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A coagulation estimate for inertial particles

Inés Armendáriz and James R. Norris

Abstract

This paper establishes a key convergence result for coagulation prob-
abilities of particles which behave as Brownian motions on the scale of
their mean square displacement but as integrated Ornstein–Uhlenbeck
processes on the scale of the particle radius. The result is a first step
towards the rigorous derivation of an analogue of Smoluchowski’s coagu-
lation equation for inertial particles.

1 Introduction

The phenomenon of pairwise coagulation in large particle systems appears fre-
quently in scientific models describing the evolution of clusters of basic particles.
The rate at which clusters coagulate depends on the characteristics of the model.
When the effect of spatial fluctuations in the mass density is negligible, this rate
will be a function of the mass and other details of each cluster, and it will be
spatially homogeneous. On the other hand, in many physical models the deter-
mining factor for coagulation is proximity, and the coagulation rate will thus
depend on the position of the incoming clusters.

Over the past few years, several spatial models that include stochastic dy-
namics of coagulation have been studied (see [3], [5], [6], [1]). Here, clusters
move freely in space until any two of them meet at less then a prescribed dis-
tance, which typically goes to zero as the particle number increases. At this
time, the clusters may coagulate at some positive rate, in which case they will
be replaced by a single cluster, and the evolution of the system is resumed.

The hardcore case, where particles coagulate on collision, has been much less
studied. These models arise quite naturally: for instance in the case of micro-
scopic particles undergoing molecular bombardment, we might describe the free
evolution as Brownian motion and specify that a pair of particles coagulates the
first time it meets, which leads to a spatial generalization of the original Smolu-
chowski’s coagulation equation [11]. The technical difficulty with this model
lies in that the coagulation events are completely deterministic once the cluster
paths are known. The problem was first studied by Lang and Xuan-Xanh [7]
in the case of discrete mass, constant diffusivity and when the radius of each
particles does not depend on the mass it carries. In a forthcoming paper [9],
Norris removes these restrictions, treating the case of variable coefficients and
both discrete and continuous mass.

We are now interested in replacing the idealization that the free motion of
each particle is Brownian, by the more physically reasonable assumption that
it performs an integrated Ornstein–Uhlenbeck process at the microscopic scale
given by its radius. That is, we allow the particles to have velocities.
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The starting point of the analysis is to estimate the first passage time of such
an inertial particle into a small radius ball. In terms of the particle system, this
corresponds to establishing the probability that a particular pair of particles
collides in finite time. The ball radius will then be a function of the particle
number, converging to zero at a faster rate than the velocities of the particles
diverge to infinity.

The problem of computing the probability that the first passage time into
a ball of small radius occurs before a given time was first addressed by Spitzer
[12] in 1958, in the case when the particle performs a planar Brownian motion.
Several years later, in 1986, Le Gall [8] deviced a method to compute this
probability for a large family of diffusions, in dimensions d ≥ 2. The fact that
in our case the dynamics are not Markovian prevents us from applying these
techniques, and we are forced to develop an ad–hoc method.

We introduce the model and describe the main results of the paper in Section
2. The process behaves as Brownian motion on the scale of the mean square
displacement; this is used in Section 3 to estimate the first passage time into a
ball which is large relative to the particle radius. We study an auxiliary linear
process in Section 4, and finally obtain the first passage time estimate for the
inertial particle in Section 5.

2 Notation and results

Let d ≥ 3. Given σ > 0 and a standard, d–dimensional Brownian motion
W (·), W (0) = 0, consider the stationary Ornstein–Uhlenbeck process deter-
mined by

dZ = σdW − Z ds, Z(0) ∼ N
(
0,

σ2

2
Id

)
,

Id the d–dimensional identity matrix, and define the integrated process

X(t) = x0 +
√

β

∫ t

0

Z(βu) du,

where x0 ∈ Rd, x0 6= 0 and β is a positive parameter. Then X(·) describes
the motion of a particle of unitary mass in a force field σβẆ , where Ẇ is
the standard Gaussian white noise in Rd. The particle experiences friction
proportional to the velocity. The position X(·) hence follows the Newton law

Ẍ = σβẆ − βẊ, X(0) = x0 ∈ Rd, Ẋ(0) ∼ N
(
0,

σ2

2
Id

)
.

We start by deriving an alternative expression for X.

Lemma 1. Let U(·) be the standard Brownian motion given by

U(s) =
W (βs)√

β
, s ≥ 0.
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Then

Z(βt) = e−βtZ(0) + σ
√

β e−βt

∫ t

0

eβudU(u) (2.1)

and

X(t) = x0 +
(1− e−βt)√

β
Z(0) + σ U(t)− σ e−βt

∫ t

0

eβs dU(s). (2.2)

Proof. Integrate the SDE satisfied by Z to obtain the representation

Z(t) = e−tZ(0) + σ e−t

∫ t

0

esdW (s),

change time by t → βt and make the substitution s = βu is the integral term
to get (2.1). Replacing this expression in the definition of X, we have

X(t) = x0 +
√

β

∫ t

0

Z(βs) ds

= x0 +
√

β

∫ t

0

(
e−βsZ(0) + σ

√
β e−βs

∫ s

0

eβldU(l)
)

ds

= x0 +
1√
β

(1− e−βt)Z(0) + σ

∫ t

0

∫ s

0

βeβl dU(l) e−βs ds

= x0 +
1√
β

(1− e−βt)Z(0) + σ

∫ t

0

(e−βl − e−βt) eβl dU(l)

= x0 +
1√
β

(1− e−βt)Z(0) + σ U(t)− σ e−βt

∫ t

0

eβl dU(l),

as claimed.

Let now ε > 0. Our first goal is to estimate the probability that X visits
a ball of radius ε centered at the origin before a fixed final time T , as the
parameters ε and β tend to 0 and ∞ in that order.

As discussed in the introduction, the techniques developed by Le Gall in [8]
cannot be applied in our case since X(·) is not Markov. Instead, the expression
in (2.2) suggests the strategy to follow. The first step will be to compute the
probability that the process hits a relatively big ball of radius g(β) prior to T ,
where g is chosen so that the only relevant terms in (2.2) are x0 + σ U(t). The
problem is thus reduced to the case of standard Brownian motion, where the
answer is well known. Then, conditioned on this event, we will estimate the
probability that it enters the ball of radius ε by considering a piecewise linear
approximation of X.

The first part of the plan is carried out in the following proposition. As
will become clear in the proof, the condition on g(β) is that h(β) given by
h(β) =

√
βg(β) satisfies

β exp
[
− h2(β)

] 1
g(β)d−2

−→ 0
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in the limit as β →∞. We choose to work with g(β) = log β/
√

β.

Proposition 1.

P

[
inf

0≤t≤T
‖X(t)‖ ≤ log β√

β

]
=
(

d

2
− 1
)

ωd σ2

(
log β√

β

)d−2 ∫ T

0

pσ
s (x0, 0) ds

+ o

[(
log β√

β

)d−2
]

,

where pσ
s (x, y) denotes the Gaussian transition density

pσ
s (x, y) = (2πσ2s)−d/2 exp

[
− 1

2σ2s
‖x− y‖2

]
and ωd is the volume of the d–dimensional unit sphere.

Notice that the condition on g(β) is in particular satisfied by g(β) = δ, for
any positive constant δ. The proof of the version of Proposition 1 corresponding
to this choice of g relies on showing that

P

[
sup

0≤t≤T
‖e−βt

∫ t

0

eβs dUs‖ ≥ δ

]
= o

[
δd−2

]
.

Combined with (2.2), this implies that the process X(·) converges in distribution
to a Brownian motion. In fact, a much stronger convergence result holds. In [4]
(see also the references therein), Freidlin proves that

lim
β→∞

max
0≤t≤T

‖X(t)− σW (t)‖ = 0 a.s. .

Suppose now that the process has reached the ball of radius log β/
√

β at
time t0 < T for the first time, X(t0) = (log β/

√
β) y0, ‖y0‖ = 1. We then need

to compute the probability that

‖X(t0 + s)‖ =

∥∥∥∥∥ log β√
β

y0 +
1√
β

∫ βs

0

Z(βt0 + u) du

∥∥∥∥∥ ≤ ε

for some time 0 ≤ s ≤ T − t0.
Let us first simplify the notation by rescaling space and time. Define

Y (t) = y0 +
∫ t

0

Z(βt0 + u log β) du, 0 ≤ t ≤ β

log β
(T − t0).

A change of variables in the integral term of X yields

X(t0 + s) =
log β√

β
Y

(
β

log β
s

)
, 0 ≤ s ≤ T − t0 ,
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and the task is now to estimate the probability that Y (·) visits the ball of radius
ε̃ before time (β/ log β)(T − t0), where

ε̃ =
√

β

log β
ε.

This plan will be carried out for a piecewise linear approximation Ỹ of Y in
Lemmas 2, 3, and 4, Section 4. Combining the latter with a result measuring
the level of accuracy of the approximation Y ∼ Ỹ (Lemma 5, Section 5), we
obtain a first order estimate.

Proposition 2.

P

[
inf

0≤t≤T
‖X(t)‖ ≤ ε

]
= Cd

√
β εd−1 σ

∫ T

0

pσ
s (0, x0) ds + o

[√
βεd−1

]
with

Cd =
1√
2

(d
2
− 1
)
ωd−1 ωd

(∫ ∞

0

p1
s(0, y) ds

)(∫
Rd

‖z‖ p1
1(0, z) dz

)
,

‖y‖ = 1 and ωd the volume of the d–dimensional unit sphere.

Throughout the article, C will denote a positive constant. Unless we are
particularly interested in keeping track of its growth or dependence on the pa-
rameters, we will use the same letter C to denote constants on consecutive lines
which may be different, or constants appearing in totally unrelated computa-
tions.

3 Brownian first passage time

This section contains the

Proof of Proposition 1. Let t ≥ 0. Due to (2.2), X(t) may be decomposed as

X(t) = A(t) + B(t),

where A(·) and B(·) are defined by

A(t) = x0 + σ U(t)

and

B(t) =
(1− e−βt)√

β
Z(0)− σ e−βt

∫ t

0

eβs dU(s).
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Let r = r(β) = (log β)−1/8. We have the following inclusions{
inf

0≤t≤T
‖A(t)‖ ≤ (1− r)

log β√
β

and sup
0≤t≤T

‖B(t)‖ ≤ r
log β√

β

}
⊆
{

inf
0≤t≤T

‖X(t)‖ ≤ log β√
β

}
(3.1)

⊆
{

inf
0≤t≤T

‖A(t)‖ ≤ (1 + r)
log β√

β
or sup

0≤t≤T
‖B(t)‖ ≥ r

log β√
β

}
.

We will show that there exists a positive constant Γ such that

P

[
sup

0≤t≤T
‖B(t)‖ ≥ r

log β√
β

]
≤ Γβ T exp

{
−(log β)3/2

}
(3.2)

≤ o

[(
log β√

β

)d−2
]

.

Suppose that (3.2) holds. Then by (3.1)

P

[
inf

0≤t≤T
‖A(t)‖ ≤ (1− r)

log β√
β

]
− Γ β T exp

{
−(log β)3/2

}
≤ P

[
inf

0≤t≤T
‖X(t)‖ ≤ log β√

β

]
(3.3)

≤ P

[
inf

0≤t≤T
‖A(t)‖ ≤ (1 + r)

log β√
β

]
+ Γ β T exp

{
−(log β)3/2

}
.

On the other hand, Le Gall showed in [8] that

P

[
inf

0≤t≤T
‖A(t)‖ ≤ (1± r)

log β√
β

]
=

=
(

d

2
− 1
)

ωd σ2
(
1± r

)d−2
(

log β√
β

)d−2 ∫ T

0

ps(x0, 0) ds

+ o

[(
(1± r) log β√

β

)d−2
]

.

The proposition will then follow from (3.3) and the choice of r.
It remains to prove (3.2). Equivalently, we need to show that

P

[
sup

0≤t≤T

∣∣∣e−βt

∫ t

0

eβs dW1(s)
∣∣∣ ≥ r

d

log β√
β

]
<

1
d

Γ β T exp
{
−(log β)3/2

}
,

where W1 is a standard 1–dimensional Brownian motion. We will achieve this
by means of the formulas for the exponential martingales of a diffusion.

We split [0, T ] into dβT e subintervals having length less than or equal to
1/β, where given l ∈ R, dle denotes the smallest integer larger than or equal to
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l. Let tj , 0 ≤ j < dβT e be the left endpoints of these subintervals. Fix j, and
denote by

δ =
r

d

log β√
β

, λ = λj =
1
δ

[log β]3/2 exp[−βtj ].

We obtain

P

[
sup

tj≤t≤tj+1

∣∣∣e−βt

∫ t

0

eβs dW1(s)
∣∣∣ ≥ δ

]
≤ P

[
sup

tj≤t≤tj+1

∣∣∣ ∫ t

0

eβs dW1(s)
∣∣∣ ≥ δeβtj

]

≤ 2P

[
sup

tj≤t≤tj+1

exp
{

λ

∫ t

0

eβs dW1(s)−
λ2

2

∫ t

0

e2βs ds
}

≥ exp
{

δλ exp[βtj ]−
λ2

4β
exp[2βtj + 2]

}]
≤ C exp

{
−(log β)3/2

}
, (3.4)

after applying Doob’s inequality to the exponential martingale

exp
{

λ

∫ t

0

eβs dW1(s)−
λ2

2

∫ t

0

e2βs ds

}
and replacing δ and λ by their values. The positive constant C in the last
line can be chosen uniformly in β, for β large enough. We finally add over
0 ≤ j < dβte in (3.4) to conclude (3.2).

4 An associated linear process

In order to prove Proposition 2, we will replace the process Y by a piecewise
linear approximation Ỹ for which we are able to compute the probability that
the first passage time into the ball of radius ε̃ occurs prior to (β/ log β)(T − t0),
where we recall that t0 denotes the first time the process X(·) reaches the ball of
radius log β/

√
β. It is therefore implicitly assumed that this event has occurred:

in the next four lemmas all probabilities are initially computed given

t0 ≤ T, Z(βt0) and y0 =
√

β

log β
X(t0),

until the conditioning is eventually removed.
Consider a regular partition of[

0,
β

log β
(T − t0)

]
into intervals [si, si+1] of length

h = h(ε̃) = ε̃
2
3+µ, µ > 0 ,
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and define
Ỹ (u) = Y (si) + (u− si)Z (βt0 + si log β)

if

si ≤ u < si+1, 0 ≤ i <

⌈
β

log β

(T − t0)
h

⌉
.

We are interested in setting the steps of the piecewise linear process as large
as possible while making sure that the processes Y (·) and Ỹ (·) stay within a
sufficiently small distance. The choice of h is hence motivated by the proof
of Lemma 5 in Section 5, where we show that the error resulting from the
substitution Ỹ (·) for Y (·) is neglibible.

Define now

Yi = Y (si) = Ỹ (si), Zi = Z(βt0 + si log β), 0 ≤ i <
⌈ 1
h

β

log β
(T − t0)

⌉
.

As discussed before, we assume at this point that the initial values
(
Z(βt0), y0

)
of the 2d–dimensional random vector(

Z(βt0 + · log β), Y (·)
)

are given. Standard computations for the Ornstein Uhlenbeck process show that
Z(βt0 + t log β) is Gaussian with mean e−t log β Z(βt0) and covariance matrix

Γ(s, t) =
σ2

2

[
e−|t−s| log β − e−(t+s) log β

]
Id,

Id the d–dimensional identity matrix.
By definition,

Y (t) = y0 +
∫ t

0

Z(βt0 + u log β) du,

from where it follows that (Zi, Yi) is Gaussian with mean

mi = (zi, yi) =
(
e−si log β Z(βt0), y0 +

(1− e−si log β)
log β

Z(βt0)
)

and covariance matrix given by the block matrix

Γi =
(

ai Id bi Id

bi Id ci Id

)
with determinant Di = dd

i = (aici − b2
i )

d, where

ai =
σ2

2
[
1− e−2si log β

]
bi =

σ2

2
1

log β

[
1− 2e−si log β + e−2si log β

]
=

σ2

2
1

log β

[
1− e−si log β

]2
8



and

ci = σ2

[
si

log β
− 2

(log β)2
(
1− e−si log β

)
+

1
2(log β)2

(
1− e−2si log β

)]
.

The probability density function of (Zi, Yi) then becomes

pi(zi, yi; z, y) =
1

(2π)d
√

Di

exp
[
−1

2
(z − zi, y − yi)t Γ−1

i (z − zi, y − yi)
]

,

which can be rearranged into

pi(zi, z) pi(yi, y|zi, z) =
1

(2π ai)d/2
exp

[
− 1

2 ai
‖z − zi‖2

]
× 1

(2π(di/ai))d/2
exp

[
−1

2
ai

di

∥∥y − yi −
bi

ai
(z − zi)

∥∥2
]

.

(4.1)

The relevance of this representation lies in that the second line is the density
pi(yi, y|zi, z) of Yi conditioned on the value achieved by Zi, whereas the expres-
sion on the first line is the density of Zi, pi(zi, z).

4.1 An upper bound

Our purpose here is to establish, to first order, an upper bound to the condi-
tional probability that the process Ỹ (·) enters the ball of radius ε̃ before time
(β/ log β)(T − t0).

We clearly have

P

[
inf

0≤t≤ β
log β (T−t0)

‖Ỹ (t)‖ ≤ ε̃
∣∣∣ {t0, Z(βt0), y0}

]

≤
∑

0≤i<d 1
h

β
log β (T−t0)e

P

[
inf

si≤t<si+1
‖Ỹ (t)‖ ≤ ε̃

∣∣∣ {t0, Z(βt0), y0}
]

,

(4.2)

and it will suffice to compute the right side of (4.2).
Denote by Ai the event that Ỹ visits the ε̃–ball centered at the origin over

the time interval [si, si+1),

Ai =
{

inf
si≤t<si+1

‖Ỹ (t)‖ ≤ ε̃

}
Let Ci be the right, convex cylinder with axis −hZi, radius ε̃ and semi–spherical
caps of radius ε̃, open at the end associated to −hZi. Then Ai is the event that
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Yi belongs to Ci,

Ai = A1
i ∪ A2

i =
{

0 ≤ −〈Yi, Zi〉 < h‖Zi‖2, ‖πZ⊥i
(Yi)‖ ≤ ε̃

}
∪
{
‖Yi‖ ≤ ε̃ or ‖Yi + hZi‖ < ε̃

}
if πZ⊥i

denotes the projection onto the subspace orthogonal to Zi.

We will first control the probability of the sets of type A1
i . Combining (4.1)

with the definition of A1
i , we have

P
[
A1

i | {t0, Z(βt0), y0}
]

=

=
∫

Rd

pi(zi, z)×

[∫
Rd

1{0≤−〈z,y〉≤h‖z‖2} 1{
‖π

z⊥ (y)‖≤ε̃
} pi(yi, y|zi, z) dy

]
dz

Let B(z⊥) be an orthonormal basis of the (d−1)–dimensional subspace z⊥. We
write y, yi and zi as a linear combination of the vectors in the basis {z/‖z‖, B(z⊥)}
and change coordinates in the y–integral, to obtain

P
[
A1

i | {t0, Z(βt0), y0}
]

=
∫

Rd

1
(2πai)d/2

exp
[
− 1

2ai
‖z − zi‖2

]
×

(∫ 0

−h‖z‖

1√
2π(di/ai)

× exp
[
− ai

2di

∣∣∣ y1 −
〈
yi,

z

‖z‖
〉
− bi

ai

(
‖z‖ −

〈
zi,

z

‖z‖
〉)∣∣∣2] dy1

×
∫

yd−1∈Rd−1

‖yd−1‖≤ε̃

1

(2π(di/ai))
d−1
2

× exp
[
− ai

2di

∥∥∥ yd−1 − πz⊥(yi) +
bi

ai
πz⊥(zi)

∥∥∥2
]

dyd−1

)
dz.

(4.3)

In the last line we have kept the notation πz⊥(yi) and πz⊥(zi) to denote the
(d− 1)–last coordinates of these vectors in the basis { z

‖z‖ , B(z⊥)}.

Lemma 2. ∑
0≤i<d 1

h
β

log β (T−t0)e

P
[
A1

i

∣∣∣ {t0, Z(βt0), y0}
]

≤ cd
1
σ

ε̃ d−1 log β + G
(
T, t0, ε, β, y0, Z(βt0)

)
.

Here

cd =
1√
2

ωd−1

(∫ ∞

0

p1
s(0, y) ds

)(∫
Rd

‖z‖ p1
1(0, z) dz

)
,
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‖y‖ = 1, and G is an integrable random variable such that

E
[∣∣G(T, t0, ε, β, y0, Z(βt0)

)∣∣] = o
[√

βεd−1
]
.

Proof. Let us first consider si ≤ 1/ log β. Note that the coefficients ai, bi, and
di vanish with orders 1, 2 and 4 at the origin, respectively. It will thus be
necessary to control the contribution from the values of (Zi, Yi) such that the
exponents in the second and third lines of (4.3) are small. Denote by

αi = di/ai and γi = bi/ai.

We will split A1
i according to whether

‖Yi − yi − γi(Zi − zi)‖ ≤ ηi or ‖Yi − yi − γi(Zi − zi)‖ > ηi,

where ηi is given by

ηi = (log β)1/4si .

On the first of these sets we get{
‖Yi − yi − γi(Zi − zi)‖ ≤ ηi

}
∩ A1

i

⊆
{

1−
[(

ηi + ε̃
)

+
(
si + h

)
‖Z(βt0)‖

]
≤
(
h + γi

)
‖Zi − zi‖

}
∩ A1

i

⊆
{1− 2ηi

(
1 + ‖Z(βt0)‖

)
2si

≤ ‖Zi − zi‖
}
∩ A1

i .

Next, we consider the cases when

‖Z(βt0)‖ ≤
1

16 ηi
and ‖Z(βt0)‖ >

1
16 ηi

separately, and apply the analogue of formula (4.3) on the set

A1
i ∩
{
‖Yi − yi − γi(Zi − zi)‖ ≤ ηi

}
to obtain

P
[
A1

i ∩ ‖Yi − yi − γi(Zi − zi)‖ ≤ ηi

∣∣ {t0, Z(βt0), y0}
]

≤ Cd h ε̃ d−1 1

α
d/2
i

1n
‖Z(βt0)‖≤ 1

16 ηi

o ∫
1

4si
≤‖z−zi‖

‖z‖ pi(zi, z) dz

+ Cd h ε̃ d−1 1

α
d/2
i

1n
‖Z(βt0)‖> 1

16 ηi

o ∫
Rd

‖z‖ pi(zi, z) dz.

Since ai ∼ si log β ≤ 1, the second line above is bounded by

Cd h ε̃ d−1 1

α
d/2
i

1n
‖Z(βt0‖≤ 1

16 ηi

o (1 + ‖zi‖) exp
[
− C

s3
i log β

]
. (4.4)

11



We replace zi = exp[−si log β]Z(βt0) and use (4.4) to compute

P
[
A1

i ∩ ‖Yi − yi − γi(Zi − zi)‖ ≤ ηi

∣∣ {t0, Z(βt0), y0}
]

≤ Cd h ε̃ d−1 1

α
d/2
i

[(
1 +

1
si

)
exp

(
− C

s3
i log β

)

+ 1n
‖Z(βt0)‖> 1

16 ηi

o (√si log β + ‖Z(βt0)‖
)]

≤ Cd h ε̃ d−1

[
exp

(
−C

s2
i

)
+ g
(
si, ‖Z(βt0)‖

)]
. (4.5)

The positive random variable

g
(
si, ‖Z(βt0)‖

)
=

1

α
d/2
i

1n
‖Z(βt0)‖> 1

16 ηi

o (√si log β + ‖Z(βt0)‖
)

satisfies

E
[
g
(
si, ‖Z(βt0)‖

)
1{t0≤T}

]
≤ 2

α
d/2
i

(
1 + E

[
sup

0≤t≤T
‖Z(βt)‖2

])1/2

P

[
sup

0≤t≤T
‖Z(βt)‖ ≥ 1

16 ηi

]1/2

≤ C(σ, T ) β2 exp

[
− C

η
3/2
i

]
. (4.6)

In order to derive this inequality we estimated the expectation on the second line
by integrating by parts in (2.1) and then taking the supremum term by term.
The bound on P

[
sup ‖Z(βt)‖ ≥ 1/(16 ηi)

]1/2 follows by the same argument
applied in (3.4) to obtain (3.2), if instead of taking δ and λ as defined there, we
set

δi =
1

16
√

β ηi
and λi

j =
1
δi

exp[−βtj ]
[

1
16 ηi

]3/2

.

Let now G1

(
ε, β, Z(βt0)

)
be the sum over 0 ≤ si ≤ 1/ log β of the positive

random variables on the right of (4.5),

G1

(
ε, β, Z(βt0)

)
= Cd h ε̃ d−1

∑
0≤i≤ 1

h log β

[
exp

(
−C

s2
i

)
+ g(si, ‖Z(βt0)‖)

]
.

By removing the conditioning on (4.5), applying (4.6) and adding over i, we
conclude that∑

0≤i≤ 1
h log β

P
[
A1

i ∩ ‖Yi − yi − γi(Zi − zi)‖ ≤ ηi, t0 ≤ T
]

≤ E
[
G1

(
ε, β, Z(βt0)

)]
≤ C(d, σ, T ) εd−1 exp

[
− C(log β)9/8

]
(4.7)
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On the other hand, it follows from (4.3) that

P
[
A1

i ∩ ‖Yi − yi − γi(Zi − zi)‖ > ηi | {t0, Z(βt0), y0}
]

≤ Cd

(
1 + ‖Z(βt0)‖

)
h ε̃ d−1 1

α
d/2
i

exp
[
− C

si

√
log β

]
,

0 ≤ i ≤ 1/(h log β). Define the random variable

G2(ε, β, Z(βt0))

=
∑

0≤i≤ 1
h log β

P
[
A1

i ∩ ‖Yi − yi − γi(Zi − zi)‖ > ηi | {t0, Z(βt0), y0}
]

≤ Cd

(
1 + ‖Z(βt0)‖

)
ε̃ d−1 1

(log β)2

Split this last quantity according to whether ‖Z(βt0)‖ ≤ log β or ‖Z(βt0)‖ >
log β and take expectations applying Schwartz inequality to the integral over
the latter set, to get

E
[
G2(ε, β, Z(βt0))

]
≤ Cd εd−1

√
β

(log β)2

[
1 + E

[
sup

0≤t≤T
‖Z(βt)‖2

] 1
2

P

[
sup

0≤t≤T
‖Z(βt)‖ ≥ log β

] 1
2
]

.

Computations similar to those yielding (4.6) allow us to conclude that

E
[
G2(ε, β, Z(βt0))

]
= o

(√
βεd−1

)
(4.8)

It remains to treat the case si > 1/ log β. We first take the limit ε̃ → 0.
From (4.3) we have

P
[
A1

i | {t0, Z(βt0), y0}
]

= h ε̃ d−1 ωd−1

∫
Rd

‖z‖ pi(zi, z) pi(yi, 0 |zi, z) dz

+ h2 ε̃ d−1 εi(β, t0, Z(βt0), y0),

where the variables {εi} can be bounded uniformly in i by an integrable random
variable C(β, t0, Z(βt0)) which can be chosen independently of ε.

Now add over the set of i’s such that 1/ log β ≤ si ≤ (β/ log β)(T−t0). Since
the size h of each interval in the partition goes to 0 as ε̃ does, independently of
β, we may replace the sum by a Riemann integral. This yields∑

1
h log β <i

P
[
A1

i | {t0, Z(βt0), y0}
]

= ε̃ d−1 ωd−1

∫ β
log β (T−t0)

1
log β

[∫
Rd

‖z‖ ps(zs, z) ps(ys, 0 |zs, z) dz

]
ds

+ h ε̃ d−1 e(T, t0, ε, β, y0, Z(βt0)), (4.9)
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if as, bs, cs, ds, zs, ys and ps(zs, z), ps(ys, 0 |zs, z) are defined by substituting
the argument si by s in the corresponding definitions,∣∣e(T, t0, ε, β, y0, Z(βt0))

∣∣ ≤ C(ε, β, Z(βt0)).

Once more, it is necessary to treat the case when ‖Z(βt0)‖ achieves very
large values separately. In this case the threshold is given by log β.

We first look at the typical situation ‖Z(βt0)‖ ≤ log β. A brief consideration
of the values as, bs, cs and ds in the range of values that s can achieve suggests
performing the change of variables u = s/ log β. Dominated convergence then
implies that

1{‖Z(βt0)‖≤log β} ε̃ d−1 ωd−1

∫ β
log β (T−t0)

1
log β

[∫
Rd

‖z‖ ps(zs, z) ps(ys, 0 |zs, z) dz

]
ds

= ε̃ d−1 ωd−1 1{‖Z(βt0)‖≤log β} log β

×
∫ β

log2 β
(T−t0)

1
log2 β

[∫
Rd

‖z‖ ps(zs, z) ps(ys, 0 |zs, z) dz

]
du

= cd
1
σ

ε̃ d−1 log β 1{
‖Z(βt0)‖≤log β

} + G3(T, t0, ε, β, ‖Z(βt0)‖) , (4.10)

where in the last integral s is a function of the variable of integration u, s =
s(u) = u log β. The constant cd is given by

cd =
1√
2

ωd−1

(∫ ∞

0

p1
s(0, y) ds

)(∫
Rd

‖z‖p1
1(0, z) dz

)
,

y any unitary vector ‖y‖ = 1, and G3(T, t0, ε, β, ‖Z(βt0)‖) is a random variable
with negligible mean,

E [G3(T, t0, ε, β, ‖Z(βt0)‖)] = o
(
εd−1

√
β
)

. (4.11)

Finally, let

G4

(
T, t0, ε, β, y0, Z(βt0)

)
=C(σ) ε̃ d−1 β T

log β
‖Z(βt0)‖ 1{‖Z(βt0)‖>log β}

+ h ε̃ d−1e(T, t0, ε, β, y0, Z(βt0)),

C(σ) chosen so that

ε̃ d−1 ωd−1 1{‖Z(βt0)‖>log β} log β

×
∫ β

log2 β
(T−t0)

1
log2 β

[∫
Rd

‖z‖ ps(zs, z) ps(ys, 0 |zs, z) dz

]
du

+ h ε̃ d−1e(T, t0, ε, β, y0, Z(βt0))

≤ G4

(
T, t0, ε, β, y0, Z(βt0)

)
.
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It follows from the bounds on P
[
‖Z(βt0)‖ > log β

]
that

E
[
G4

(
T, t0, ε, β, y0, Z(βt0)

)]
= o(εd−1). (4.12)

The result is now a consequence of (4.2) and then (4.7-12), if we define

G
(
h, ε̃, β, ‖Z(βt0)‖

)
= G1 + G2 + G3 + G4.

In order to obtain an upper bound to the probability that the process Ỹ
ever reaches the ball of radius ε̃ centered at the origin, it remains to estimate
the probability of the events of type A2

i .

Lemma 3.∑
0≤i<d 1

h
β

log β (T−t0)e

P
[
A2

i

∣∣∣ {t0, Z(βt0), y0}
]

≤ C(d, σ)
ε̃d

h
log β + G′(T, t0, ε, β, y0, Z(βt0)

)
,

G′ a random variable with

E
[∣∣G′(T, t0, ε, β, y0, Z(βt0))

∣∣] = o

[
εd

h

β

log β

]
= o
[√

βεd−1
]
.

Proof. We have

P
[
A2

i

∣∣∣ {t0, Z(βt0), y0}
]
≤ P

[
‖Yi‖ ≤ ε̃

∣∣ {t0, Z(βt0), y0}
]

+ P
[
‖Yi + hZi‖ < ε̃

∣∣ {t0, Z(βt0), y0}
]
.

The first probability on the right equals an integral on R2d equal to the one
in (4.3), except that the y–vector is integrated over the d–dimensional ball of
radius ε̃ centered at the origin. Adding over i, this yields∑

0≤i<d 1
h

β
log β (t−t0)e

P
[
‖Yi‖ ≤ ε̃

∣∣ {t0, Z(βt0), y0}
]

≤ C(d, σ)
ε̃d

h
log β + G′

1(T, t0, ε, β, y0, Z(βt0))

where G′
1 is a random variable that satisfies

E
[∣∣G′

1(T, t0, ε, β, y0, Z(βt0))
∣∣] = o

[
εd

h

β

log β

]
.

In order to obtain a similar expression for the sum of the remaining terms

P
[
‖Yi + hZi‖ < ε̃

∣∣ {t0, Z(βt0), y0}
]
,
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it is useful to consider the Gaussian vector (Zi, Yi + hZi). Computations anal-
ogous to the ones leading to the bound on P

[
‖Yi‖ ≤ ε̃ | {t0, Z(βt0), y0}

]
then

show that∑
0≤i<d 1

h
β

log β (t−t0)e

P
[
‖Yi + hZi‖ < ε̃

∣∣ {t0, Z(βt0), y0}
]

≤ C(d, σ)
ε̃d

h
log β + G′

2(T, t0, ε, β, y0, Z(βt0)),

as well, where G′
2 is such that

E
[∣∣G′

2(T, t0, ε, β, y0, Z(βt0))
∣∣] = o

[
εd

h

β

log β

]
.

Take
G′(T, t0, ε, β, y0, Z(βt0)) = G′

1 + G′
2

to finish the proof.

Corollary 1. There exists a random variable

H(T, t0, ε, β, y0, Z(βt0)),

E
[∣∣H(T, t0, ε, β, y0, Z(βt0)

)∣∣] = o
[√

βεd−1
]
,

such that

P
[

inf
0≤t≤ β

log β (T−t0)
‖Ỹ (t)‖ ≤ ε̃

∣∣∣ {t0, Z(βt0), y0}
]

≤
∑

0≤i<d 1
h

β
log β (T−t0)e

P
[
Ai

∣∣ {t0, y0, Z(βt0)}
]

= cd
1
σ

ε̃ d−1 log β + H
(
T, t0, ε, β, y0, Z(βt0)

)
,

cd as in the statement of Lemma 2.

Proof. Immediate from the proof of Lemma 2, and Lemma 3.
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4.2 A lower bound

We can write

P
[

inf
0≤t≤ β

log β (T−t0)
‖Ỹ (t)‖ ≤ ε̃

∣∣∣ {t0, Z(βt0), y0}
]

= P

 ⋃
0≤t≤ β

log β (T−t0)

Ai

∣∣∣∣∣ {t0, Z(βt0), y0}


=

∑
0≤i<d 1

h
β

log β (T−t0)e

P
[
Ai

∣∣ {t0, Z(βt0), y0}
]

−
∑

0≤i<d 1
h

β
log β (T−t0)e

P

Ai ∩
⋃

i<j<d 1
h

β
log β (T−t0)e

Aj

∣∣∣∣∣ {t0, Z(βt0), y0}

 ,

(4.13)

where we recall that the event Ai is given by

Ai =
{

inf
si≤t<si+1

‖Ỹ (t)‖ ≤ ε̃

}
.

We will now show

Lemma 4.

∑
0≤i<d 1

h
β

log β (T−t0)e

P

Ai ∩
⋃

i<j<d 1
h

β
log β (T−t0)e

Aj

∣∣∣∣∣ {t0, Z(βt0), y0}


≤ C(d, σ)

log β

β
ε̃ d−1 + R(T, t0, ε, β, y0, Z(βt0)) ,

with R(T, t0, ε, β, y0, Z(βt0)) an integrable random variable such that

E
[
R(T, t0, ε, β, y0, Z(βt0))

]
= o

[
εd−1

√
β

]
,

Proof. Suppose that the event Ai occurs, and let Ỹi and Zi be the values
achieved by Ỹ and Z(βt0 + · log β ) at time si. Let j > i. Due to the defi-
nition of Ỹ (·), a necessary condition for Aj to happen is that the component
of the vector Zk = Z(βt0 + sk log β) in the direction Zi becomes smaller than
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δ = ε̃1+µ, for some i ≤ k ≤ j. In particular,⋃
i<j≤d 1

h
β

log β (T−t0)e

Ai ∩ Aj

⊆
(
Ai ∩

{
‖Zi‖ ≤

1
β

})
∪

Ai ∩
{
‖Zi‖ ≥

1
β

}
∩

⋃
i<k≤k(ε̃)

{〈
Zk, Zi

〉
≤ δ
}

∪

Ai ∩
⋃

k(ε̃)<k<d 1
h

β
log β (T−t0)e

Ak

 (4.14)

with

k(ε̃) =
⌈ ε̃

1
4

h

⌉
.

It follows from (4.3) and analogous expressions for the probability that Ỹi

belongs to one of the caps of the cylinder Ci while ‖Zi‖ ≤ 1/β, that there exists
a random variable R1(T, t0, ε, β, y0, Z(βt0)) such that

∑
0≤i<d 1

h
β

log β (T−t0)e

P

[
Ai ∩

{
‖Zi‖ ≤

1
β

} ∣∣∣∣∣{t0, Z(βt0), y0}

]

≤ C(d, σ)
log β

β
ε̃ d−1 + R1(T, t0, ε, β, y0, Z(βt0)), (4.15)

E
[
R1(T, t0, ε, β, y0, Z(βt0))

]
= o

(
εd−1

√
β

)
.

Also, conditional to the values of (Zi, Ỹi), the random vector (Zk, Ỹk) is Gaussian
with mean (

e−(sk−si) log β Zi, Ỹi +
1− e−(sk−si) log β

log β
Zi

)
and covariance matrix

Γi
k =

(
ai

k Id bi
k Id

bi
k Id ci

k Id

)
where

ai
k =

σ2

2
[
1− e−2(sk−si) log β

]
bi
k =

σ2

2
1

log β

[
1− 2e−(sk−si) log β + e−2(sk−si) log β

]
=

σ2

2
1

log β

[
1− e−(sk−si) log β

]2
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and

ci
k = σ2

[sk − si

log β
− 2

(log β)2
(
1− e−(sk−si) log β

)
+

1
2(log β)2

(
1− e−2(sk−si) log β

)]
.

Computations similar to those leading to (4.3) then yield

P
[
Ak

∣∣ {Ai, Zi, Ỹi

}]
≤ C(d, σ) (log β)

d−1
2 ε̃

11
4 h + Rik

2 (ε, β, Zi, Ỹi)

whenever k ≥ k(ε̃), where the random variables Rik
2 satisfy

E
[
Rik

2 (T, t0, ε, β, y0, Z(βt0))
]

= o
[
εd−1+ 11

4 h2 β2 (log β)
d−1
2

]
.

Adding over k and integrating over the set Ai and the vector (Zi, Ỹi), we con-
clude that

P

Ai ∩
⋃

k(ε̃)≤k≤ 1
h

β
log β (T−t0)

Ak

∣∣∣∣∣ {t0, Z(βt0), y0}


≤ C(d, σ, T ) β (log β)

d−1
2 ε̃ d−1+ 11

4 h + Ri
2(T, t0, ε, β, y0, Z(βt0)) (4.16)

with
E
[
Ri

2(T, t0, ε, β, y0, Z(βt0))
]

= o
[
εd−1+ 11

4 h β3 (log β)
d−1
2

]
.

It remains to estimate

Ai ∩
{
‖Zi‖ ≥

1
β

}
∩

⋃
i<k≤k(ε̃)

{〈
Zk, Zi

〉
≤ δ
}

.

Let i and Zi, ‖Zi‖ > 1/β, be given. Then

Z(βt0 + s log β) = e−(s−si) log βZi + σ e−(s−si) log β

∫ (s−si) log β

0

eu dW̃ (u),

W̃ (·) a standard d–dimensional Brownian motion. Now, the Wiener measure is
invariant under multiplication by unitary matrices, so by performing an orthog-
onal change of coordinates if necessary, we may assume that Zi/‖Zi‖ is the first
vector in the canonical basis:

Zi = ‖Zi‖ e1 .
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We then have

P

 ⋃
i<k≤k(ε̃)

{〈
Zk, Zi

〉
≤ δ
}∣∣∣∣∣
{
Ai, Zi, ‖Zi‖ ≥

1
β

}
≤ P

[
sup

si≤s≤si+ε̃ 1/4

∫ (s−si) log β

0

eu dW1(u) ≥ 1
2β

]
,

provided ε is sufficiently small. Here W1(·) is a 1–dimensional Brownian motion.
By Doob’s inequality,

P

 ⋃
i<k≤k(ε̃)

{〈
Zk, Zi

〉
≤ δ
}∣∣∣∣∣
{
Ai, Zi, ‖Zi‖ ≥

1
β

} ≤ 8 β2 log β ε̃
1
4 (4.17)

Decomposition (4.14) and estimates (4.15), (4.16) and (4.17) imply that

∑
0≤i<d 1

h
β

log β (T−t0)e

P

Ai ∩
⋃

i<j<d 1
h

β
log β (T−t0)e

Aj

∣∣∣∣∣ {t0, Z(βt0), y0}


≤ C(d, σ)

log β

β
ε̃ d−1 + R(T, t0, ε, β, y0, Z(βt0)) ,

where R(T, t0, ε, β, y0, Z(βt0)) = R1 + R2 satisfies

E
[
R(T, t0, ε, β, y0, Z(βt0))

]
= o

[
εd−1

√
β

]
,

as claimed.

Corollary 2. Let cd be the constant from the statement of Lemma 2. Then

P
[

inf
0≤t≤ β

log β (T−t0)
‖Ỹ (t)‖ ≤ ε̃

∣∣∣ {t0, Z(βt0), y0}
]

≥ cd
1
σ

ε̃ d−1 log β + H̃
(
T, t0, ε, β, y0, Z(βt0)

)
,

where the random variable H̃(T, t0, ε, β, y0, Z(βt0)) satisfies

E
[∣∣ H̃(T, t0, ε, β, y0, Z(βt0)

)∣∣] = o
[√

βεd−1
]
.

Proof. The result follows from (4.13), Lemma 4 and the identity∑
0≤i<d 1

h
β

log β (T−t0)e

P
[
Ai

∣∣ {t0, y0, Z(βt0)}
]

= cd
1
σ

ε̃ d−1 log β +H
(
T, t0, ε, β, y0, Z(βt0)

)
,

E
[∣∣H(T, t0, ε, β, y0, Z(βt0)

)∣∣] = o
[√

βεd−1
]
.
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Corollaries 1 and 2 clearly imply that

P
[

inf
0≤t≤ β

log β (T−t0)
‖Ỹ (t)‖ ≤ ε̃

∣∣∣ {t0, Z(βt0), y0}
]

= cd
1
σ

ε̃ d−1 log β + C
(
T, t0, ε, β, y0, Z(βt0)

)
,

where the random variable C has negligible mean,

E
[∣∣C(T, t0, ε, β, y0, Z(βt0)

)∣∣] = o
[√

βεd−1
]
.

5 First passage time estimate

We start by studying the accuracy of the piecewise linear approximation Ỹ (·)
to the process Y (·).

Lemma 5. Let δ = ε̃ 1+µ, µ > 0 as in the definition of h. Then

lim
ε→0

1
ε d−1

P

[
sup

0≤u≤ β
log β (T−t0)

‖Y (u)− Ỹ (u)‖ ≥ δ, t0 ≤ T

]
= 0.

Proof. It is clear from the definition of Ỹ that

P

[
sup

0≤u≤ β
log β (T−t0)

‖Y (u)− Ỹ (u)‖ ≥ δ, t0 ≤ T

]

≤ P

[
sup

βt0≤s<t≤βT
0≤t−s≤h log β

‖Z(t)− Z(s)‖ ≥ δ

h
, t0 ≤ T

]
.

We now work on this last expression. Due to the SDE satisfied by Z(·), it will
be enough to control

P

[
sup

βt0≤s<t≤βT
0≤t−s≤h log β

∫ t

s

‖Z(u)‖ du ≥ δ

h
, t0 ≤ T

]
(5.1)

and P

[
sup

βt0≤s<t≤βT
0≤t−s≤h log β

‖W (t)−W (s)‖ ≥ δ

σh
, t0 ≤ T

]
, (5.2)

where we recall that W (·) is a standard d–dimensional Brownian motion.
We start with (5.1). As a first observation, note that it is bounded by

P

[
sup

0≤s≤βT
‖Z(s)‖ ≥ δ

h2 log β

]
.
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It follows from the representation Z(t) = e−tZ(0) + σe−t
∫ t

0
es dW (s) that

P

[
sup

0≤s≤βT
‖Z(s)‖ ≥ δ

h2 log β

]

≤ P

[
sup

0≤s≤βT

∥∥∥Z(0) + σ

∫ s

0

eu dW (u)
∥∥∥ ≥ δ

h2 log β

]
.

The rest of the argument is similar to the one applied in the proof of Proposition
1 to derive (3.2), only simpler, as in the present case it is not necessary to
consider a partition of [0, βT ]. We describe it very briefly now. The first term
Z(0) on the right is a N(0, σ2/2 Id)–random vector. In order to control the
second term, the problem is first reduced to that of a 1–dimensional Brownian
motion, W1(·) say, by considering the coordinates of W (·). We then apply
Doob’s inequality to the Brownian exponential martingale

exp
{

λ

∫ t

0

es dW1(s)−
λ2

2

∫ t

0

e2s ds

}
,

with λ = C(d, σ) e−βT to conclude that

P

[
sup

βt0≤s<t≤βT
0≤t−s≤h log β

∫ t

s

‖Z(u)‖ du ≥ δ

h
, t0 ≤ T

]
≤ C(d, σ) exp

{
− δ

h2

e−βT

log β

}
(5.3)

We turn to (5.2). We apply Garsia, Rodemich and Rumsey inequality (see
[13], Chapter 2) to each path W (·) with a choice of increasing functions Ψ(u) =
uα, for

α > 4 ∨
[

2
µ

(
d +

1
3

+ 2µ
)]

,

and p(u) =
√

u. This leads to

P

[
sup

βt0≤s<t≤βT
0≤t−s≤h log β

‖W (t)−W (s)‖ ≥ δ

σh
, t0 ≤ T

]

≤ P

[
C (log β)

1
2−

2
α Γ

1
α ≥ δ

h
3
2−

2
α

]
,

for some positive constant C that depends only on the diffusion coefficient σ
and the parameter α. Here Γ is given by∫ βT

0

∫ βT

0

Ψ
(‖W (t)−W (s)‖√

t− s

)
ds dt =

∫ βT

0

∫ βT

0

‖W (t)−W (s)‖α

|t− s|α/2
ds dt.
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By Tchebyshev’s inequality, we get

P

[
sup

βt0≤s<t≤βT
0≤t−s≤h log β

‖W (t)−W (s)‖ ≥ δ

σh
, t0 ≤ T

]

≤ C(α, σ, d)
h

3
2 α−2

δα
(log β)

α
2 −2 E [Γ]

≤ C(α, σ, d)
h

3
2 α−2

δα
(log β)

α
2 −2 (βT )2 (5.4)

The lemma follows from (5.3), (5.4) and the choice of α.

Proof of Proposition 2. Note that

δ = ε̃1+µ = o(ε̃) .

The chain of inclusions{
‖Y − Ỹ ‖ ≤ δ, ‖Ỹ ‖ ≤ ε̃− δ

}
⊆
{
‖Y ‖ ≤ ε̃

}
⊆
{
‖Ỹ ‖ ≤ ε̃ + δ, ‖Ỹ − Y ‖ ≤ δ

}
∪
{
‖Y − Ỹ ‖ > δ

}
and Lemma 5 then imply

P

[
inf

0≤u≤ β
log β (T−t0)

‖Y (u)‖ ≤ ε̃, t0 ≤ T

]

= P

[
inf

0≤u≤ β
log β (T−t0)

‖Ỹ (u)‖ ≤ ε̃, t0 ≤ T

]
+ o

[
εd−1

]
,

where we recall that{
t0 ≤ T

}
=
{

inf
0≤t≤T

‖X(t)‖ ≤ log β√
β

}
.

We thus obtain

P

[
inf

0≤t≤T
‖X(t)‖ ≤ ε

]
= P

[
inf

0≤t≤T
‖X(t)‖ ≤ log β√

β
and inf

0≤u≤ β
log β (T−t0)

‖Y (u)‖ ≤ ε̃

]

= P

[
inf

0≤t≤T
‖X(t)‖ ≤ log β√

β
and inf

0≤u≤ β
log β (T−t0)

‖Ỹ (u)‖ ≤ ε̃

]
+ o

[
εd−1

]
= E

[
1{

inf0≤t≤T ‖X(t)‖≤ log β√
β

}E

[
inf

0≤u≤ β
log β

‖Ỹ (u)‖ ≤ ε̃
∣∣∣{t0, Z(βt0), y0}

]]
+ o

[
εd−1

]
= cd

1
σ

ε̃d−1 log β P

[
inf

0≤t≤T
‖X(t)‖ ≤ log β√

β

]
+ o

[√
βεd−1

]
.
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The last line is a consequence of the observation following the proof of Corollary
2 in the previous section, cd the constant appearing in the statement of Lemma
2. By Proposition 1, we conclude that

P

[
inf

0≤t≤T
‖X(t)‖ ≤ ε

]
= Cd

√
β εd−1 σ

∫ T

0

pσ
s (0, x0) ds + o

[√
βεd−1

]
with

Cd =
1√
2

(d
2
− 1
)
ωd−1 ωd

(∫ ∞

0

p1
s(0, y) ds

)(∫
Rd

‖z‖ p1
1(0, z) dz

)
,

as claimed. In this last formula y is any vector with ‖y‖ = 1, and ωd denotes
the volume of the d–dimensional unit sphere.
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