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Abstract

We introduce a 1–dimensional stochastic system where particles
perform independent diffusions and interact through pairwise coagu-
lation events, which occur at a non–trivial rate upon collision. Under
appropriate conditions on the diffusion coefficients, the coagulation
rates and the initial distribution of particles, we derive a spatially in-
homogeneous version of the mass flow equation as the particle number
tends to infinity. The mass flow equation is in one to one correspon-
dence with Smoluchowski’s coagulation equation. We prove uniqueness
for this equation in a broad class of solutions, to which the weak limit
of the stochastic system is shown to belong.

1 Introduction

Coagulation models describe the dynamics of cluster growth. Particles car-
rying different masses move freely through space, and every time any two
of them get sufficiently close there is some chance that they coagulate into
a single particle, which will be charged with the sum of the masses of the
original pair.

In 1916, Smoluchowski [17] considered the model of Brownian particles
moving independently in three dimensional space, such that any pair coag-
ulates into one particle upon collision. He derived a system of equations,
known as Smoluchowski’s coagulation equations, that describes the time
evolution of the average concentration µt(m) of particles carrying a given
mass m = 1, 2, . . . . In this original work, Smoluchowski ignored the effect
of spatial fluctuations in the mass concentrations, the equations we write
below are thus a natural extension allowing diffusion in the space variables:

µ̇t(m) =
1

2
a(m)∆xµt(x,m) +

1

2

∑

m′+m′′=m

K(m′,m′′)µt(x,m′)µt(x,m′′)

− µt(x,m)
∑

m′

K(m,m′)µt(x,m′) .

The differentiated term on the right describes the free motion of a particle
with attached mass m as a Brownian motion with diffusivity rate a(m). The
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kernel K is determined by physical considerations, it regulates the intensity
of the coagulation dynamics. The first sum corresponds to the increase
in the concentration resulting from the coagulation of two particles whose
masses add up to m. The second sum reflects the decrease caused by the
coalescence of a particle carrying mass m with any other particle in the
system. Coagulation phenomena have been studied in many fields of the
applied science, we refer to Aldous’ review [1] for a comprehensive survey of
the literature.

This paper is concerned with the approximation of Smoluchowski’s equa-
tions by stochastic particle models. Concretely, we are interested in iden-
tifying the solution to the coagulation equations as the mass density of a
system of interacting particles, when the particle number tends to infinity.
This problem has been much studied in the spatially homogeneous case, both
for discrete and continuous mass distributions, and with different choices of
coagulation kernel K (cf. [8], [14], [4], [5] and references therein). The rel-
evant stochastic process for these models is the Marcus-Lushnikov process
([13], [12]), this is the pure jump Markov process where clusters of size m
and m′ coagulate into a single cluster of size m + m′ at rate K(m,m′).

In the spatially inhomogeneous case, on the other hand, the coagula-
tion mechanism is highly dependent on the relative position of the particles,
hence the space dynamics play a predominant role in the particle interactions
of the stochastic system. In the original problem proposed by Smoluchowski,
for instance, pairwise collisions and the ensuing coagulation events are com-
pletely determined by the Brownian paths. The first result for this model
was obtained in 1980 by Lang and Nguyen [11] for the case of discrete mass
and constant a, K, in the limit of constant mean free time. No progress was
made until the forthcoming paper [15], where Norris proves convergence for
both discrete and continuous mass distributions, and variable coefficients in
a class that includes the Brownian case.

Over the past few years there has been considerable interest in spatial
models with stochastic dynamics of coagulation. In these models, particles
coagulate at some rate while they remain at less than a prescribed distance.
Deaconu and Fournier [3] consider the case when this distance is independent
of the particle number, and let it go to zero after taking the weak limit. The
moderate limit, where the range of interaction is long in the microscopic
scale, is studied by Großskinky et al. in [7]. In a recent article [9], Hammond
and Rezakhanlou work in the constant mean free time limit, for dimensions
d ≥ 3.

In this paper we introduce a diffusion model where coagulation occurs
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on collision as a result of a random event: mass–charged particles perform
independent one dimensional diffusions, and every time two particles meet
there is some positive probability p, determined by their masses, that they
will merge into a single particle. This new particle is assigned the sum of the
masses of the incoming particles, and the process continues. We remark that
in one dimension the problem of instantaneous coagulation on collision (p =
1) is not interesting: at the large scale level we would instantaneously see the
distribution of the total mass in the system among clusters of macroscopic
size. Hence the introduction of the coagulation probabilities p . We treat the
case where the mass dependent diffusivity rates blow up as the mass goes
to zero, combined with our choice of p’s, this leads to a large scale model
favouring coagulation of large and small particles.

We describe the particle system and state the main results of the paper
in Section 2. Section 3 contains a compactness result. The next step in the
analysis is to prove convergence to a hydrodynamic limit. This is shown to
verify a spatial version of the mass flow equation, which is closely related to
Smoluchowski’s coagulation equation. This is the content of Section 4. In
Section 5 we derive a uniqueness result for the solutions to a broad family of
such equations, thereby obtaining a law of large numbers for the empirical
processes of the microscopic model.

2 Notation and results

Let T stand for the circle with radius 1/2π centered at the origin in R
2.

We will henceforth think of it as the interval [−1/2, 1/2] by identifying the
endpoints of the latter, and associate the point (1/2π, 0) to the origin.

Denote by R+ the half line [0,∞). Let

PN
0 = PN

0 ( dx1, dm1; . . . ; dxN , dmN )

be a sequence of measures on (T × R+)N which are symmetric on the pairs
(xi,mi) and supported on

∑

i m
i = 1. Let M1(T×R+) stand for the space

of probability measures on T×R+ endowed with the weak topology; we will
assume that there exists an initial profile ν ∈ M1(T × R+) such that the
empirical distributions

∑

i m
iδ(xi,Nmi) converge weakly to δν . We will use

the notation Mf (T×R+) to denote the space of positive and finite measures
on T × R+. We will use the notation Mf (T × R+) to denote the space of
finite, positive measures on T × R+.
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Next, consider a system of N particles with positions and masses given
by

{

(

χi
s,m

i
s

)

1≤i≤N

}

starting at {(xi,mi)} and evolving according to a rule that we now describe.
Let

Φ(m,m′) : R+ × R+ → R+

be a non-negative, symmetric kernel with the property that it vanishes when
either of the coordinates equals 0. The positions {χi, 1 ≤ i ≤ N} perform in-
dependent Brownian motions on T with corresponding diffusion coefficients
{a(Nmi), 1 ≤ i ≤ N}, until the first one of a family of independent Poisson
events with respective rates

Φ(Nmi,Nmj)

N
dLij

occurs, where Lij denotes the intersection local time of the i–th and j–th
particles, that is: the local time at the origin of the difference χi − χj. At
this point the masses mi and mj coagulate into

mi∧j = mi + mj , mi∨j = 0,

and the diffusion coefficients of the i-th and j-th particles are reset accord-
ingly, whereas the rest of the particles are left unaffected. The process
continues.

Given a complete separable metric space T , D(R+,T ) will denote the
set of right continuous functions with left limits taking values in T , en-
dowed with the Skorokod topology. Let PN be the measure on C(R+, TN )×
D(R+, RN

+ ) determined by the pairs (χi
· ,m

i
·). There is the representation

mi
t = mi +

∫ t

0

∑

i<j≤N

mj dN ij −
∫ t

0

∑

1≤k<i

mi dNki

where dN ij is a counting measure, N ij([0, t]) = 0, 1 with PN–probability 1,
depending on whether the i-th and j-th particles have coagulated by time
t > 0, and

M ij
t = N ij([0, t]) −

∫ t

0

Φ(Nmi
s,Nmj

s)

N
dLij

is a martingale.
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The reason for the choice of scaling of the coagulation rate is quite
straighforward: if a hydrodynamic description is to hold, then it is necessary
that O(N) particles remain in the system at all times (note that although
total mass is conserved, the number of particles decreases by one after each
coagulation event). Therefore a generic particle will see some fraction of
the other O(N) particles over any fixed time interval, while it would still be
expected to coagulate with only O(1) of them. This forces the rate Φ to be
typically of order 1/N .

We will consider the mapping

ΠN : C
(

R+, TN
)

× D
(

R+, RN
+

)

→ D
(

R+,M1(T × R+)
)

such that
ΠN

(

{χi
· ,m

i
·}
)

=
∑

1≤i≤N

mi
· δ(χi

· ,Nmi
·)
,

and denote by QN the measure on D
(

R+,M1(T × R+)
)

induced by ΠN ,

QN = PN ◦ Π−1
N .

In order to derive a hydrodynamic limit for QN , we need to specify some
conditions on the diffusion coefficients a, the coalescing kernel Φ, the initial
measure PN

0 and the profile ν. We assume that the mapping a : (0,∞) →
(0,∞) is non–increasing. The kernel Φ satisfies a Lipschitz condition away
from the origin: for each L > 0 there exists a positive constant Γ(L) such
that

∣

∣Φ(m + m′′,m′) − Φ(m,m′)
∣

∣ ≤ Γ(L)m′′ whenever m > L . (2.1a)

It will also be assumed that there exists 0 ≤ p ≤ 1/2 such that

Φ(m,m′) ≤ c (mp + m′p) 1[m>0, m′>0] (2.1b)

for some positive constant c. We then introduce the coagulation rates in the
hydrodynamic equation,

κ(m,m′) = Φ(m,m′)
[

a(m) + a(m′)
]

.

In order to study convergence and derive the uniqueness of the limit, it will
be useful to consider

ω(m) = [1 + c + a(1)]
[

mp + a(m) + 1
]

,
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it verifies κ(m,m′) ≤ ω(m)ω(m′). We will require that

a(m)−1/2ω(m) be a subadditive function of m. (2.2)

The initial measures PN
0 will be assumed to satisfy

EP N
0

[

N
∑

(mi)2
]

< C and EP N
0

[ 1

N

∑

a(Nmi)2
]

< C ′ (2.3)

for some constants C,C ′ > 0, uniformly in N . In particular both 〈m, ν〉 and
〈a(m)2/m, ν〉 are finite. In fact, the following assumption will hold: there
exists a finite measure ν∗(dm) such that

ν(dx, dm) ≤ ν∗(dm) dx with
〈

m +
a(m)2

m
, ν∗
〉

< ∞. (2.4)

The first theorem of the paper is a tightness result:

Theorem 1. Assume that (2.1a,b), (2.2) and (2.3) hold. Then the sequence
of measures QN on D

(

R+,M1(T×R+)
)

is relatively compact, and all limit
points are concentrated on continuous paths.

The next two results concern the properties satisfied by any weak limit
of the empirical distributions as we pass to the limit in the particle number.
The first result provides some estimates that will ensure the hydrodynamic
equation is well defined, then Theorem 2 identifies this equation, thereby
establishing an existence result.

Given a kernel µ(x, dm) dx ∈ Mf (T × R+) and a bounded test function
f(m), we will denote by � f, µ � the single integral

∫

R+
f(m)µ(x, dm).

This clearly determines a signed measure on T by
∫

T

h(x) � f, µ � dx =

∫

T×R+

h(x) f(m)µ(x, dm) dx.

Proposition 1. Let Q be a weak limit of the sequence QN of probability
measures on C

(

R+,M1(T × R+)
)

. Then Q is supported on the set of paths
µ·(dx, dm) whose marginal µt(dx, R+) � dx on T for all t, µt(dx, dm) =
υt(x, dm) dx. Moreover, the following inequalities hold with Q–probability 1:

sup
t≥0

∥

∥

∥
� ω(m)

m
,υt �

∥

∥

∥

∞
< ∞ (2.5)

and
sup
t≤T

〈m,µt〉 < ∞ (2.6)

for any fixed final time T .

6



Denote by C2
b (T × R+) the space of continuous, bounded functions on

T×R+ which have continuous, bounded derivatives in the space variable up
to the second order.

Theorem 2. Let Q be a weak limit of the sequence QN , as in Proposition 1,
and consider f in C2

b (T×R+). Then, with Q–probability 1, a path µs(dx, dm)
satisfies

〈f, µt〉 − 〈f, ν〉 =

∫ t

0

〈 1

2
a(m)

∂2f

∂x2
, µs

〉

ds

+

∫ t

0

∫

T

∫

R+×R+

[

f(x,m + m′) − f(x,m)
]

m′
κ(m,m′) (2.7)

× υs(x, dm)υs(x, dm′) dx ds

if t ≥ 0. In this equation ν is the initial profile of the model, and the kernel
υs(x, dm) is such that

µs(dx, dm) = υs(x, dm) dx for all s ≥ 0, Q–a.e. .

The method applied to derive these results relies heavily on stochastic
calculus computations, we try to make these quite detailed in the proof of
Theorem 1 and give only an outline later on.

Proposition 1 and Theorem 2 motivate the following definition: let D(ω)
denote the subset of C(R+,Mf (T × R+)) of those paths η whose marginal
ηt(dx, R+) has a density with respect to Lebesgue measure, and such that
(2.5) and (2.6) are satisfied. Note that (2.7) is well defined for µt in D(ω).

Equation (2.7) describes the evolution in time of the mass flow: if we
decompose its solutions as υ(x, dm) dx = m υ̂s(x, dm) dx, an elementary
computation proves that υ̂ dx satisfies Smoluchowski’s coagulation equation
with kernel κ. Theorem 1 asserts that all weak limits of the measures QN are
supported on M1(T×R+); in terms of the concentration densities υ̂s(x, dm),
this means that mass is conserved, or equivalently, that there is no gelation
phenomenon.

In [15], Norris introduces a method for proving existence and uniqueness
for a general class of d-dimensional diffusion models with coagulation; briefly
put, this consists on finding an approximation to the counterpart of equation
(2.7) by a system that depends on the coalescing kernel κ only through its
values on a given compact set. In Section 5 we develop a simplified version
of his technique to obtain a uniqueness result for the solutions of a broad
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family of mass flow equations. Section 5 may be read independently of the
rest of the paper.

As a particular case of Theorem 3 in Section 5, we have

Corollary 1. Assume conditions (2.1b), (2.2) and (2.4) on the coagulation
rate κ and the initial measure ν, respectively. Then for any T ≥ 0, (2.7)
has at most one solution {µt}0≤t≤T in D(ω).

The four preceding results imply that the sequence of probability mea-
sures QN has as unique weak limit point the Dirac measure concentrated on
the unique solution in D(ω) to equation (2.7).

3 Existence of a weak limit

In order to simplify notation, we will often omit the dependence of the masses
and positions on the time parameters whenever we think that this would not
lead to confusion. For instance, in an integral where time is parametrized
by s, mi and χi should be read as mi

s and χi
s, respectively.

Throughout the article, Γ will denote a positive constant. Unless we are
particularly interested in keeping track of its growth or dependence on the
parameters, we will use the same letter Γ to denote constants on consecutive
lines which may be different, or constants appearing in totally unrelated
computations.

Let us consider a fixed final time T > 0 for the rest of the paper. We will
prove a version of Theorems 1, 2 and Proposition 1 on the compact interval
[0, T ]; the fact that the value of T is arbitrary will then imply that these
results hold as stated in the previous section.

The following estimates will be necessary to derive Theorem 1; we post-
pone their proofs until the end of this section.

Lemma 1. There exist nonnegative constants C(T ), C ′(T ) which depend
on the diffusivity a, the kernel φ and the bounds appearing in (2.3), such
that

EP N
[

N
∑

i

[mi
T ]2
]

< C(T ) and (3.1)

EP N
[

∫ T

0

∑

i<j

mimjΦ(Nmi,Nmj) dLij
]

< C ′(T ) (3.2)

hold uniformly in N .
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Lemma 2. Given ε > 0, there is δ > 0 such that

lim
N→∞

PN
[

sup
0≤s≤t≤T

t−s≤δ

∫ t

s

∑

i<j

mimjΦ(Nmi,Nmj) dLij > ε
]

< ε.

Denote by Cb(T × R+) the space of bounded, continuous functions on
T×R+ with the topology determined by uniform convergence over compact
sets. Let {fk, k ∈ N} be a dense, countable family in Cb(T×R+). Then the
distance

%(µ, ν) =
∑

k∈N

1

2k

|〈fk, µ〉 − 〈fk, ν〉|
1 + |〈fk, µ〉 − 〈fk, ν〉|

defines a metric on M1(T×R+) which is compatible with the weak topology.
There is the associated modulus of continuity

ωµ(γ) = sup
0≤s≤t≤T

t−s≤γ

%(µt, µs).

Proof of Theorem 1. We refer to Chapter 4 in [10] for a presentation of the
Skorokod’s topology as well as the characterization of the relatively com-
pact sets in D([0, T ],M1(T × R+)). Note that condition (ii) below implies
that, provided the sequence QN has limit points, these will be supported on
C([0, T ],M1(T × R+)).

By a version of Prokhorov’s Theorem applied to this setting (cf. [2],
Chapter 3), the theorem will follow if we can show that

(i) For every ε > 0, lim
M↑∞

lim sup
N→∞

QN
[

sup
0≤t≤T

µt

(

m > M
)

> ε
]

= 0

and

(ii) For every ε > 0, lim
γ↓0

lim sup
N→∞

QN
[

ωµ(γ) > ε
]

= 0.

Note that 〈m,µt〉 is non-decreasing for 0 ≤ t ≤ T , QN–a.e., a fact we will
repeatedly use in the course of the article. Then (i) is an easy consequence
of (3.1) in Lemma 1 and Tchebyshev’s inequality.

In order to conclude (ii) it will be enough to prove that given f ∈ C2
b (T×

R+), f Lipschitz in m, we can control

QN
[

sup
0≤s≤t≤T

t−s≤γ

|〈f, µt, 〉 − 〈f, µs〉| > ε
]

< ε
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provided N and γ are taken to be sufficiently large and small, respectively.

Define the stopping time

τ = inf
{

t ≥ 0, max
i

(mi
t)
[

1 +
∑

i

mia(Nmi)
]

> N−1/4
}

;

by Tchebyshev’s inequality we compute

PN
[

τ ≤ T
]

<
[C(T )(1 + C ′)]1/2

N1/4

where C(T ) and C ′ are the constants appearing on the right of (3.1) and
the second inequality in (2.3) respectively. By stopping the process as soon
as τ is achieved, we may assume that

PN
[{

max
i

(mi
t)
[

1 +
∑

i

mia(Nmi)
]

≤ N−1/4
}]

= 1. (3.3)

Applying Itô’s formula to f , we have

〈f, µt〉 − 〈f, µs〉

=

∫ t

s

∑

i

mi ∂f

∂x
(χi, Nmi) dχi +

1

2

∫ t

s

∑

i

mi ∂
2f

∂x2
(χi, Nmi) a(Nmi) ds

+

∫ t

s

∑

i

[

FN (χi,mi + mj) − FN (χi,mi) − FN (χi,mj)
]

dN ij

where we denote FN (x,m) = mf(x,Nm).

Let γ > 0. Doob’s inequality, (3.3) and the monotonicity of a imply

PN
[

sup
0≤s≤t≤T

t−s≤γ

|
∫ t

s

∑

i

mi ∂f

∂x
(χi, Nmi) dχi| >

ε

3

]

≤ PN
[

sup
0≤t≤T

|
∫ t

0

∑

i

mi ∂f

∂x
(χi, Nmi) dχi| >

ε

6

]

≤ Γ(f, ε, T )

N1/4

where Γ is a positive constant that does not depend on N . By taking γ such
that

C ′
∥

∥

∥

∂2f

∂x2

∥

∥

∥

∞
γ ≤ ε2

3
(3.4)
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we also obtain

PN
[

sup
0≤s≤t≤T

t−s≤γ

|
∫ t

s

∑

i

mi ∂
2f

∂x2
(χi, Nmi) a(Nmi) ds| >

ε

3

]

≤ ε

3
.

It remains to estimate the Poisson integral

∫ t

s

∑

i

[

FN (χi,mi + mj) − FN (χi,mi) − FN (χi,mj)
]

dN ij

= MF (0, t) − MF (0, s) + IF (s, t),

if IF (s, t) denotes the integral

∫ t

s

∑

i<j

[

FN (χi,mi + mj) − FN (χi,mi) − FN (χi,mj)
]Φ(Nmi,Nmj)

N
dLij

and MF (0, t) is a martingale collecting the remaining terms. Its quadratic
variation is given by

∫ t

0

∑

i<j

[

FN (χi,mi + mj) − FN (χi,mi) − FN (χi,mj)
]2 Φ(Nmi,Nmj)

N
dLij.

Note that

|FN (x,m + m′) − FN (x,m) − FN (x,m′)| ≤ Γ(f)
[

(m + m′) ∧ (Nmm′)
]

.

In particular, due to the assumption (3.3) on the mass sizes, (3.2) and Doob’s
inequality, we obtain

PN
[

sup
0≤s≤t≤T

t−s≤γ

|MF (s, t)| >
ε

6

]

≤ Γ(f, ε, T )

N1/4

which will decay to 0 as we pass to the limit N → ∞. Finally,

|IF (s, t)| ≤ Γ(f)

∫ t

s

∑

i<j

mimjΦ(Nmi,Nmj) dLij .

The result now follows by taking

γ ≤ γ1 ∧ δ
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where γ1 satisfies (3.4) and δ is the value given by Lemma 2 when ε is set
equal to ε/6[1 + Γ(f)].

Proof of Lemma 1. The proof of this lemma will follow from repeated appli-
cations of Itô-Tanaka’s theorem, see [6] for an exposition of this and related
formulas. We write

N
∑

i

[mi
t]

2 = N
∑

i

[mi]2 + Mt + 2

∫ t

0

∑

i<j

mi
sm

j
s Φ(Nmi

s,Nmj
s) dLij

(3.5)

where Mt is the PN -martingale

Mt =

∫ t

0

∑

i<j

2Nmi
sm

j
s

[

dN ij − Φ(Nmi
s,Nmj

s)

N
dLij.

]

We focus on the last term of (3.5). Given ζ > 0, let gζ ∈ C(T)∩C2(T−{0})
be a positive, even function that equals |x| in a small interval containing the
origin, vanishes outside [−1/4, 1/4] and satisfies supx∈T gζ(x) ≤ ζ. We then
have

∫ t

0

∑

1≤i<j≤N

mimj Φ(Nmi,Nmj) dLij

= A1(0, t) − A2(0, t) − A3(0, t) − A4(0, t) − A5(0, t) (3.6)

with

A1(0, t) =
∑

1≤i<j≤N

mi
tm

j
tΦ(Nmi

t,Nmj
t)gζ(χ

i
t − χj

t)

−
∑

1≤i<j≤N

mimjΦ(Nmi,Nmj) gζ(χ
i − χj),

A2(0, t) =

∫ t

0

∑

1≤i<j≤N

mimjΦ(Nmi,Nmj)g′ζ(χ
i − χj)

[

dχi − dχj
]

and

A3(0, t) =
1

2

∫ t

0

∑

i<j

mimjΦ(Nmi,Nmj)g′′ζ (χi − χj)
[

a(Nmi) + a(Nmj)
]

du .

The function g′′ζ appearing in the formula for A3(0, t) stands for what is left
of the second derivative of gζ (in the sense of distributions) after substracting
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2δ0, δ0 the Dirac measure at the origin. The terms A4(0, t) corresponds to
the coagulation martingale and its compensator,

A4(0, t) =

∫ t

0

∑

i<k
j

DN (mi,mj ,mk) gζ(χ
i − χj)

[

dN ik − Φ(Nmi,Nmk)

N
dLik

]

A5(0, t) =

∫ t

0

∑

i<k
j

DN (mi,mj ,mk) gζ(χ
i − χj)

Φ(Nmi,Nmk)

N
dLik

where DN (m,m′,m′′) is defined as

(m + m′′)m′Φ(Nm + Nm′′,Nm′)

− m m′Φ(Nm,Nm′) − m′′m′Φ(Nm′′,Nm′) .

In deriving the formula for A4, we have used that at the time when the
masses mi and mj coagulate, the i-th and j-th particles are occupying the
same position.

We will study these terms separately. Replacing Φ(m,m′) ≤ c
[

mp+m′p
]

in the definition of A1 gives

|A1(0, t)| ≤ 4 c ζ
∑

i

mi
t[Nmi

t]
p. (3.7)

The bounded variation term A3(0, t) may be similarly controlled,

|A3(0, t)| ≤ Γ(ζ)

∫ t

0

[

1 +
∑

i

mi
s [Nmi

s]
p

][

1 +
∑

i

mia(Nmi)
]

ds . (3.8)

In order to bound A5, we first notice that by the Lipschitz assumption
(2.1a) on Φ, we have

|Φ(Nm + Nm′′,Nm′) − Φ(Nm,Nm′)|

≤ Γ(1)Nm′′ 1{Nm≥1} +
(

1 + [Nm′]p + [Nm′′]p
)

1{Nm<1} . (3.9)

It then follows that

|A5(0, t)| ≤ Γ ζ

[

∫ t

0

∑

i<k

mimk Φ(Nmi,Nmk) dLik

+
(

1 +
∑

j

mj
t [Nmj

t ]
p

)

∫ t

0

∑

i<k

1

N2
Φ(Nmi,Nmk) dLik

]

.

(3.10)
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We have

∫ t

0

∑

i<k

1

N2
Φ(Nmi,Nmk) dLik =

∑

i

1

N
1{mi>0} −

∑

i

1

N
1{mi

t>0}

−
∫ t

0

∑

i<k

1

N

[

dN ik − Φ(Nmi,Nmk)

N
dLik

]

.

The last term above is a martingale, hence

EP N

[

∫ t

0

∑

i<k

1

N2
Φ(Nmi,Nmk) dLik

]

≤ 1 ,

and

EP N

[

(

∫ t

0

∑

i<k

1

N2
Φ(Nmi,Nmk) dLik

)2
]

≤
[

1 + EP N
[

∫ t

0

∑

i<k

1

N3
Φ(Nmi,Nmk) dLik

]

]

≤ 2 .

We take expectations in (3.6) and combine with (3.7), (3.8) and (3.10)
to obtain

(1 − Γζ)EP N

[

∫ t

0

∑

i<k

mimkΦ(Nmi,Nmk)dLik

]

≤ 4cζEP N
[

∑

i

mi[Nmi
t]

p

]

+ Γ(ζ)

∫ t

0
EP N

[

(

1 +
∑

i

mi[Nmi]p
)(

1 +
∑

i

mia(Nmi)
)

]

ds

+ ΓζEP N

[

(

1 +
∑

i

mi
t[Nmi

t]
p
)p

∫ t

0

∑

i<k

1

N2
Φ(Nmi,Nmk) dLik

]

≤ 4cζ EP N
[

∑

i

mi[Nmi
t]

p

]

+ Γ(ζ)EP N
[

1 +
∑

i

mia(Nmi)2
]

∫ t

0
EP N

[

1 + N
∑

i

[mi]2
]

ds

+ 2Γζ EP N
[

1 + N
∑

i

[mi
t]

2
]

.
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In order to derive this last bound we have used Hölder’s inequality and the
fact that p ≤ 1/2. From (2.3), we conclude that

(1 − Γζ)EP N

[

∫ t

0

∑

i<k

mimk Φ(Nmi,Nmk) dLik

]

≤ Γ(c) ζ
[

1 + EP N [

N
∑

i

[mi
t]

2
]

]

+ Γ(ζ)

∫ t

0
EP N

[

1 + N
∑

i

[mi]2
]

ds .

(3.11)

Choose ζ ≤ 1/4 [Γ + Γ(c)], where Γ and Γ(c) are the constants appearing in
the first line and in front of the first term on the right above, respectively.
Combining (3.11) with (3.5) we get

EP N
[

N
∑

i

[mi
t]

2
]

≤ Γ

[

EP N

[

1 + N
∑

i

[mi]2 +

∫ t

0

(

1 + N
∑

i

[mi]2
)

ds

]]

.

Estimate (3.1) now follows from Gronwall’s lemma and conditions (2.3) on
the initial distribution of masses, and (3.2) is immediate from (3.11).

Proof of Lemma 2. Choose ζ > 0 and δ > 0 such that

4ζ [1+Γ]
[

1+C +C(T )
]

<
ε2

50
and 4δ Γ(ζ)

[

1+C(T )
][

1+C ′] ≤ ε2

50
,

where Γ and Γ(ζ) are the constants appearing on the right of (3.10) and
(3.8), respectively, C and C ′ are the constants from assumption (2.3), and
C(T ) the bound established in Lemma 1. Set the parameter of g equal to a
value of ζ determined as above.

As in the proof of Theorem 1, we will stop the process at the finite
stopping time τ ∧ τζ ∧ T , where τ is the stopping time defined in the proof
of Theorem 1, and

τζ = inf

{

t ≥ 0, N
∑

i

[mi
t]

2 ≥ 1

ζ

}

.

By Lemma 1 and the choice of ζ, we have

PN
[

τζ ≤ T
]

≤ C(T ) ζ ≤ ε

2

if ε is small enough. We will thus assume that PN is supported on

max
i

{mi
T }
[

1 +
∑

i

mia(Nmi)
]

≤ 1

N1/4
, N

∑

i

[mi
T ]2 ≤ 1

ζ
. (3.12)
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The proof will now follow by estimating the variation of the terms {Ai}1≤i≤5

on the right of (3.6). Let Ai(s, t) = Ai(0, t) − Ai(0, s), 1 ≤ i ≤ 5.

By Tchebyshev’s inequality, (3.7), (3.8), and the choice of ζ, δ, we have

PN
[

sup
0≤s≤t≤T

t−s≤δ

|A1(s, t)| >
ε

5

]

≤ ε

10
, (3.13)

PN
[

sup
0≤s≤t≤T

t−s≤δ

|A3(s, t)| >
ε

5

]

≤ ε

10
, (3.14)

and

PN
[

sup
0≤s≤t≤T

t−s≤δ

|A5(s, t)| >
ε

5

]

≤ ε

10
. (3.15)

The quadratic variation Q2(0, t) and Q4(0, t) of the martingale terms A2

and A4 satisfy

Q2(0, t) ≤ Γ(ζ, T ) max
i

{mi
T }
(

[

∑

i

mia(Nmi)
] [

1 + N
∑

i

[mi
T ]2
]

+
[

1 + N
∑

i

[mi
T ]2 +

∑

i

mia(Nmi)
]

)

≤ Γ(ζ, T )

N1/4

[

1 +
∑

i

mia(Nmi) + N
∑

i

[mi
T ]2
]

,

Q4(0, t) ≤ Γ ζ2
[

1 + N
∑

i

[mi
t]

2
]

∫ t

0

∑

i<k

[

mimk +
1

N2

]

Φ(Nmi,Nmk) dLik

≤ 4Γ ζ

∫ t

0

∑

i<k

[

mimk +
1

N2

]

Φ(Nmi,Nmk) dLik

respectively. In order to derive these inequalities we have used the assump-
tions on the mass sizes, (3.12).

Then, by Doob’s inequality,

PN
[

sup
0≤s≤t≤T

t−s≤δ

|A2(s, t)| >
ε

5

]

≤ PN
[

2 sup
0≤t≤T

|A2(0, t)| >
ε

5

]

≤ Γ(ε, ζ, T )

N1/4

[

1 + C ′ + C(T )
]

,

(3.16)
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and similarly,

PN
[

sup
0≤s≤t≤T

t−s≤δ

|A4(s, t)| >
ε

5

]

≤ 4Γ ζ
[

1 + C + C(T )
]

. (3.17)

We pass to the limit N → ∞ in (3.16), and conclude the proof from the
estimates obtained in (3.13), (3.14), (3.15), (3.17) and the choice of ζ.

4 The hydrodynamic equation

We begin with Proposition 1.

Proof of Proposition 1. Estimate (3.1) in Lemma 1 implies that

EQ
[

sup
t≤T

〈m ∧ M,µt〉
]

≤ C(T )

uniformly in M > 0. Then (2.6) follows by letting M → ∞ and monotone
convergence.

In order to obtain (2.5), we will show that the probability measure Q
satisfies

EQ
[

sup
Ψ(x,s)∈L1[T×[0,T ]]

‖Ψ‖1≤1

∫ T

0

〈 ω(m)

m
Ψ, µs

〉

ds
]

< ∞. (4.1)

Indeed, (4.1) implies that with Q–probability 1, µt(dx, dm) = υt(dx, dm) dx
for almost every t ∈ [0, T ], where υt satisfies the estimates in the statement
of the proposition. But Q is supported on C

(

[0, T ],M1(T×R+)
)

, hence the
result.

We must therefore prove that

EQ
[

sup
k∈N

∫ T

0

〈 ω(m)

m
Ψk, µs

〉

ds
]

= lim
K→∞

lim
M→∞

lim
N→∞

EQN
[

sup
1≤k≤K

∫ T

0

〈 ω(m)

m
Ψk,M , µs

〉

ds
]

< ∞

where we denote
Ψk,M(s, x) = Ψk(s, x) ∧ M,

{Ψk}k∈N a dense family in C
(

[0, T ], T
)

∩B1

[

L1([0, T ]×T)
]

in the supremum
norm, B1

[

L1([0, T ] × T)
]

the unit ball in L1
[

[0, T ] × T
]

. The measures µs

are non-negative Q a.e., so we may take Ψk ≥ 0, k ∈ N.
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For each Ψk,M and m > 0, let then uk,M (s, x,m) be the solution to

{

uk,M
s + a(m)

2 uk,M
xx = −Ψk,M

uk,M(T, ·) = 0 .

We have the representation formula

uk,M (s, x,m) =

∫ T

s

∫

T

p(a(m)(u − s), x, z)Ψk,M (u, z) dz du (4.2)

where p(t, x, z) is the Brownian transition density on T.

Itô’s formula applied to ω(m)
m Ψk,M yields

∫ T

0

∑

i

mi ω(Nmi)

Nmi
Ψk,M(χi,Nmi) ds =

∑

i

ω(Nmi)

N
uk,M(xi,Nmi)

+

∫ T

0

∑

i

ω(Nmi)

N

∂uk,M

∂x
dχi +

∫ T

0

∑

i<j

DN (χi,Nmi,Nmj)(uk,M ) dN ij

(4.3)

if DN denotes

DN (x,m,m′)(f)

=
1

N

[

ω(m + m′)f(x,m + m′) − ω(m)f(x,m) − ω(m′)f(x,m′)
]

.

The last term in the expansion (4.3) is non-positive by formula (4.2), the
assumption that Ψk ≥ 0, and the subadditivity in m of a(m)−1/2ω(m). We
thus get

EQN
[

sup
1≤k≤K

∫ T

0

〈 ω(m)

m
Ψk,M , µs

〉

ds
]

≤ EP N
[

sup
1≤k≤K

∑

i

ω(Nmi)

N
uk,M(xi,Nmi)

]

+ EP N
[

sup
1≤k≤K

∣

∣

∣

∫ T

0

∑

i

ω(Nmi)

N

∂uk,M

∂x
dχi

∣

∣

∣

]

. (4.4)

The second term on the right side above can be easily bounded by replacing
the supremum by a sum over 1 ≤ k ≤ K and computing the quadratic
variation of each of the resulting orthogonal martingale terms. The sum
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of these quadratic variations vanishes in the limit N → ∞; in order to see
this, it suffices to replace uk,M by its representation (4.2) and then apply
assumptions (2.1b), (2.3) and estimate (3.1).

Finally, the hypothesis on PN
0 , ν, ν∗ and the fact that ‖Ψk,M‖1 ≤

‖Ψk‖1 ≤ 1 imply that

lim
N→∞

EP N
[

sup
1≤k≤K

∑

i

ω(Nmi)

N
uk,M(xi,Nmi)

]

= sup
1≤k≤K

〈 ω(m)

m
uk,M , ν

〉

≤ sup
1≤k≤K

〈 ω(m)

m
, ν∗

〉

‖Ψk,M‖1 = Γ(ν∗) < ∞

holds uniformly in M, k.

We pass to the limit M → ∞ and then K → ∞ in (4.4) to obtain
(4.1).

Proof of Theorem 2. It will be enough to consider f ∈ C2
b (T×R+) compactly

supported and Lipschitz in m, and then use bounded convergence to obtain
(2.7) for a general f ∈ C2

b (T × R+). We need to analyse the difference

Zf (t) =
∑

i

mi
tf(χi

t,Nmi
t) −

∑

i

mif(xi,Nmi) .

We start by writing the semimartingale Zf as

Zf (t) = Mf (t) + Af (t)

where Mf is the martingale obtained by adding the fluctuation terms arising
from the free particle dynamics and the stochastic coagulation phenomena.
These can be controlled by Doob’s inequality, the integrability assumptions
on a(m) stated in Section 1, and Lemma 1. The term Af is given by

Af (t) =

∫ t

0

∑

i

mi
s

a(Nmi)

2

∂2f

∂x2
(χi

s, Nmi
s) ds

+

∫ t

0

∑

i<j

[

mi
(

f(χi,N(mi + mj)) − f(χi,Nmi)
)

+ mj
(

f(χj,N(mi + mj) − f(χj,Nmj)
)]Φ(Nmi,Nmj)

N
dLij .

The first term of Af will clearly have the limit

∫ t

0

∫

T×R+

〈a(m)

2

∂2f

∂x2
, µs

〉

ds. (4.5)
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We can guess the limit of the second term from the Occupation Times For-
mula; we should recover the second term in the hydrodynamic equation
(2.7). In order to obtain this expression, we replace dLij in the second term
of Af by [a(m) + a(m′)]Vε(χ

i −χj) ds, where Vε(x) approximates the Dirac
δ–function at the origin as ε → 0. The new integral will converge weakly to

1

2

∫ t

0

∫

T×T

∫

R+×R+

[

f(x,m + m′) − f(x,m)

m′
+

f(y,m + m′) − f(y,m′)

m

]

× κ(m,m′)Vε(x − y)µs(dx, dm)µs(dy, dm′) ds

as N → ∞.

We will justify this exchange by showing that there exists a sequence of
measurable sets CN,ε,T with

lim
ε→0

lim sup
N→∞

PN
[

CN,ε,T

]

= 0,

such that ΨN,ε,f(t) given by
∫ t

0

∑

i<j

[

mi
(

f(χi,N(mi + mj)) − f(χi,Nmi)
)

+ mj
(

f(χj,N(mi + mj) − f(χj,Nmj)
)]Φ(Nmi,Nmj)

N

×
(

dLij −
[

a(Nmi) + a(Nmj)
]

Vε(χ
i
s − χj

s) ds
)

satisfies

lim
ε→0

lim sup
N→∞

EP N

[

sup
0≤t≤T

∣

∣ΨN,ε,f(t)
∣

∣ 1Cc
N,ε,T

]

= 0 . (4.6)

Here Cc denotes the complement of the set C.

Suppose that (4.6) holds, and let δ > 0, k ∈ N. Define

κk(m,m′) = κ(m,m′) 1{k−1≤m≤k} 1{k−1≤m′≤k}

ak(m) = a(m) 1{k−1≤m≤k}

and

Fk,ε,δ =
{

sup
0≤t≤T

∣

∣

∣

〈

µt, f
〉

− 〈µ0, f〉 −
∫ t

0
〈1
2

ak(m)
∂2f

∂x2
, µs〉 ds

−
∫ t

0

∫

(T×R+)2

[f(x,m + m′) − f(x,m)]

m′
Vε(x − y)

× κk(m,m′)µs(dx, dm)µs(dy, dm′) ds
∣

∣

∣
≤ δ

}

.
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Then Fk,ε,δ is closed in C([0, T ],M1(T × R+)) with the Skorokod topology.

By Proposition 1, Q almost everywhere,

lim
k→∞

∫ t

0

〈1

2
ak(m)

∂2f

∂x2
, µs

〉

ds =

∫ t

0

〈1

2
a(m)

∂2f

∂x2
, µs

〉

ds

and

lim
k→∞

∫ t

0

〈 [f(x,m + m′) − f(x,m)]

m′
Vε(x − y)κk(m,m′), µs ⊗ µs

〉

ds

=

∫ t

0

〈 [f(x,m + m′) − f(x,m)]

m′
Vε(x − y)κ(m,m′), µs ⊗ µs

〉

ds

for all t ∈ [0, T ]. In conjunction with (4.6), these imply

1 ≤ lim
k↑∞

lim sup
N↑∞

QN
[

Fk,ε,δ

]

≤ lim
k↑∞

Q
[

Fk,ε,δ

]

≤ Q
[

F∞,ε,2δ

]

. (4.7)

Now, we know that µ disintegrates as µs(dx, dm) = υs(x, dm) dx, s ∈
[0, T ], Q a.e.. Letting ε → 0 in (4.7), by Lebesgue’s Differentiation Theorem
and dominated convergence we have

Q
[

F∞,2δ

]

= 1 .

Since δ > 0 is arbitrary, this implies that (2.7) holds with Q–probability 1.

It remains to prove (4.6). For each ε > 0, let the approximation of the δ
function Vε be such there exists a function uε in C2(T − {0}) ∩ C1(T) with
support contained in (−1/2, 1/2), so that

‖uε‖∞ ≤ γ1ε

u′
ε(0) =

1

2
, ‖u′

ε‖∞ ≤ γ2, lim
ε→0

u′
ε(x) = 0, x 6= 0

and u′′
ε (x) = Wε(x), x 6= 0; u′′

ε (x) < 0 if 0 < x < ε,

where Wε is a real valued function such that |Wε| = Vε, and γ1 and γ2 are
positive constants independent of ε.

Consider the finite stopping time

τε = inf
{

t ≤ T, N
∑

i

[mi
t]

2 ≥ 1√
ε

}
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and define
CN,ε,T =

{

τε ≤ T
}

.

Lemma 1 then implies

PN
[

CN,ε,T

]

≤ C(T )
√

ε

and clearly limε→0 lim supN→∞ PN [CN,ε,T ] = 0.

Let

G(x, y,m,m′) = GN,f,ε(x, y,m,m′) =
[

m
[

f(x,m + m′) − f(x,m)
]

+ m′
[

f(y,m + m′) − f(y,m′)
]

]

uε(|x − y|) Φ(m,m′)

N2
.

The proof follows the usual pattern after this point: we will stop the process
upon achieving the stopping time τε, so that we may assume that PN is
supported on

N
∑

i

[mi
T ]2 ≤ 1√

ε
.

We will then apply Itô–Tanaka’s formula to
∑

i<j

G(χi
t, χ

j
t ,Nmi

t,Nmj
t )

in order to recover ΨN,ε,f from the non-differentiability of uε(|x|) at the
origin and the particular choice of uε. One then has to check that the
remaining terms of the expansion converge to 0 uniformly on [0, T ], when
taking N → ∞ and ε → 0, in that order.

We have
∑

i<j

G(χi
t, χ

j
t ,Nmi

t,Nmj
t )

=
∑

i<j

G(xi,xj ,Nmi,Nmj) +
1

2
ΨN,ε,f(t) + MN,ε,f(t) + AN,ε,f(t)

where MN,ε,f(t) is a PN - martingale and AN,ε,f(t) is a continuous, bounded
variation process. We start with the former:

MN,ε,f =

∫ t

0

∑

i

∂G

∂xi
dχi +

∫ t

0

∑

i<k

[

G(Nmi + Nmk,Nmj) − G(Nmi,Nmj)

− G(Nmk,Nmj)
] [

dN ik − Φ(Nmi,Nmk)

N
dLik

]
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The quadratic variation of the first term on the right above, the Brownian
martingale, can be easily seen to vanish when N → ∞. We proceed to show
how to bound one term in the quadratic variation Qc of the coagulation
martingale. Consider then

E1(t) =

∫ t

0

∑

i<k

[mi]2

{

∑

j 6=i
j 6=k

[

f
(

χi,N(mi + mk + mj)
)

− f
(

χi,N(mi + mk)
)

− f
(

χi,N(mi + mj)
)

+ f(χi,Nmi)
]

× uε(|χi − χj|) Φ
(

N(mi + mk),Nmj
)

N

}2
Φ(Nmi,Nmk)

N
dLik.

We now use that f has compact support. Let L ≥ 0 be such that f(x,m) = 0
whenever |m| > L. The expression between brackets in E1 will thus vanish
whenever Nmi > L, so that we may bound E1(T ) by

Γ(f) ε2

∫ T

0

∑

i<k

1

N2

[

[

N(mi + mk)
]2p

+
∑

j

1

N
[Nmj]2p

]

Φ(Nmi,Nmk)

N
dLik

≤ Γ(f) ε2 max
i

{

mi
T [Nmi

T ]2p

}

∫ T

0

∑

i<k

1

N2
Φ(Nmi,Nmk) dLik

≤ Γ(f)√
ε

ε2

∫ T

0

∑

i<k

1

N2
Φ(Nmi,Nmk) dLik

by the assumption that p ≤ 1/2. Now,

EP N
[

∫ T

0

∑

i<k

1

N2
Φ(Nmi,Nmk) dLik

]

= EP N
[

∑

i

1

N
1{mi>0} −

∑

i

1

N
1{mi

T
>0}

]

≤ 1 ,

from where it follows that limε→0 limN→∞ EP N

[E1] = 0. Similar considera-
tions prove that the expectation of the rest of the terms in Qc vanish in the
limit N → ∞, ε → 0. Doob’s inequality then implies

lim
ε→0

lim sup
N→∞

EP N

[

sup
0≤t≤T

|MN,ε,f(t)|
]

= 0 . (4.8)
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The Lipschitz property of f yields

EP N
[∣

∣

∣

∑

i<j

G(χi
t, χ

j
t ,m

i
t,m

j
t ) −

∑

i<j

G(xi,xj ,mi,mj)
∣

∣

∣

]

≤ Γ(f) εEP N [

1 + N
∑

i

[mi
t]

2
]

≤ Γ(f) ε [1 + C(T )] . (4.9)

The process AN,ε,f (t) equals

AN,ε,f (t) =
1

2

∫ t

0

∑

i6=j

mi

[

∂2f

∂x2
(χi, N(mi + mj)) − ∂2f

∂x2
(χi, Nmi)

]

× uε(|χi − χj|) Φ(Nmi,Nmj)

N
a(Nmi) ds

+
1

2

∫ t

0

∑

i6=j

mi

[

∂f

∂x
(χi, N(mi + mj)) − ∂f

∂x
(χi, Nmi)

]

× sign(χi − χj)u′
ε(|χi − χj |) Φ(Nmi,Nmj)

N
a(Nmi) ds

+

∫ t

0

∑

i<k
j 6=i∨ j 6=k

[

G(χi, χj ,N(mi + mk),Nmj
t ) − G(χi

t, χ
j
t ,Nmi

t,Nmj
t )

− G(χk
t , χj

t ,Nmk
t ,Nmj

t )
] Φ(Nmi,Nmk)

N
dLik

= I1
N,ε,f(t) + I2

N,ε,f(t) + I3
N,ε,f(t)

where sign(x) takes values 1 or −1 according to whether x > 0 or x ≤ 0. It
is easy to see that

lim
ε→0

lim sup
N→∞

EP N

[

sup
0≤t≤T

|I1
N,ε,f(t)|

]

= 0 . (4.10)

We can then bound

∣

∣I2
N,ε,f(t)

∣

∣ ≤ Γ(f)

∫ t

0

∑

i<j

mi |u′
ε|(|χi − χj|) Φ(Nmi,Nmj)

N
a(Nmi) ds

≤ Γ(f)
[

∑

i

mi
t[Nmi

t]
p +

∑

i

mia(Nmi)
]

.

Since limε→0 u′
ε(x) = 0 for all x 6= 0 in T, dominated convergence implies

that

lim
ε→0

lim sup
N→∞

EP N

[

sup
0≤t≤T

|I2
N,ε,f(t)|

]

= 0 (4.11)
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as well. Finally, the fact that f is Lipschitz and (2.1a) yield

∣

∣I3
N,ε,f(t)

∣

∣ ≤ Γ(f,Φ) ε

∫ t

0

∑

i<k

[

mimk +
1

N2

]

Φ(Nmi,Nmk) dLik

so that

lim
ε→0

lim sup
N→∞

EP N

[

sup
0≤t≤T

|I3
N,ε,f (t)|

]

= 0. (4.12)

The limit (4.6) is immediate from estimates (4.8), (4.9), (4.10), (4.11)
and (4.12), and the result follows.

5 Uniqueness of the solution

In this section we seek to establish the uniqueness in an appropriately de-
fined class of the solution to the hydrodynamic equation (1.7), which in
differentiated form can be written as

µ̇t =
1

2
a(m)∆xµt + K(µt), µ0 = ν. (5.1)

Here, ∆ denotes the Laplacian on T, interpreted in the weak sense, and K
is the coagulation kernel given by

〈f,K(µ)〉 =

∫

R+×R+

[

f(m + m′) − f(m)
] κ(m,m′)

m′
µ(dm)µ(dm′)

=
1

2

∫

R2
+

[

(m + m′)f(m + m′) − mf(m) − m′f(m′)
]κ(m,m′)

mm′
µ(dm)µ(dm′)

if f is a bounded test function, µ ∈ Mf (R+) a finite measure such that
κ(m,m′)/m′ ∈ L1(dµ × dµ).

We will work under the assumption that there exists a pair of func-
tions $ and ω bounded on each compact subset of (0,∞), such that $ω−1

is bounded, ω, a−1/2 ω and a−1/2 ω $ are subadditive, and such that the
following inequalities hold

κ(m,m′) ≤ ω(m)ω(m′) (5.2)

κ(m,m′) ≤ ω(m)$(m′) + $(m)ω(m′). (5.3)
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We will also require that a is non-increasing and the initial measure ν sat-
isfies

ν(dx, dm) ≤ ν∗(dm) dx, ν∗ such that
〈 ω2

m
, ν∗
〉

< ∞. (5.4)

Let us define the class B(ω) by

B(ω) =
{

η ∈ C
[

R+,Mf (T × R+)
]

: ηt(dx, dm) = υt(x, dm) dx,

sup
t≥0

∥

∥� ω(m)

m
,υt �

∥

∥

∞
< ∞ and sup

t≤T
〈m,µt〉 < ∞ ∀ T > 0

}

.

The choices

ω(m) = [1 + c′ + a(1)]
[

mp + a(m) + 1
]

and $(m) = a(m) + 1

satisfy conditions (5.2) and (5.3) in the particular situation treated in Sec-
tions 3 and 4. In this case the coagulation kernel is given by

κ(m,m′) = Φ(m,m′) [a(m) + a(m′)]

with symmetric rate Φ verifying

Φ(m,m′) ≤ c (mp + m′p)1[m>0,m′>0], 0 ≤ p ≤ 1

2
,

and diffusivity a(m) such that a−1/2ω is subadditive. Then Theorem 2 yields
an existence result in D(ω). The uniqueness of this solution in the larger
class B(ω) follows from Theorem 3 below.

Here is the main result of this section,

Theorem 3. Assume conditions (5.2), (5.3) and (5.4) on the coagulation
rate κ and the initial measure ν. Then for any T > 0, (5.1) has at most
one solution {µt}0≤t≤T in B(ω).

We state the theorem on T to avoid introducing more terminology; in
fact, the proof holds in R

d for a general diffusion model with coefficients
given by a, undergoing coagulation at a rate determined by κ. In that case
we require that (5.2), (5.3) and (5.4) are satisfied by a pair of maps ω, $
such that $−1ω is bounded, as before, and a−d/2ω and a−d/2ω$ are both
subadditive.

The result will follow from considering an approximating system of equa-
tions to the coagulation equation, for which existence and uniqueness can

26



be easily derived. The method is a simplification of a technique developed
by Norris in [15], we have thus tried to adhere to his notation whenever
possible. We are able to make a significant shortcut in the proof due to
the assumption that we already have got one solution in B(ω), this yields
a crucial monotonicity property in the approximating scheme as a direct
byproduct of its construction (compare Lemma 5.1 below with Lemmas 5.5
and 5.6 in [15]).

Before we can proceed to prove the theorem we need to introduce some
definitions. Given s > 0 and µ ∈ Mf (T × R+), we will denote Psµ ∈
Mf (T × R+) the measure given by

< f,Psµ >=

∫

f(z,m) p(a(m)s, x, z)µ(dx, dm) dz,

where, as before, p(t, x, z) is the Brownian transition density on T. Here-
after, we will use the abridged notation px,z

t (m) to denote p(a(m)t, x, z). We
also introduce the kernels K+ and K− on Mf (R+) defined as

K+(µ)(dm) =

∫

m′+m′′=m

κ(m′,m′′)

m′′
µ(dm′)µ(dm′′)

K−(µ)(dm) =

∫

R+

κ(m,m′)

m′
µ(dm)µ(dm′).

With these notations, we now show that (5.1) is equivalent for µ ∈ B(ω) to
the integral equation

µt = Ptν +

∫ t

0
Pt−rK

+(µr) − Pt−rK
−(µr) dr. (5.5)

By integrating against a test function and differentiating in time, it follows
that any solution to (5.5) satisfies (5.1). Conversely, let µt be a solution to
(5.1), and set µ̃t equal to the right side of (5.5). Then µ − µ̃t verifies

d

dt
(µ̃t − µt) =

1

2
a(m)∆(µ̃t − µt), µ̃0 − µ0 = 0,

and we conclude that µ̃t = µt. In particular µt is a solution to (5.5).

Given a bounded map cs(x) : [0, T ] × T −→ R, let p̃m(c) be the propa-
gator associated with the operator 1

2 a(m)∆ − cs(·) on T, and consider the
kernel

P̃ts(c)µ(x, dm) =

∫

T

µ(dz, dm) p̃m(c)(s, z; t, x) dz,
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µ in Mf (T × R+).

Let En = [1/n, n] for n ∈ N, and define K+
n , K−

n by analogy with K
+
−:

K+
n (µ)(dm) = K+(µ)(dm) 1{m∈En},

K−
n (µ)(dm) =

∫

R+

κ(m,m′)

m′
1{m+m′∈En} µ(dm)µ(dm′)

and Kn = K+
n − K−

n . Define νn as the restriction of ν to En, νn(dm) =
ν(dm)1{m∈En}.

In order to keep the number of definitions to a minimum, given a test
function g, we will use � g, µ � to denote the integral � g, ν � in the case
that the decomposition µ(dx, dm) = ν(x, dm) dx holds, where we recall that
� g, ν � stands for the single integral

∫

g(m) ν(x, dm).

The proof of Theorem 3 will follow from the following lemma.

Lemma 3. Let {µs}0≤s≤T ∈ B(ω) be a solution to (5.1) with initial value
ν, and assume that conditions (5.2) (5.3) and (5.4) hold. Then, for each
n ∈ N, there exists a unique kernel (µ̃n

t )0≤t≤T in B(ω), such that

µ̃n
t = P̃t(c

n)νn +

∫ t

0
P̃ts(c

n)
[

K+
n (µ̃n

s ) + δn
s µ̃n

s

]

ds, (5.6)

where

δn
t (x,m) =� ω(m)ω(m′) − κ(m,m′)

m′
, µ̃n

t �,

cn
t (x,m) =� ω(m)

ω(m′)

m′
, Ptν � +

∫ t

0
� ω(m)

ω(m′)

m′
, Pt−s

[

Kn(µ̃n
s )
]

� ds.

Moreover, µ̃n
s satisfies

µ̃n
s ≤ µ̃n+1

s ≤ µs for all s ∈ [0, T ].

Proof. The method of the proof is classical. We will take advantage of
the fact that all relevant quantities are bounded in En to define a Picard
iteration procedure, and then prove by a contraction mapping argument that
the scheme converges to a solution, which is finally shown to be unique.

Define

µ̃n
t,0 = µt1{m∈En} ≤ µ̃n+1

t,0 ≤ µt,

cn
t,0 =� ω(m)

ω(m′)

m′
, Ptν � +

∫ t

0
� ω(m)

ω(m′)

m′
, Pt−s

[

Kn(µ̃n
s,0)
]

� ds.
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Condition (5.4) on ν and the fact that µ̃n
·,0 is supported on En imply that

cn
t,0(x,m) is well defined and bounded.

Let

ct(x,m) =� ω(m)
ω(m′)

m′
, µt � .

We claim that 0 ≤ ct(x,m) ≤ cn+1
t,0 (x,m) ≤ cn

t,0(x,m) ≤ C ω(m), where C
is a positive constant that depends solely on µ . Note that py,x

u (m)ω(m) is
m-subadditive, which can be easily seen by expanding py,x

u as a series and
using the subadditivity of a−1/2ω and the monotonicity of a. We next write

� ω(m′)

m′
, Pt−s

[

Kn(µ̃n
s,0)
]

�

=
1

2

∫

R2
+
×T

[

py,x
t−s(m

′ + m′′)ω(m′ + m′′) − py,x
t−s(m

′)ω(m′)

− py,x
t−s(m

′′)ω(m′′)
]

× κ(m′,m′′)

m′m′′
1En

(m′ + m′′) µ̃n
s,0(y, dm′) µ̃n

s,0(y, dm′′) dy.

Together with the subadditivity of py,x
u (m′)ω(m′), the inequality µ̃n

s,0 ≤
µ̃n+1

s,0 ≤ µs and the obvious inclusion En ⊂ En+1, this implies

ω(m) 〈ω(m′)

m′
, ν∗〉 ≥� ω(m)

ω(m′)

m′
, Ptν �

≥ cn
t,0(x,m) ≥ cn+1

t,0 (x,m) ≥ ct(x,m) ≥ 0, (5.7)

as required.

We will need the fact that the solution µ· satisfies

µt = P̃t(c)ν +

∫ t

0
P̃ts(c)

[

K+(µs) + δs µs

]

ds, (5.8)

δt(x,m) =� ω(m)ω(m′) − κ(m,m′)

m′
, µt � .

This can be proved by an argument similar to the one used to show the
equivalence of equations (5.5) and (5.1).

Fix k ∈ N, and assume that a sequence of measure paths and mappings
µ̃n

s,k ≤ µ̃n+1
s,k ≤ µs and cn

s,k(x,m) ≥ cn+1
s,k (x,m) ≥ cs(x,m) ≥ 0 have already

been defined. Let

δn
t,k =� ω(m)ω(m′) − κ(m,m′)

m′
, µ̃n

t,k �

29



so that 0 ≤ δn
t,k ≤ δn

t,k+1 ≤ δt. Finally, set

µ̃n
t,k+1 = P̃t(c

n
k)νn +

∫ t

0
P̃ts(c

n
k)
[

K+
n (µ̃n

s,k) + δn
s,k µ̃n

s,k

]

ds,

cn
t,k+1(x,m) =� ω(m)

ω(m′)

m′
, Ptν �

+

∫ t

0
� ω(m)

ω(m′)

m′
, Pt−s

[

Kn(µ̃n
s,k+1)

]

� ds.

The Feynman-Kac formula (cf. [16], Chapter 8) and identity (5.8) then
imply

0 ≤ µ̃n
s,k+1 ≤ µ̃n+1

s,k+1 ≤ µs

and thus, by the same arguments that yield (5.7),

ω(m) 〈ω(m′)

m′
, ν∗〉 ≥ cn

s,k+1 ≥ cn+1
s,k+1 ≥ cs ≥ 0.

