Sistemas de recomendación: un estudio comparativo de técnicas de filtrado
Date
2025
Authors
Suarez Gurruchaga, Carlos Roque
relationships.isContributorOfPublication
Fraiman, Daniel
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de San Andrés. Departamento de Matemática y Ciencias
Abstract
Los sistemas de recomendación constituyen una herramienta fundamental en el entorno digital actual, donde usuarios se enfrentan a una sobrecarga de información que dificulta la toma de decisiones. Este trabajo presenta un análisis comparativo de siete diferentes estrategias de recomendación implementadas y evaluadas sobre el dataset MovieLens. Entre ellas se encuentran un Filtro colaborativo basado en memoria (tanto clásico como con ponderación temporal), un Filtro colaborativo por factores latentes, un Filtro basado en contenido actuando en combinación con Latent Dirichlet Allocation (LDA), un algoritmo de modelado de tópicos que permite descubrir patrones semánticos, y una propuesta híbrida que combina las fortalezas de múltiples técnicas. Los resultados revelan un trade-off entre precisión y cobertura: mientras que los filtros colaborativos se destacan en precisión y calidad de ordenamiento, el filtro basado en contenido sobresale en cobertura de usuarios e ítems. Por otro lado, los modelos híbridos logran un equilibrio óptimo, alcanzando alta precisión, calidad de ordenamiento y cobertura, constituyendo la opción más versátil. Esta investigación demuestra la importancia de seleccionar el enfoque de recomendación según objetivos específicos y características del conjunto de datos disponible, destacando la flexibilidad de los modelos híbridos como solución integral capaz de abordar simultáneamente las limitaciones de los enfoques individuales.
Description
Fil: Suarez Gurruchaga, Carlos Roque. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina.