing a loss with a victory against the same opponent.

Formally, for two scoring problems W,W′ such that W = W′ + Eij + Eji
where for any k, l, Ekl is a matrix of zeroes with a one at entry (k, l), if v =
M(W) and x = M(W′) then vi ≥ xi.

Another property that is very intuitive, has been well studied by the lit-
erature and falls within the self-consistency category is labeled self-consistent
monotonicity. It has many possible versions that deserve to be analyzed in de-
tail. In its weakest version,15 it states that for any two teams (that play the
same number of games), if we can create a one-to-one relation between the op-
ponents of the first and second teams such that it is always the case that the first
team fared no worse than the second and the first teams’s opponent’s score was
no worse than the second’s opponent’s score then the first team’s score should
be higher than the second team’s score. To summarize:

11.1 Weak self-consistent monotonicity: For two teams that play the same
number of games, better results against stronger opposition leads to higher scores.

Formally, for two teams i and j that played the same number of games we

14In other words, without this requirements the scoring method could be comprised of
scoring functions that are wildly different from each other just because the number of teams
in the tournaments are different.

15referred to plainly as self-consistency in Chebotarev and Shamis (1998) and in Csato
(2019) when discussing an impossibility theorem
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must first define the following multi-sets:16

O+
i ≡ Multi-set of all teams that i beat,

O−i ≡ Multi-set of all teams that i lost to,

O+
j ≡ Multi-set of all teams that j beat,

O−j ≡ Multi-set of all teams that j lost to,

Let there be a one-to-one relation σ : O+
i ∪ O

−
i → O+

j ∪ O
−
j such that for

all k ∈ O+
i ∪ O

−
i , vk ≥ vσ(k) and if k ∈ O−i then σ(k) ∈ O−j . Then weak

self-consistency holds if vi ≥ vj .
This is an intuitively appealing requirement that would belong as a fairness

criterion if it were not for the fact that it is already implied by a points-additive
scoring method that satisfies the five fairness criteria discussed above. However,
one could ask for more: For example, if a team has better results against better
opposition for a number of games and the rest of the team’s games are all
victories whereas the rest of the other team’s games are all losses, then it seems
reasonable to ask that the first team be ranked above the second in this case
too. Such a requirement would go hand-in hand with the idea of any victory
assigning more points than any loss in a points-additive method, provided this
version of self-consistent monotonicity still applied to two teams playing the
same number of games. For lack of a better word, I will refer to it as regular
self-consistent monotonicity.

11.2 Regular self-consistent monotonicity: For two teams that play the
same number of games, better results against stronger opposition plus added
wins versus added losses leads to higher scores.

Formally, using the same multi-sets as in (11.1), let there be a one-to-one
relation σ : O+

i ∪ O
−
i → O+

j ∪ O
−
j such that if k ∈ O−i then σ(k) ∈ O−j and

vk ≥ vσ(k) and if k ∈ O+
i and σ(k) ∈ O+

j then vk ≥ vσ(k). Then regular
self-consistent monotonicity holds if vi ≥ vj .

This stricter version is also implied by the five fairness criteria as the follow-
ing proposition states:

Proposition 1: A fair points-additive scoring method satisfies regular self-
consistent monotonicity

The intuition for this result is straightforward: If a team plays against better
opposition with better results then it will receive a higher score because the
points awarded are increasing in the quality of competition due to self-consistent
fairness and in the result of its matches due to win domination. In the latter
case this is true regardless of the strength of the opposition faced, so if the first
team has additional wins and the second team has additional losses then this
does not affect the result, regardless of the strength of the opposition played in
those additional games.

16A multi-set can have the same element multiple times in it.
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Towards the end of this section I discuss a stricter version of this property
that allows for the two teams to play a different amount of games.

Finally, it was argued in the introduction that the win-percentage method
is the benchmark for fairness when the tournament is complete. Thus, we don’t
want to use a scoring method that, in complete tournaments, delivers a different
ranking of teams than the one resulting from using win percentages. Notice that
the scores vector and the win percentage vector don’t have to match in order
to deliver the same ranking, only the implied ordering of teams have to match.
More generally we define scores vectors v and x as rank equivalent if there
exists a strictly increasing function h : R → R such that for all i, vi = h(xi).
Intuitively, the ranking that results from using the scores from x will not be
altered by applying the same strictly increasing function to all xi, so if such a
function exists then both scores vectors v and x produce the same rankings.
Consequently, the last consistency requirement can be expressed as:

12.1. Win percentage consistency: In a complete tournament, scores and
win percentages are rank-equivalent.

Formally, if G · u = (n− 1)ku where k is a positive integer and v = M(W)
then there exists a strictly increasing h : R→ R such that for all i, vi = h(ŵi).
A stricter version of this property, labeled homogenous treatment of victories
requires win percentages to determine which team is scored higher when any
two teams face the same opponents (other than possibly facing each other).
Thus, define two schedules to be equivalent if they include the same opponents,
possibly including each other as opponents respectively as well. Then we have

12.2. Homogenous treatment of victories: Scores are increasing in win
percentages when teams play equivalent schedules.

Formally we have that for any two teams i, j if gi = gj +γ(ej−ei) where gk
is the kth column of G and γ is a non-negative integer, then vi ≥ vj ⇔ ŵi ≥ ŵj .

Of course, in a complete tournament any two teams always play equivalent
schedules so under homogenous treatment of victories, scores and win percent-
ages must be rank-equivalent.

I now turn to properties that are discussed by the literature that I consider
undesirable for incomplete tournaments. In each case I provide an example that
explains my reasoning.
Order preservation: It states that if a team’s score is higher than another team’s
score in two different scoring problems then it should still be higher in the
combined problem. This property has the undesirable feature of asking the
scoring method to essentially ignore the fact that opponents that were deemed
strong in the first scoring problem may have been considered as weak in the
second tournament, affecting the scores of any teams that played against them.
In other words, what is desirable is to have teams’ relative scores changing in
either direction when more information about the opponents is obtained. As a
result, order preservation is unwarranted. To be more specific, when combining
two tournaments we will encounter four types of teams: Type 1 are those that
did well in both, type 2 are those that did well in the first but not the second,
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type 3 are those that did well in the second but not the first and type 4 are
those that did poorly in both. We can easily imagine how a team that beat
teams of type 2 in the first tournament and of type 3 in the second would have
a very high relative score in both tournaments if they were scored separately
but we would want it to have a mediocre score when both tournaments were
combined into one. Order preservation would prevent this from happening.
Independence of irrelevant matches: It states that the relative scores of any two
teams should not depend on the results of matches that don’t involve at least
one of these two teams. This property is undesirable because it runs counter
to the idea of quality of opposition being an important factor in determining
a team’s score. It’s not the same to beat a team that won all its other games
than one that lost them. Thus, the relative scores should reflect this and not
be independent of it.
Bridge player independence: If we partition the set of players into three subsets
with one of them having a single player in it then that player is considered
a bridge player if it is the only link between the other two sets of players.
That is, players in one set never played against any player in the other set but
at least one player of each set has played against the bridge player. Bridge
player independence requires that the results of the bridge player in the second
set should not influence the relative scores in the first set. This property is
specifically tailored for tournaments with irreducible win matrices (where it is
always possible to find a string of players that successively beat each other
starting from any player and ending at any player) which is not necessarily the
case here. But even if we restrict ourselves to this subset of scoring problems
then there is still a case to be made against it. The bridge player is an opponent
of some players in the first set but not of others. Thus, its results against teams
in the second set should indeed impact the relative scores of the opponents of
the bridge player in the first set and not be independent of them. In a sense, this
is a much weaker version of independence of irrelevant matches that is equally
unappealing.
Negative response to losses: It asks that if we start out with all teams receiving
the same score and we multiply each team’s losses by different constants then
the final scores should be inversely related to those constants. The problem with
this property is that it ignores the fact that every extra loss implies an extra
win too. So we can imagine a situation where one team’s losses are multiplied
by a relatively big constant but it happened to have given another team its only
loss and that team’s losses are now multiplied by an even higher constant. On
average the first team is not in such a bad position after all and it may edge out
a third team whose losses got multiplied by a lower constant.
Strict self-consistent monotonicity: If a team has better results against better
opposition than another team then it makes sense to score it above the second.
This is the essence of self-consistent monotonicity as explained above. The
strongest version of this property would expand the requirement to teams that
don’t play the same number of games by simply allowing the set of all victories
for the first team or the set of all losses for the second team to have different
cardinality (including being empty sets). However, it can be argued that this
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may be too much to ask. We can imagine a team that beat one very good
opponent versus another that beat a slightly better opponent and also a really
bad one. Clearly, strict self-consistent monotonicity would want the scoring
method to assign the second team a higher score than the first (whereas regular
self-consistent monotonicity would have nothing to say). In essence, it wants the
victory against weak opposition to never lower the team’s score. Reversing the
argument would lead us to also conclude that it wants a loss against stronger
opposition to never increase a team’s score. This would result in either having
to ignore victories to anything other than the best opposition (and vice versa for
losses), abandon win and loss fairness or abandon the point’s-additive structure
altogether. It would have as a consequence that teams that racked up victories
against very weak opposition would always get rewarded for it or at least never
punished. This is not necessarily an undesirable result, but it can be very
constraining when the number of teams is high and the number of games played
by each team is very low and we are trying to extract as much information as
possible from the few observations that exist for each team. In more practical
terms, if we are comfortable giving a team a very high score because it beat
only one really good team plus a number of very weak ones then this is a good
property to have. Otherwise it is too strict and its weaker versions should be
considered.17

In the following section a family of scoring methods is presented. It is shown
to satisfy, under certain conditions, all five fairness criteria and all other desir-
able properties presented here. In addition, it does not satisfy the properties
that were considered undesirable.

4. The generalized points method family:
The functions {Mn(W;α)}∞n=2 of the generalized points (GP) family of scor-

ing methods assign scores v according to the following recursive equation:

v = αŵ + (1− α)D−1
G ·G · v, where αε (0, 1] . (1)

In it, α is a free parameter that defines this family of scoring methods.18. To
gain some intuition, we can focus on how the score of an individual team is
obtained: The recursive formulation for team i′s score vi is:

vi = αŵi + (1− α)
∑
j

gij
gi
vj .

Thus, a team’s score is a weighted average of it’s win percentage and the
strength of schedule, where the strength of schedule is defined as the weighted

17Interestingly, most of the arguments for and against the appeal of the rankings provided
by different entities like the Associated Press, the coaches poll or the playoff committee for
the NCAA Football tournament boil down to the treatment of such teams. That is, where to
rank teams that win many games because they play very weak schedules.

18This family of scoring methods is closely related to the generalized row sum method
proposed in Chebotarev (1994) and for α = 1/2 produces a close match to the scoring method
in Colley (2004)
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average score of all opponents with weights defined by the percentage of all
games played by i that were played against a given opponent j.

For the recursive formulation in 1 to define a scoring method there should
be a unique and finite scores vector v that satisfies the equation for all W.
Otherwise at least one of its scoring functions Mn(·) would not exist and the
scoring method would not be well defined.

Proposition 2: The GP method is a scoring method.

The proof to proposition 2 shows that the recursive formulation can be
rearranged as an explicit, well-defined function. Additional re-arranging can
also show that the GP method is points-additive and satisfies the following:

Corollary 1: The GP method is a points-additive method that satisfies win and
loss fairness and self-consistent win and loss fairness.

The proof shows that the recursive formulation of the GP scoring method
can be rearranged to fit the point-additivity requirement where Fij (W) = α+
(1−α)vj , Gij (W) = (1−α)vj , and where we know from proposition 2 that vj is
unique and finite for all j. Additionally, since both expressions are independent
of i then both win and loss fairness are satisfied and since α < 1 then Fij and
Gij are increasing in vj so self-consistent win and loss fairness are satisfied as
well.

Expressing the GP method as a points-additive system provides us with a
very intuitive interpretation of its underlying structure: For every game played
between team i and team j, whenever i beats j the following points are assigned:

Points assigned to winning team i = α× 1 + (1− α)× vj
Points assigned to losing team j = α× 0 + (1− α)× vi

That is, the winning team receives a weighted average between 1 and the score
of the losing team and the losing team receives a weighted average between
zero and the score of the winning team. Notice as well that for α = 1, this
method assigns one point per win and zero per loss, so it collapses to the simple
win-percentage method.

This intuitive way of expressing the GP method is useful for finding a suf-
ficient condition on the possible values of α for the GP method to satisfy win
dominance (which states that no loss should ever award more points than a
win). That sufficient condition is that α ≥ 1⁄2.

Corollary 2: If α ≥ 1⁄2, then the GP method satisfies win dominance

If α ≥ 1⁄2 then losing to a team of score vi = 1 would award the loser (1−α) ≤
1⁄2 points whereas beating a team of score vj = 0 would award the victor α ≥
1⁄2 points. The proof shows that no team can ever achieve a score higher than
1 or lower than 0.

In section 6 the question of a lower bound for α is further discussed. First,
to show that if we want this criterion to be satisfied for all W (and regardless of
the number of teams) then 1⁄2 is the appropriate lower bound. In other words,
α ≥ 1⁄2 is both a sufficient and a necessary condition. I will refer to this sub-set
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of GP methods as globally fair. Nevertheless, it is easy to show that when the
number of teams in a given tournament is low, the corresponding lower bound is
not as high. Thus, global fairness can be too restrictive for specific applications.
For example, in a two or in a three team tournament, the lower bound is zero.
Unfortunately, when the number of teams is high, the total number of possible
combinations of results grows exponentially and calculating the actual lower
bounds on α very quickly becomes impossible. Instead, the analysis in Section
3 turns the question around by making explicit a practical way of ruling out
values of α that do not satisfy this criterion.

Next we turn to the consistency criteria: Notice that the GP method can also
be expressed as an infinite weighted average of the win percentages of all teams.
As a result, when scaling the win matrix, as long as the weights remain the same
(they do), the scores will also remain the same because the win percentages do
so as well. Moreover, linearity in the win percentages ensures that if we scale
the games matrix, the resulting scores will be the average of the scores of the
individual tournaments. Thus,

Proposition 3: The GP method satisfies game-scaling consistency.

Linearity in the win percentages also guarantees that combining scoring
problems with flat scores results in the same flat scores.

Proposition 4: The GP method satisfies flatness preservation.

The key to this proof is to show that for scores to be flat then it must be the
case that win percentages are all one half. Since this is true of both tournaments
then this must be true of the combined tournament as well.

Proposition 5: The GP method satisfies inversion.

The proof shows that if all wins are turned into losses and vice-versa then
the result is for all teams to be assigned 1 minus their original score.

Recall that the GP method uses only wins and losses to generate both the
win percentage and the strength of schedule. This means that when two sets of
teams don’t play each other, there is no mechanism present that would modify
the win percentages or the strength of schedule as compared to treating the
tournaments separately. Thus,

Proposition 6: The GP method satisfies merging consistency.

Key to this proof is that the win matrix of the merged scoring problem is
block-diagonal.

For any scoring problem, if the result of one match is changed then the
direct effect for the team with an extra win (and one loss less) is greater than
any indirect effects that this may generate through the other teams’ changes in
their respective scores and their possible influence in the original team’s strength
of schedule.

Proposition 7: The GP method satisfies positive response to the beating rela-
tion.
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This result is non-trivial in that the indirect effects can vary wildly, gener-
ating big swings in any team’s strength of schedule.

If two teams share the same schedule (with the possible exception of fac-
ing each other) then when computing the difference in scores, the strength of
schedule cancels out (and if they play each other it is proportional to the same
difference in scores) so it is easy to show that the difference in scores is propor-
tional to the difference in win percentages.

Proposition 8: The GP method satisfies homogenous treatment of victories.

This also means that when the tournament is complete, the GP method is
linear in the win percentage method, not just rank-equivalent.

Corollary 3: In a complete tournament the GP scores are a linear function of
the win percentages.

The proof of this proposition shows that in a complete tournament, scores
v satisfy the following:

v =
α (n− 1)

(n− α)
ŵ +

(1− α)n

(n− α)2
u, (2)

This property is not only important because it implies that the GP method
satisfies win percentage consistency but also because it allows us to develop a
normalization of the scores, by simply solving for the win percentages in equa-
tion (2). This opens up an avenue of research on the merits of the scoring
methods within the GP family that uses a completely different metric from
the fairness one: A metric that directly compares the normalized scores of an
incomplete tournament to the win percentages of a hypothetical complete tour-
nament. Using Monte-Carlo simulations, such a metric would favor the level of
α that results in the best fit to the win percentages of the complete tournament.
Such an endeavor is left for future work.

5. Win dominance and the game matrix:
We know that the globally fair lower bound for α that guarantees that every

win will award the victor more points than any loss will award the loser is 1⁄2.
But in reality, 1⁄2 is a rather strict lower bound because it relies on assuming
that it is possible to have a team with a score of 1 and another with a score
of 0. The analysis that follows shows that with a sufficient number of teams
n, the maximum possible score for a team does indeed approach 1 and the
minimum possible score for a team approaches 0. Thus, α = 1⁄2 is the appropriate
lower bound if the intention is to satisfy win dominance for all n,g.19 However,
even for fairly high values of n (for example 100), a sufficiently low number
of games played by each team g leads to much lower bounds on α. This is
because teams cannot achieve scores close enough to 0 and 1 even under very
favorable circumstances. The constructive approach that generates the favorable

19In that light, the Colley method can be seen as the GP-method that minimizes α while
guaranteeing that win dominance is met for all n.
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circumstances used to prove that the maximum and minimum scores do indeed
approach 0 and 1 for high enough n and g can then be used as a practical tool
for obtaining lower threshold values of α below which win dominance is not
satisfied and above which win dominance may be satisfied.

In order to show that the maximum and minimum possible scores approach
1 and 0, it suffices to show that this is true for a given class of tournament
results that share the same property (that is, where for a given n, g, W has a
pre-determined structure): What follows is a class of tournament results that
creates a very high distance between the scores of the best and worst teams.
The purpose is both to make it easier to prove that the maximum and minimum
scores approach 1 and 0 as the number of teams n → ∞ and to create lower
bounds for α that are below 1⁄2 for low values of n. Assume that each team
plays g games. The best team will be defined as the type-1 team and it beats g
second-best teams defined as type-2 teams who each in turn beats (g−1) type-3
teams and so on until we reach type-m, a mediocre type. The mediocre teams
each lose g/2 games to type-( m-1) teams and beat g/2 type-( m+1) teams if g
is even.20 Then, each type-( m+1) team loses to (g−1) type-m teams and beats
one type-( m+1) team. This goes on until we reach the last type, the single
worst team, type-t, which loses all g games to type-(t− 1) teams. The structure
described generates the following system of t equations and t unknowns:

v1 = α+ (1− α)v2

v2 = α
(g − 1)

g
+ (1− α)

[
1

g
v1 +

g − 1

g
v3

]
...

vm−1 = α
(g − 1)

g
+ (1− α)

[
1

g
vm−2 +

g − 1

g
vm

]
vm = α

1

2
+ (1− α)

[
1

2
vm−1 +

1

2
vm+1

]
vm+1 = α

1

g
+ (1− α)

[
g − 1

g
vm +

1

g
vm+2

]
...

vt−1 = α
1

g
+ (1− α)

[
g − 1

g
vt−2 +

1

g
vt

]
vt = (1− α)vt−1

In this scenario, m = (t + 1)/2, where t is odd and the number of teams
n is increasing in g and t. An interesting property of this class of tournament
results is that it is symmetric in the types, that is, the number of type−j teams
is equal to the number of type-(t− j + 1) teams. The system of equations will

20If g is odd, replace g/2 with (g−1)/2 and add a draw against a mediocre team to maintain
symmetry
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thus lead to scores that are symmetric (around 1⁄2) as well. This means that for
all j, vj + vt−j+1 = 1.21 Knowing this, the system of equations simplifies to

v1 = α+ (1− α)v2

v2 = α
(g − 1)

g
+ (1− α)

[
1

g
v1 +

g − 1

g
v3

]
> α+ (1− α)v3

...

vm−1 = α
(g − 1)

g
+ (1− α)

[
1

g
vm−2 +

g − 1

g
vm

]
> α+ (1− α)vm

vm =
1

2

After successive replacing we obtain that the score of best team (the type-1
team) must satisfy:

v1 > (1− α)m−1 1

2
+
α

g
+ α

(g − 1)

g

m−2∑
k=0

(1− α)k

= (1− α)m−1 1

2
+
α

g
+

(g − 1)

g

[
1− (1− α)

m−1
]

= (1− α)(t−1)/2 1

2
+
α

g
+

(g − 1)

g

[
1− (1− α)

(t−1)/2
]

Notice that for any α, as both t and g go to infinity, v1 approaches 1. Also,
due to symmetry, v1 + vt = 1, so the score of a type-t team approaches 0 as
well.

The class of tournament results used here was designed to create a big dis-
tance between the top and bottom teams’ scores. Thus, we can create tourna-
ments that fall under this class and obtain the resulting scores, giving us a very
good approximation of the relation between the best/worst possible scores and
α, n and g.22 This, in turn, allows us to compute values of α that result in win
dominance being met as a function of the number of types t and the number
of games g that each team plays. Knowing that v1 is a function of α and that
v1 + vt = 1, then win dominance will be satisfied under this class of tournament
results if

(1− α)v1(α) ≤ 1− (1− α)v1(α)

because the left-hand side is the number of points awarded to a team that has
lost to the best team and the right-hand side is the number of points awarded
to a team that has beat the worst team. Rearranging, we have

2(1− α)v1(α) ≤ 1

21This can be easily proven by showing that if vm+s+1 + vm−(s+1) = 1 and vm+s−1 +
vm−(s−1) = 1 then vm+s + vm−s = 1.

22It is only an approximation in that the structure described may not represent the structure
that maximizes the distance in scores between the best and worst teams
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Figure 1: Fairness: Unfair α Methods

Figure 1 shows, for different number of types t, whether the left-hand side
of the above inequality is indeed below 1 or not as a function of α.

As expected, for high values of α the inequality always holds. For lower
values of α it is a non-trivial issue whether the inequality holds or not because
as α decreases two opposing forces are at play: The direct effect is that the
left-hand side increases due to an increase in (1 − α) but the indirect effect is
that v1(α) is converging towards 1⁄2. However, Figure 1 shows that it is the
direct effect that dominates, so there always exists a threshold level of α below
which the GP method does not satisfy win dominance.

It is important to recall that because we are using a specific class of tourna-
ment results, the threshold α’s found here are only lower bounds for the values
of α that satisfy win dominance for a given number of types t and games played
per team g. That is, if a better tournament-results structure exists that achieves
more distance between the best and worst team using no less teams in total then
it simply means that the minimum α that satisfies win dominance is higher than
the ones found using this particular structure. In other words, we can only use
this specific class of tournaments to rule out values of α.23

Figure 2 shows the lower bounds for different values of t and g. An interesting
feature that can be extrapolated from the graph is that as t → ∞ the lower
bound does not converge to 1⁄2 if g remains fixed, nor does it converge to 1⁄2 as
g →∞ with t fixed. Both t→∞ and g →∞ are required in order for the lower

23In the application to the NCAA football rankings, this approach to obtaining a lower
bound will become relevant as it will rule out any ranking method that is consistent with a
value of α that is lower than the lower bound that is specific to the number of teams and
number of games played by each team in an NCAA football season.
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Figure 2: Fairness: Lower Bounds

bound to be 1⁄2. More importantly, the graph shows that win dominance will
typically not be satisfied for values of α lower than 0.25 (all that is required is
12 teams playing 5 games each) and for applications where the number of teams
is not much higher (for example, more than 25 teams playing 5 games each) a
value of α that is greater than 0.35 will be required (for reference, the dotted
lines in figure 2 show the lower bound for α in a case of 132 teams playing 11
games each).

The takeaway from these results is that the number of teams and the number
of games that each team plays in a given tournament do have an impact on
whether certain values of α can pass the fairness test. And while we may
not be able to determine the exact fairness bounds in each case, the class of
tournaments presented here allows us to determine levels of α that are sure not
to meet the standard of fairness.

6. Application: College Football Rankings
Every year between 2011 and 2017 there have been over 120 teams playing

in the upper division of college football. They play between 11 and 14 games
each season, depending on their success on the field. In order to advance to
a bowl game, a team must finish with a non-losing record. In order to play
for the championship (semi-finals and a final in the College football playoff era
and just a final during the BCS era) a team must be selected to participate.
We are currently in the College Football playoff era, where a committee selects
the final four teams that will compete for the national championship. Prior to
that, during the BCS era the Associated Press, Coaches and a set of ranking
algorithms were weighted in order to determine the two teams that would play
for the title.
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Whether explicitly or not, all these rankings took into account (among other
things) the win percentage and the strength of schedule of a team in order to
score and/or rank it. But the rankings were created by means of aggregating
the individual subjective rankings of human beings.24 As a result one would
expect biases and/or individual preferences for information other than results
and strength of schedule to color the outcomes.25 Even then, we can establish
how close any ranking is to that of some GP method’s ranking. This will give
us an objective way of determining, at a fundamental level, which of the two
main components (win percentage or strength or schedule) is favored more by
each individual ranking. Then, having done that for the rankings by a given
entity over multiple years, we can determine whether that entity ranks teams
fairly or not.

Best Fit metric used

In most of the rankings that are (or were) used by the NCAA only the top
25 teams are ranked.26 The metric favored in this work in order to assess which
GP method comes closest to matching a given ranking is the following:

LR ≡
25∑
i=1

|ln(xi + κ)− ln(yiα + κ)|

where xi represents the ranking position of a given ranked team (as ranked
by a given entity), yiα is the ranking position of that same team according to
the GP method used here and κ is a non-negative number. Notice that this
means that xi ∈ {1, ..., 25} whereas yiα ∈ {1, ..., n} because the GP methods
result in a complete ranking of all teams. Notice as well that absolute values
are used instead of squares. This is done to minimize the effect of outliers on the
total sum, which avoids turning the best fit metric into a metric that best fits to
the one or two outliers (with only 25 observations, this is a non-trivial matter).
For robustness I also calculated the sum of squares in each case. Finally, notice
that as k → ∞ the metric is equivalent to using the sum of the absolute value
of the differences and when κ = 0 it is equivalent to using the difference in
natural logarithms. Neither of these extremes is best. The difference in values
gives the same weight to all ranking positions. But there is a sense in which
a team that was ranked 24th by one method and 21st by another method was
indeed closely matched by the two methods but a team that was ranked 1st by
one and 4th by the other was not closely matched by the two methods. This is

24The cases of the computer rankings are not studied here because the algorithms allegedly
used were maintained secret. This offense to science is resolved through indifference. The
only exception is the Colley Matrix algorithm which was already mentioned. An analysis of
the computer rankings is left for future work.

25Good examples are the timing (early in the season vs. late in the season) and/or the
margin (by how many points) of a victory or a loss.

26The exception is given by some of the computer rankings which not only rank more
teams, but also provide a score for each team that can, in principle, be compared to the scores
assigned by the family of scoring methods presented here. However, as George Berkeley once
said: “If an algorithm is used but not made public, does it really exist?”
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Figure 3: Sum of absolute log differences

because teams at the top are on the tail of the distribution whereas teams at
the bottom (25th out of more than 120 teams) are closer to the median which
presumably means that if two ranking methods are truly similar, it is more
difficult to misalign the rankings of teams at the top of the 25 team ranking
than it is those at the bottom.27 On the opposite extreme, using the difference
in log values gives too much weight to the top ranking positions because very
small misalignments there would be equivalent to extreme misalignments at the
bottom of the 25-team ranking. In order to strike a balance we can calibrate κ
to treat equally the average misalignment in each position. The calibrated value
is κ̂ = 2.5. With few exceptions, the results obtained are robust to changes in
κ.

The Fairness Question

After analyzing the rankings of three different entities (BCS, AP and CFP)
over 7 different years (14 different rankings because CFP came into existence as
a replacement of the BCS) the results on the question of fairness were conclusive:
Not a single one of the 14 rankings (even under any of the best fit metrics used
as robustness checks) met the win dominance standard. In other words, not
a single one of the rankings was fair. This is because in order for a ranking
to be considered fair it would have to have given no more than a 59% weight
to the strength of schedule (α ≥ 0.41).28 Figure 3 shows the sum of absolute
differences between the ranking by the BCS/CFP and that of the GP method
for different values of α for each of the 7 years with data.

27But there is a case to be made about preventing teams that are ranked near the bottom to
influence the metric in the same way as those at the top (after all, the main objective of these
rankings is to select only the top 2 or 4 teams that will play for the national championship).

28However, one can take a more relaxed approach to the fairness question and only ask a
ranking to be ex-post fair in the sense of not effectively assigning more points for a loss than
a win (once the games have been played) as opposed to not potentially assigning more points
for a loss than a win (before the games are played), the latter being the definition favored
in this work. Somewhat surprisingly there are cases that can’t even meet this much lower
standard, but at least it is a standard that many rankings do meet.
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The stepwise nature of the graphs are the result of small differences in α not
always changing the ordering of teams. The best fit occurs where the sum of
absolute differences is at its lowest. For all years the minimum occurs at values
of α < 0.41. As a result we can safely conclude that the rankings used by the
NCAA during the years spanning the 2011 and 2017 seasons were unfair.

7. Conclusion
Head-to-head match-ups in sports and other competitions conclude with the

declaration of a winner and a loser (or the absence of both which defines a draw).
After multiple matches involving multiple teams it is natural and customary to
establish a final ordering of the teams. The win percentage scoring method
is the most widely used, least disputed method to create such an ordering in
complete tournaments. Using it as a benchmark, I present a parsimonious
family of scoring methods that satisfy basic fairness and consistency standards
for the case of incomplete tournaments (the most important one being that no
team should be awarded more points for a win than for a loss, regardless of the
opponents). It includes the win percentage method as a special case. Finally, I
apply the above to the NCAA division 1 football tournament by calibrating the
family of scoring methods to match as closely as possible the actual rankings
that were used to determine the teams that would go on to compete for the
championship in the years ranging from 2011 to 2017. The main finding is that
the rankings used by the NCAA were unfair due to the strength of schedule
component being over-weighted. This resulted in overrating teams with strong
schedules and underrating teams (such as the 2017 University of Central Florida
team) with weaker ones.
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Appendix A
Proposition 1: A fair points-additive scoring method satisfies regular self-
consistent monotonicity

Proof: Let i and j be two teams that played the same number of games such
that the following multi-sets can be defined:

O+
i ≡ Multi-set of all teams that i beat,

O−i ≡ Multi-set of all teams that i lost to,

O+
j ≡ Multi-set of all teams that j beat,

O−j ≡ Multi-set of all teams that j lost to,

Let there be a one-to-one relation σ : O+
i ∪O

−
i → O+

j ∪O
−
j such that if k ∈ O−i

then σ(k) ∈ O−j and vk ≥ vσ(k) and if k ∈ O+
i and σ(k) ∈ O+

j then vk ≥ vσ(k).
For team i we have

pi =
n∑
k=1

wik Fik (W) + wkiGik (W)

=
n∑
k=1

wik Fk (W) + wkiGk (W)

=
∑

k∈O+
i

Fk (W) +
∑

k∈O−i

Gk (W)

Similarly for team j we have

pj =
n∑
k=1

wjk Fjk (W) + wkj Gjk (W)

=
n∑
k=1

wjk Fk (W) + wkj Gk (W)

=
∑

k∈O+
j

Fk (W) +
∑

k∈O−j

Gk (W)

where in both cases the first equation is due to the method being points-additive,
the second due to win and loss fairness and the third from the definitions of the
respective multi-sets as defined above. Subtracting j’s points from i’s points we
have

pi − pj =
∑

k∈O+
i

Fk (W) +
∑

k∈O−i

Gk (W)−
∑

k∈O+
j

Fk (W)−
∑

k∈O−j

Gk (W)

=
∑

k∈O+
i

σ(k)∈O+
j

[
Fk (W)− Fσ(k) (W)

]
+
∑

k∈O+
i

σ(k)∈O−j

[
Fk (W)−Gσ(k) (W)

]
+
∑

k∈O−i

[
Gk (W)− Gσ(k) (W)

]

where the second line results from the existence of the one-to-one relation σ
where we know that if k ∈ O−i then σ(k) ∈ O−j . The first term on the right-
hand side is non-negative because of self-consistent win fairness where we know
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that vk ≥ vσ(k). The second term is non-negative because of win domination .
The third term is non-negative because of self-consistent loss fairness where we
know that vk ≥ vσ(k). As a result, team i is assigned more points than team j
and because they both play the same number of games then vi ≥ vj .
Proposition 2: The GP method is a scoring method.

Proof :

v = αŵ + (1− α)D−1
G ·G · v[

I− (1− α)D−1
G ·G

]
· v = αŵ

v = α
[
I− (1− α)D−1

G ·G
]−1 · ŵ

where the matrix
[
I− (1− α)D−1

G ·G
]

is invertible because it has ones along
its diagonal and non-positive numbers along off-diagonal entries that add up to
(1− α) < 1 along any row. Thus, M(W) is well-defined.

Corollary 1: The GP method is a points-additive method that satisfies win and
loss fairness and self-consistent win and loss fairness.

Proof : Define Fij (W) = α + (1 − α)vj and Gij (W) = (1 − α)vj for all i, j.
Then for all i we have

pi ≡
∑
j [wij Fij(W) + wji Gij(W)]

=
∑
j{wij [α+ (1− α)vj ] + wji [(1− α)vj ]}

that is,

p = αW · u + (1− α)W · v + (1− α)W> · v
= αw + (1− α)G · v

which means that

v ≡ D−1
G · p = α ŵ + (1− α)D−1

G ·G · v

The last equation shows that the vjs used to define Fij and Gij are indeed
the scores of the GP method. Thus, the GP method is points-additive and since
both Fij and Gij are independent of i then win and loss fairness are satisfied.

Corollary 2: If α ≥ 1⁄2, then the GP method satisfies win dominance

Proof :

v = α
[
I− (1− α)D−1

G ·G
]−1 · ŵ

= α

[ ∞∑
t=0

[
(1− α)D−1

G ·G
]t] · ŵ

= α
∞∑
t=0

(1− α)
t (
D−1
G ·G

)t · ŵ
≤ α

∞∑
t=0

(1− α)
t
u = u
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The first equation comes from the last equation in the proof of proposition 1.
The second equation can be derived from the fact that the inverse of any matrix

A can be expressed as A−1 =
∞∑
t=0

(I−A)
t
. Finally, the inequality results from(

D−1
G ·G

)t
being a stochastic matrix for all t so every term in the infinite sum is

a weighted average of the win percentages, discounted by (1− α)t. The infinite
sum is positive and finite because α ∈ (0, 1].

Knowing that every vi ∈ [0, 1] then a win against team j awards Fj =
α+ (1−α)vj ≥ α points and a loss to team k awards Gk = (1−α)vk ≤ (1−α)
points. Thus, if α ≥ 1/2 then Fj ≥ Gk for all j, k.

Proposition 3: The GP method satisfies game-scaling consistency

Proof: For k scoring problems W1, ...,Wk where Gi = Gk = G for all i, j.
Define WΣ ≡

∑
iWi. Then GΣ = kG and DGΣ

= kDG. Then we know

vi = αD−1
G Wiu + (1− α)D−1

G Gvi , for all i

Then

v ≡ (1/k)

k∑
i=1

vi

= α(1/k)
k∑
i=1

D−1
G Wiu + (1− α)(1/k)

k∑
i=1

D−1
G Gvi

= α(1/k)D−1
G

k∑
i=1

Wiu + (1− α)D−1
G G(1/k)

k∑
i=1

vi

= αD−1
GΣ

WΣu + (1− α)D−1
GΣ

GΣv

Thus, v = M(WΣ).

Proposition 4: The GP method satisfies flatness preservation

Proof: Let W,W′ be such that M(W1) = γ1u and M(W2) = γ2u. Then

γ1u = αD−1
G Wu + (1− α)D−1

G Gγ1u

= αD−1
G Wu + (1− α) γ1u

so
γ1u = D−1

G Wu = ŵ

Similarly for W′ we have

γ2u = D−1
G′ W

′u = ŵ′

As a result, γ1 = γ2 = 1
2 . Knowing this, then 1

2u = D−1
G+G′(W + W′)u, where

1

2
u = αD−1

G+G′(W + W′)u + (1− α)D−1
G+G′(G + G′)

1

2
u
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so M(W + W′) = 1
2u.

Proposition 5: The GP method satisfies inversion

Proof: Let v ≡M(W). Then we know that v satisfies:

v = αŵ + (1− α)D−1
G Gv

= αD−1
G Wu + (1− α)D−1

G Gv

then

u− v = u− αD−1
G Wu− (1− α)D−1

G Gv

= α
(
u−D−1

G Wu
)

+ (1− α)
(
u−D−1

G Gv
)

= α
(
I−D−1

G W
)
u + (1− α)D−1

G G (u− v)

= αD−1
G W>u + (1− α)D−1

G G (u− v)

As a result M(W>) = (u−M(W))

Proposition 6: The GP method satisfies merging consistency

Proof :
If we have an incomplete tournament W1 with n1 teams and W2 with n2

teams then the union is W =

[
W1 0
0 W2

]
, with n = n1 + n2 teams. Thus,

Mn(W) = α

( ∞∑
t=0

(1− α)
t (
D−1
G ·G

)t) · ŵ
= α

 ∞∑
t=0

(1− α)
t

([
DG1

0
0 DG2

]−1

·
[

G1 0
0 G2

])t · [ ŵ1

ŵ2

]

= α

[ ∞∑
t=0

(1− α)
t

([
D−1
G1

0

0 D−1
G2

]
·
[

G1 0
0 G2

])t]
·
[

ŵ1

ŵ2

]

= α

( ∞∑
t=0

(1− α)
t

[
D−1
G1

G1 0

0 D−1
G2

G2

]t)
·
[

ŵ1

x̂2

]

= α

( ∞∑
t=0

(1− α)
t

[ (
D−1
G1

G1

)t
0

0
(
D−1
G2

G2

)t
])
·
[

ŵ1

ŵ2

]

=


α

( ∞∑
t=0

(1− α)
t (
D−1
G1

G1

)t) · ŵ1

α

( ∞∑
t=0

(1− α)
t (
D−1
G2

G2

)t) · ŵ2


=

[
Mn1 (W1)
Mn2 (X2)

]
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Proposition 7: The GP method satisfies positive response to the beating rela-
tion

Proof: Let W,W′ be two scoring problems where W = W′ + E12 + E21

so G = G′ and DG = DG′ . Define ∆v ≡ M(W) − M(W′), and ∆p ≡
DGM(W)−DG′M(W′) so ∆p = DG∆v. Also define

Z(v) ≡ α
∞∑
t=0

(1− α)tĜtv,

where Ĝ ≡ GD−1
G . Notice that it follows from the definition that Z(γv) =

γZ(v) and Z(v + w) = Z(v) + Z(w).
This allows us to re-write ∆p as

∆p = Z(e1)− Z(e2)

Finally, define

ĝij ≡ Ĝij = eᵀi Ĝej

vi = Eiiv⇒ v = v1 + ...+ vn

vi = eᵀi Ĝv

Ği ≡ {j such that Gij 6= 0}
Ği�k ≡ {j 6= k such that Gij 6= 0}

In order to prove that the GP method satisfies PRB we must show that
e1∆p > 0.

∆p = Z(e1)− Z(e2)

= Z(e1)− αe2 − (1− α)α
∞∑
t=0

(1− α)tĜte2

= Z(e1)− αe2 − (1− α)α
∞∑
t=0

(1− α)tĜte2

where
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Z(ei) ≡ α
∞∑
t=0

(1− α)tĜtei

= αei + α
∞∑
t=1

(1− α)tĜtei

= αei + (1− α)Z(Ĝei)

= αei + (1− α) [Z(e′i1) + ...+ Z(e′in)]

= αei + (1− α)
[
eᵀ1ĜeiZ(e1) + ...+ eᵀnĜeiZ(en)

]
= αei + (1− α)

{
eᵀ1ĜeiZ(e1) +

n∑
k1=2

eᵀk1
Ĝei

[
αek1 + (1− α)Z(Ĝek1)

]}

= αei + (1− α)

[
eᵀ1ĜeiZ(e1) + α

n∑
k1=2

eᵀk1
Ĝeiek1

+ (1− α)
n∑

k1=2

eᵀk1
ĜeiZ(Ĝek1

)

]

