Interpretable Clustering using Unsupervised Binary Trees

dc.creator.AutorFraiman, Ricardo
dc.creator.AutorGhattas, Badih
dc.creator.AutorSvarc, Marcela
dc.date.accessioned2012-07-06T14:16:57Z
dc.date.available2012-07-06T14:16:57Z
dc.date.issued2011
dc.descriptionFil: Fraiman, Ricardo. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina.
dc.descriptionFil: Ghattas, Badih. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina.
dc.descriptionFil: Svarc, Marcela. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina.
dc.description.abstractWe herein introduce a new method of interpretable clustering that uses unsu- pervised binary trees. It is a three-stage procedure, the rst stage of which entails a series of recursive binary splits to reduce the heterogeneity of the data within the new subsamples. During the second stage (pruning), consideration is given to whether adjacent nodes can be aggregated. Finally, during the third stage (join- ing), similar clusters are joined together, even if they do not share the same parent originally. Consistency results are obtained, and the procedure is used on simulated and real data sets.
dc.formatapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10908/636
dc.languageeng
dc.publisherUniversidad de San Andrés. Departamento de Matemáticas y Ciencias
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleInterpretable Clustering using Unsupervised Binary Trees
dc.typeDocumento de Trabajo
dc.typeinfo:eu-repo/semantics/workingPaper
dc.typeinfo:ar-repo/semantics/documento de trabajo
dc.typeinfo:eu-repo/semantics/draft
Files
Original bundle
Loading...
Thumbnail Image
Name:
[P][W]Fraiman-Ghattas-Svarc.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: