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1 Introduction

Given a trace class operator A acting on a Hilbert space, the Fredholm determinant of

the operator L = I − A is defined by

det1 L =
∞∏
j=1

(1− λj(A)), (1)

where I is the identity operator and the numbers λj(A) are the eigenvalues of A, repeated

the times indicated by their corresponding multiplicities.

It is a very known fact the necessity of this concept in various areas of mathematics, as

differential geometry [4], and those of physics, for instance in the construction of quantum

theories by means of functional integration (see for instance [12], [5], [6], [3]), in where

the calculus of determinants of quotients of some elliptic differential operators recovers a

special interest.

In [4] R. Forman has studied some Fredholm determinant properties of L and the

quotient of regularization of the determinants of two differential operators D0 and D1

by the Riemann ζ-function method, when L = D0D
−1
1 = I − A and A belongs to the

trace class operators. This type of determinant regularization procedure is called the

ζ-determinant regularization and is denoted by Detζ .

In general, for an operator L acting on a Hilbert space H the notions of Fredholm

determinant and the ζ-determinant might have no sense. Nevertheless, when the Fredholm

determinant of some operator having the form L = L1L0
−1 exists it can be extended, under

some hypotheses, by the ratio of the regularized ζ-determinants of the involved operators.

Then, in several occasions, the interest is focalized on the quotient of the determinants of

the operators instead of each determinant individually. On this line the works [5] and [6]

fit in perfectly. It is shown in such papers that the quotient between the ζ-determinants of

two elliptic operators A+ εA1 and A, defined on a compact differential manifold without

boundary, is given by

Detζ(A+ εA1)

Detζ(A)
= exp

{
ε
d

ds

∣∣∣∣
s=0

[
s.Tr

(
A−s−1A1

)]
+O(ε2)

}
, (2)
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where A is pseudodifferential of positive order and A1 is a differential operator with

order(A1) < order(A). Another version about the derivative of the logarithm of the

ζ-determinant with respect to a parameter is presented in [4] where it is established that

d

dt
logDetζLtB =

d

ds
Tr

[
s.

(
d

dt
Lt B

)
.L−s−1

tB

]∣∣∣∣
s=0

(3)

=
d

dt
log det1

(
LtB.L

−1
0B

)
,

for a quotient of two elliptic differential operators with boundary conditions belonging to a

family of operators LtB, all with identical principal symbol and the same elliptic boundary

condition B. The strong hypothesis required by R. Forman is that

(
d

dt
Lt B

)
L−1
tB, the

logarithmic derivative of LtB, is a trace class operator for all t. In some recent papers it

is possible to find many results concerning the regularization of functional determinants

applied to particular models, see for instance [3] , [5], [6] and [8].

The aim of this paper is to extend 3 to the quotient of two classical elliptic differential

operators with elliptic boundary conditions without assuming the trace class condition

about the logarithmic derivative of LtB. In [1] a very close result is obtained for pseu-

dodifferential operators without boundary conditions on a compact manifold.

In the next section we introduce the main results without proof. In section three

we establish the notation and recall the definitions and some properties about the ζ-

determinant regularization method and the Fredholm determinant. The last section is

devoted to the proofs.

2 Main results

The principal statements about the logarithm of the ζ-determinant of the quotient of two

elliptic differential operators with the same boundary elliptic condition are presented.

Theorem 2.1.

Let Ω be an open subset of the complex plane and let z(t) : [0, 1] −→ Ω be a differentiable

curve. Over a compact, n-dimensional, differential manifold M with boundary X define
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the z-analytic family {Lz}z∈Ω of elliptic, invertible, differential operators, having order

m > 0. Let B be the same elliptic boundary condition for each Lz. Let denote with Lt the

elliptic problem (Lz(t), B), for all t ∈ [0, 1].

It is supposed that all the operators of the family have the same principal symbol, which

has a cone of minimum growth rays.

Then, for all t ∈ [0, 1] it is satisfied

d

dt
lnDetζLt =

d

ds

∣∣∣∣
s=0

Tr

[
s.

(
d

dt
Lt

)
.L−s−1

t

]
, (4)

being the r.h.s. of this equality the finite part at s = 0 of the meromorphic extension of

Tr

[(
d

dt
Lt

)
.L−s−1

t

]
.

Recall that the finite part at s = 0 of a function with a simple pole there is to subtract

the term with the pole at s = 0 to the function, and then to take the limit as s→ 0.

Remark 2.2. Following the result given by theorem 2 in [10] and the steps of its proof it

can be shown that, taking A =

(
d

dt
Lt

)
.L−1

t , the kernel of the composition operator A.L−st

can be extended to a meromorphic function of s with only simple poles located at the same

values of the simple poles of the kernel of the operator L−st .

Next, the corresponding integrated version will be enunciated. In order to deduce the

first corollary it is enough to take the exponential function after integrating from 0 to to

in equation (4) of the previous theorem.