= αei + (1− α)eᵀ1ĜeiZ(e1) + α(1− α)

n∑
k1=2

eᵀk1
Ĝeiek1 + (1− α)2

n∑
k1=2

eᵀk1
Ĝeie

ᵀ
1Ĝek1Z(e1) +

+α(1− α)2
n∑

k1=2

n∑
k2=2

eᵀk1
Ĝeie

ᵀ
k2
Ĝek1

ek2
+ (1− α)3

n∑
k1=2

n∑
k2=2

eᵀk1
Ĝeie

ᵀ
k2
Ĝek1

Z(Ĝek2
)

= αei + (1− α)ĝ1iZ(e1) + α(1− α)
n∑

k1=2

ĝk1iek1
+ (1− α)2

n∑
k1=2

ĝ1k1
ĝk1iZ(e1)

+α(1− α)2
n∑

k1=2

n∑
k2=2

ĝk2k1 ĝk1iek2 + (1− α)3
n∑

k1=2

n∑
k2=2

ĝk2k1 ĝk1iZ(Ĝek2)

= αei + (1− α)ĝ1iZ(e1) + α(1− α)
n∑

k1=2

ĝk1iek1
+ (1− α)2

n∑
k1=2

ĝ1k1
ĝk1iZ(e1) +

+α(1− α)2
n∑

k1=2

n∑
k2=2

ĝk2k1
ĝk1iek2

+ (1− α)3
n∑

k1=2

n∑
k2=2

ĝk2k1
ĝk1iZ(Ĝek2

)

=

[
(1− α)ĝ1i + (1− α)2

n∑
k1=2

ĝ1k1
ĝk1i + (1− α)3

n∑
k1=2

n∑
k2=2

ĝ1k2
ĝk2k1

ĝk1i + ...

]
Z(e1) +

+α

[
ei + (1− α)

n∑
k1=2

ĝk1iek1 + (1− α)2
n∑

k1=2

n∑
k2=2

ĝk2k1 ĝk1iek2 + ...

]

We want to show that team 1’s score is affected by positively by turning its
match against team 2 from a loss to a victory. That is, we want to show that
∆p1= eT1 ∆p > 0.

First notice the following:
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1 =
n∑

k1=1

ĝk1i

= ĝ1i +
n∑

k1=2

ĝk1i

= ĝ1i +
n∑

k1=2

ĝk1i

(
n∑

k2=1

ĝk2k1

)

= ĝ1i +
n∑

k1=2

ĝk1i

(
ĝ1k1 +

n∑
k2=2

ĝk2k1

)

= ĝ1i +
n∑

k1=2

ĝ1k1
ĝk1i +

n∑
k1=2

n∑
k2=2

ĝk2k1
ĝk1i

= ĝ1i +

n∑
k1=2

ĝ1k1 ĝk1i +

n∑
k1=2

n∑
k2=2

ĝk2k1 ĝk1i

(
ĝ1k2 +

n∑
k3=2

ĝk3k2

)

= ĝ1i +
n∑

k1=2

ĝ1k1
ĝk1i +

n∑
k1=2

n∑
k2=2

ĝ1k2
ĝk2k1

ĝk1i +
n∑

k1=2

n∑
k2=2

n∑
k3=2

ĝk3k2
ĝk2k1

ĝk1i

= ĝ1i +
n∑

k1=2

ĝ1k1
ĝk1i +

n∑
k1=2

n∑
k2=2

ĝ1k2
ĝk2k1

ĝk1i +
n∑

k1=2

n∑
k2=2

n∑
k3=2

ĝ1k3
ĝk3k2

ĝk2k1
ĝk1i +

+

n∑
k1=2

n∑
k2=2

n∑
k3=2

n∑
k4=2

ĝ1k4 ĝk4k3 ĝk3k2 ĝk2k1 ĝk1i + ...

We can then write ∆p1 as

∆p1 = eT1 ∆p

= eT1 (Z(e1)− Z(e2))

= eT1 (Z(e1)− Z(e2))

=

{
1−

[
(1− α)ĝ1i + (1− α)2

n∑
k1=2

ĝ1k1
ĝk1i + (1− α)3

n∑
k1=2

n∑
k2=2

ĝ1k2
ĝk2k1

ĝk1i + ...

]}
eT1 Z(e1)

where we know that for α = 0, the sum in the square brackets = 1. Thus, for
α > 0 we have ∆p1 > 0.

Proposition 8: The GP method satisfies homogenous treatment of victories.

Proof: Consider two teams i and j that have the same schedule. that is, they
face the same oponents the same number of times in each case (and may or may
not play each other as well). Then

vi = αŵi + (1− α)
n∑
k=1

gik
gi
vk
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and

vj = αŵj + (1− α)
n∑
k=1

gjk
gj
vk.

Subtracting one from the other gives us

vi − vj = α (ŵi − ŵj) + (1− α)
n∑
k=1

(
gik
gi
− gjk

gj

)
vk

= α (ŵi − ŵj) + (1− α)

(
gij
gi
vj −

gji
gj
vi

)
where the second equality comes from the fact that they have the same schedule.
Since gi = gj and gij = gji then

vi − vj =
α

1− gij
gi

(1− α)
(ŵi − ŵj)

so the difference in scores is proportional to the difference in win percentages.
Corollary 3: In a complete tournament the GP scores are a linear function of
the win percentages.

Proof : In a round-robin, gij = 1 for all i, j 6= i, G · u = (n− 1)u and the
number of games played is u> ·w = n(n− 1)/2. Thus,

v = αŵ + (1− α)D−1
G ·G · v

v = αŵ + (1− α)D−1
G · (G + I− I) · v

v = αŵ + (1− α)
1

(n− 1)
I · [(G + I) · v − I · v]

(n− 1)v = α (n− 1) ŵ + (1− α) (G + I) ·D−1
G · p− (1− α)v

(n− α)v = α (n− 1) ŵ + (1− α) (G + I) · 1

(n− 1)
I · p

v =
α (n− 1)

(n− α)
ŵ +

(1− α)

(n− α)

1

(n− 1)
(G + I) · p

v =
α (n− 1)

(n− α)
ŵ +

(1− α)n

(n− α)2
u
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