Corollary 2.3. (Integrated version)

Under the hypotheses of theorem 2.1, it is true that

DetζLto
DetζL0

= exp

{∫ to

0

d

ds

∣∣∣∣
s=0

{
s.Tr

[
d

dt
(Lt).L

−s−1
t

]}
dt

}
.

Corollary 2.4. (Logarithmic derivative for the trace class case)

Under all the hypotheses of theorem 2.1, if besides

(
d

dt
Lt

)
.L−1

t is a trace class operator

for all t, it is valid that

d

dt
logDetζLt =

d

ds
Tr

[
s.

(
d

dt
Lt

)
.L−s−1

t

]∣∣∣∣
s=0

=
d

dt
log det1

(
Lt.L

−1
0

)
, (5)
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and also
DetζLto
DetζL0

= det1
(
Lto .L

−1
0

)
.

Remark 2.5. It should be noted that the previous corollary is just one of the results

established in [4].

3 Setting down the frame

Let M be a differential manifold equipped by a measure µ. The space of all the complex

valued functions defined over M having derivatives of every order will be denoted by

C∞(M) = {f : M −→ C f is infinitely differentiable}. (6)

In general, H will be understood a Hilbert space and the set of all the linear and

continuous operators T : H −→ H will be denoted L(H). In particular, the Hilbert space

of the square integrable functions f : M −→ C will be denoted by H = L2(M).

3.1 Trace class operators and Fredholm determinant

A compact operator A defined on a Hilbert space H is called to be a trace class operator

if

Tr(|A|) =
∞∑
j=1

µj(A) <∞, (7)

where µj(A), the singular values of A, are the eigenvalues of |A| =
√
A∗A. The set of the

trace class operators on H form an ideal denoted J1. If I denotes the identity operator

on H, the Fredholm determinant of L = I − A was defined by (1) as

det1 L =
∞∏
j=1

(1− λj),

where {λj(A)}j denotes the proper values of A when A is a trace class operator. Of

course, its trace is given by

Tr(A) =
∞∑
j=1

λj(A) <∞.

The expression (7) defines a norm on J1, called the trace norm and denoted ‖A(z)‖1 =

Tr(|A|).
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In this paper, it will be applied the integral representation of the Fredholm determinant

(c.f. [7])

det1(I − A) = exp

{
−
∫

γ

Tr
[
A (1− zA)−1

]
dz

}
, (8)

with γ : [0, 1] −→ C a continuous path such that γ(0) = 0 , γ(1) = 1 and that the

operator (1− zA)−1 exists and is bounded for all z in γ.

Some properties connected with the differentiability of the Fredholm determinants are

recalled now. The corresponding proofs can be found in [2].

Lemma 3.1.

Let A(z) : G −→ J1 a holomorphic application over an open subset G of C taking values

on the ideal J1 of the trace class operators equipped with the norm of L(H). Let us suppose

that the trace norm ‖A(z)‖1 of A(z) is bounded over each compact subset of G.

Then, the funtion det1(I − A(z)) : G −→ C is holomorphic.

Lemma 3.2.

Under the hypotheses of lemma 3.1 we have

• the derivative of A(z) is a trace class operator for all z ∈ G;

• the funtion Tr(A(z)) is holomorphic on G, and

• d

dz
[Tr(A(z))] = Tr

[
d

dz
A(z)

]
.

Remark 3.3. Since J1 is not a closed subspace of L(H) in the norm of the bounded

operators, the first statement is not evident at all.

Lemma 3.4.

Under the hypotheses of lemma 3.1 it results

d

dz
ln(det1(I − A(z)) = −Tr

[
(I − A(z))−1 d

dz
(A(z))

]
.

Remark 3.5. Let us notice the very close connection between this last lemma and the

formula (8) given in [7].
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3.2 ζ-determinant

Let us treat the case of an elliptic differential operator L of order m > 0 in a smooth

bounded domain M with boundary conditions B given on ∂M . Let LB be the operator

L with domain {u ∈ C∞ : Bu = 0 on ∂M} and we denote also by LB its closure in

L2(M). Since LB is an unbounded operator, it is clear that the product of the eigenvalues

is divergent. So, the way to define the determinant of LB as the product of its eigenvalues

is not convenient, unless the operator I − LB is a trace class operator. Therefore, in

order to define DetLB we appel to the notion of the trace Tr(L−sB ), called the generalized

Riemann ζ-function associated to LB and denoted by ζ(LB, s). For this issue, we need

to define the complex powers L−sB , then we choose the boundary condition B such the

operator LB − λ is invertible for all λ belonging to an appropriate sector Γ ⊂ C (for

example, if the system of operators (L,B) is elliptic and satifies the Agmon’s condition,

see for instance [9] and [11]).

Then, for a given complex number s, one of the way to define the operator L−sB is ( [9]

and [11])

L−sB =
i

2π

∫

Γ

λ−s(LB − λI)−1 dλ, if Re(s) > 0

(9)

L−sB = LkB.L
−(k+s)
B , if − k < Re(s) ≤ −(k − 1) ≤ 0,

with k ≥ 1 an integer number and Γ = Γ1∪Γ2∪Γ3 the path on the complex plane, where

for some angle θ each path is defined by

Γ1 = {teiθ} , varying t from ∞ to ε > 0,

Γ2 = {|λ| = ε} clockwise oriented, and (10)

Γ3 = {teiθ} , varying t from ε to ∞,

assuming that there exists a cone of directions around the ray argλ = θ in such a way

that no eigenvalue of L belongs to the cone. In [9] and [10] it was proved that the

function Tr
(
L−sB

)
is holomorphic in a half-plane and that admits a meromorphic extension

to the whole complex s-plane, being analytic at s = 0. As a consequence, one of the

possible notions of the regularized determinant of the operator LB is known as the of the
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generalized Riemann ζ-function and that, in what follows, it will be denoted DetζLB.

Therefore,

DetζLB = exp

{
− d

ds

∣∣∣∣
s=0

ζ(LB, s)

}
. (11)

4 Proofs

Proofs of theorem 2.1

The proof of this theorem is essentially the same as the analogous theorem in [1]. Under

the hypotheses of the theorem, the complex powers of Lt are given by 9.

Let k >
n

m
be an integer and s ∈ C such that Re(s) ≥ k. According to [9], [10], and

[13], L−st is a trace class operator and its kernel is continuous on the diagonal of M . Since

the complex powers depend analytically on the parameter s, from lemma 3.2 it follows

for Re(s) > k that

d

dt
Tr
(
L−st

)
=

d

dt
Tr
[
Lk−st L−kt

]

=
d

dt
Tr

[
i

2π

∫

Γ

λk−s(Lt − λ)−1 L−kt dλ

]

= Tr

{
i

2π

∫

Γ

λk−s
[
−(Lt − λ)−1 d

dt
(Lt) (Lt − λ)−1 L−kt +

+ (Lt − λ)−1

(
k∑
j=1

L−j+1
t

d

dt
(L−1

t )L−k+j
t

)]
dλ

}

= − i

2π

∫

Γ

λk−sTr
[
(Lt − λ)−1 d

dt
(Lt) (Lt − λ)−1 L−kt dλ

]
+

+
i

2π

k∑
j=1

∫

Γ

λk−sTr
[
−(Lt − λ)−1 L−j+1

t L−1
t

d

dt
(Lt)L

−1
t L−k+j

t

]
dλ.

By the cyclic property of the trace it can be written as
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d

dt
Tr
(
L−st

)
= − i

2π

∫

Γ

λk−sTr
(

(Lt − λ)−2

(
d

dt
Lt

)
L−kt

)
dλ−

− i

2π

k∑
j=1

∫

Γ

λk−sTr
[
(Lt − λ)−1

(
d

dt
Lt

)
L−k−1
t

]
dλ

= Tr

[
− i

2π

∫

Γ

λk−s(Lt − λ)−2 dλ

(
d

dt
Lt

)
L−kt

]
− kTr

[
Lk−st

(
d

dt
Lt

)
L−k−1
t

]
.

Integrating by parts and taking into account that Re(s) > k, we have

d

dt
Tr
(
L−st

)
= Tr

[
(k − s)

(
d

dt
Lt

)
L−s−1
t − k

(
d

dt
Lt

)
L−s−1
t

]

= Tr

[
−s
(
d

dt
Lt

)
L−s−1
t

]

= (−s).T r
[(

d

dt
Lt

)
.L−s−1

t

]
. (12)

As a function of s the r.h.s. of (12) has a meromorphic extension to the whole complex

plane ( [9], [10], [11] and [13]) with only simple poles possibly localized at s = n− j

m
,

for j = 1, 2, . . . . In particular, at s = 0 such extension is analytical.

Eventually, in virtue of definition of ζ-determinant given by formula (11) and expression

(12), it is clear that

d

dt
lnDetζLt =

d

dt

{
− d

ds

∣∣∣∣
s=0

Tr
(
L−st

)}

= − d

ds

∣∣∣∣
s=0

{
d

dt
Tr
(
L−st

)}

=
d

ds

∣∣∣∣
s=0

{
s.Tr

[(
d

dt
Lt

)
.L−s−1

t

]}
.

♦

Proof of corollary 2.4

In fact, from the integral representation (8) of the Fredholm determinant det1 it results

that

d

ds

∣∣∣∣
s=0

{
s.Tr

[(
d

dt
Lt

)
.L−s−1

t

]}
= Tr

[(
d

dt
Lt

)
.L−1

t

]
=

d

dt
ln det1

(
Lt.L

−1
0

)
.
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The conclusion follows straightforward after integrating the last equality from 0 to to and

taking the exponential function. ♦
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