The kernel µ̃n
s,k is supported on En for each n and all k, s. Also, µ̃n

s,k ≤ µs

and the fact that ω(m)/m is bounded below in En imply that the marginal
density dµ̃n

s,k(dx, R+)/dx ∈ L∞(dx) and its L∞– norm can be bounded
uniformly in k,

∥

∥

∥

dµ̃n
s,k(dx, R+)

dx

∥

∥

∥

∞
≤ βn for all k ∈ N. (5.9)

In view of these observations, we define a norm in the vector space
{

η ∈ Mf (T × En),
dη

dx
(dx, R+) ∈ L∞(dx)

}

by

9ρ − %9 =
∥

∥

∥
‖ρx − %x‖

∥

∥

∥

∞

if ρ(dx, dm) = ρx(dm) dx and a similar formula holds for %. Here ‖ρx − %x‖
is the total variation norm of the signed measure ρx(dm) − %x(dm), which
we may compute as

‖ρx − %x‖ =

∫

R+

|ρx − %x|(dm)

if |ρx−%x|(dm) denotes the total variation of ρx(dm)−%x(dm). Equivalently,

9ρ − %9 = sup

{

〈f, ρ − %〉| f :

∫

T

| sup
m

f(x,m)| dx ≤ 1

}

.
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Let f(x,m) be such that
∫

T
| supm f(x,m)| dx ≤ 1. We obtain

〈f, µ̃n
t,k+1 − µ̃n

s,k〉 =
〈

f, P̃t(c
n
k )νn − P̃t(c

n
k−1)ν

n
〉

+

∫ t

0

〈

f, P̃ts(c
n
k )
[

K+
n (µ̃n

s,k)
]

− P̃ts(c
n
k−1)

[

K+
n (µ̃n

s,k−1)
]〉

ds

+

∫ t

0

〈

f, P̃ts(c
n
k )
[

δn
s,k µ̃n

s,k

]

− P̃ts(c
n
k−1)

[

δn
s,k−1 µ̃n

s,k−1

]〉

ds.

(5.10)

We apply Feynman-Kac formula to bound the first term on the right side of
(5.10) by

∫

T×R+

Ex,m
[

(

∫ t

0
|cn

s,k(χs,m) − cn
s,k−1(χs,m)| ds

)

f(χt,m)
]

νn(dx, dm),

where χs is a Brownian motion in T with diffusivity a(m). We have

∫ t

0
|cn

s,k(χs,m) − cn
s,k−1(χs,m)| ds

≤ ω(m)

∫ t

0

∫ s

0

∣

∣

∣

ω(m′ + m′′)

m′ + m′′
px′,χs

s−u (m′ + m′′) − ω(m′)

m′
px′,χs

s−u (m′)
∣

∣

∣

× κ(m′,m′′)

m′′
1{m′+m′′∈En}

×
∣

∣

∣
µ̃n

u,k(x
′, dm′)µ̃n

u,k(x
′, dm′′) − µ̃n

u,k−1(x
′, dm′)µ̃n

u,k−1(x
′, dm′′)

∣

∣

∣
dx′ du ds.

Note that in all these expressions the mass variable takes values m, m′, m′′

or m′ + m′′ belonging to En, we may therefore replace all functions that
have it as an argument by an upper or lower bound, as necessary, that do
not depend on the mass variable.

Now, if ρ and % are two finite, positive measures on (X,Ω), then ρ ⊗ ρ
and % ⊗ % are finite, positive measures on (X × X,Ω × Ω) and

|ρ ⊗ ρ − % ⊗ %| ≤
[

ρ(X) + %(X)
]

|ρ − %|.

In particular,
∣

∣

∣
µ̃n

u,k(x
′, dm′)µ̃n

u,k(x
′, dm′′) − µ̃n

u,k−1(x
′, dm′)µ̃n

u,k−1(x
′, dm′′)

∣

∣

∣

≤ 2βn

∣

∣µ̃n
u,k(x

′, dm′) − µ̃n
u,k−1(x

′, dm′)
∣

∣,

βn as in (5.9).
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We thus have

〈

f, P̃t(c
n
k )νn − P̃t(c

n
k−1)ν

n
〉

≤ Γ

∫ t

0

∫ s

0
p(s − u, x′, w) p(s, x,w) p(t − s,w, y)

×
(

sup
m

|f(y,m)|
)
∥

∥µ̃n
u,k(x

′) − µ̃n
u,k−1(x

′)
∥

∥ νn(dx, dm) dx′ dw dy du ds

where Γ is a positive constant that depends on n and βn and can therefore
be chosen uniformly in k.

Replace now νn by its upper bound ν∗(dm) dx, take the L∞ norm of the
total variation factor

∣

∣µ̃n
u,k(x

′)− µ̃n
u,k−1(x

′)
∣

∣, and integrate in x, x′, w and s,
to obtain

〈

f, P̃t(c
n
k )νn − P̃t(c

n
k−1)ν

n
〉

≤ Γ(T )

∫ t

0
9µ̃n

u,k − µ̃n
u,k−1 9 du.

In this last step we used that
∫

T
| supm f(x,m)| dx ≤ 1.

Similar computations yield

∫ t

0
〈f, P̃ts(c

n
k )
[

K+
n (µ̃n

s,k)
]

− P̃ts(c
n
k−1)

[

K+
n (µ̃n

s,k−1)
]

〉 ds

+

∫ t

0

〈

f, P̃ts(c
n
k)
[

δn
s,k µ̃n

s,k

]

− P̃ts(c
n
k−1)

[

δn
s,k−1 µ̃n

s,k−1

]〉

ds

≤ Γ(T )

∫ t

0
9µ̃n

u,k − µ̃n
u,k−1 9 du

and therefore, by (5.10),

〈f, µ̃n
t,k+1 − µ̃n

s,k〉 ≤ Γ(T )

∫ t

0
9µ̃n

u,k − µ̃n
u,k−1 9 du,

Γ(T ) uniform in k, f . Take the supremum over f to conclude that for t ≤ T ,

9µ̃n
t,k+1 − µ̃n

t,k9 ≤ Γ(T )

∫ t

0
9µ̃n

u,k − µ̃n
u,k−1 9 du. (5.11)

Hence, by a standard contraction mapping argument, µ̃t,n
k converges in

Mf (T × En), uniformly in t ≤ T . The limit is a continuous map µ̃n :
[0, T ] → Mf (T×En) that satisfies equation (5.6). Moreover, the properties
that µ̃n

s,k ≤ µ̃n+1
s,k ≤ µs and cn

s,k ≥ cn+1
s,k ≥ cs for all k, n ∈ N

2 imply that the
same holds for µ̃n and cn:

µ̃n
s ≤ µ̃n+1

s ≤ µs and cn
s ≥ cn+1

s ≥ cs,
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for all n ∈ N.

Suppose now that µ̃n and η̃n are two solutions in D(K) to (5.6) with
respective values of the mapping c defined as in the statement of the lemma.
A careful revision of the arguments leading to (5.11) shows that the proof
goes through verbatim if we replace µ̃n

k+1 and µ̃n
k by fixed points of the

iteration scheme µ̃n and η̃n. We thus have

9µ̃n
t − η̃n

t 9 ≤ Γ(T )

∫ t

0
9µ̃n

u − η̃n
u 9 du t ≤ T

which implies µ̃n ≡ η̃n by Gronwall’s lemma.

Proof of Theorem 3. Set λn
0 = 1Ec

n
ν, and define the kernel K̃−

n (µ) = K−(µ)−
K−

n (µ). Given mappings µ̃n
· and cn

· as in Lemma 3, define

µn
t = Ptν

n +

∫ t

0
Pt−s

[

K+
n (µ̃n

s ) − K−(µ̃n
s ) − γn

s µ̃n
s

]

ds

λn
t = Ptλ

n
0 +

∫ t

0
Pt−s

[

K̃−
n (µ̃n

s ) + γn
s µ̃n

s

]

ds

where

γn
s (x,m) = cn

s (x,m)− � ω(m)
ω(m′)

m′
, µ̃n

s �≥ cn
s (x,m) − cs(x,m) ≥ 0.

The inequality in the last line follows from µ̃n
s ≤ µs and the definition of cn

s ;
it has the consequence that λn

s is a positive measure for all s ≤ T, n ∈ N.

We claim that µn = µ̃n. Indeed, differentiating in the equations satisfied
by µ and µ̃ shows that both maps verify the equation

η̇t =
1

2
a(m)∆xηt + K+

n (µ̃n
t ) − [cn

t − δn
t ] µ̃n

t

with initial value νn, so that their difference is a weak solution to η̇ =
1
2 a(m)∆ηt started from the zero measure, and therefore it must be the null
measure. In particular this implies that µn

s ≤ µs.

We have, by the definition of cn
t ,

cn
t (x,m) =� ω(m)

ω(m′)

m′
, Ptν � +

∫ t

0
� ω(m)

ω(m′)

m′
, Pt−s[Kn(µ̃n

s )] � ds

=� ω(m)
ω(m′)

m′
, λn

t � + � ω(m)
ω(m′)

m′
, µn

t �
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and on the other hand, from the definition of γt
n,

cn
t (x,m) = γn

t + � ω(m)
ω(m′)

m′
, µ̃n

t � .

Hence γn
s =� ω(m)ω(m′)

m′ , λn
t �.

From this point on, the proof is copied from that of Theorem 5.4 in
[15]. Let us define αn

t =� ω(m)
m , λn

t �. Then, due to the subadditivity of

ω(m)a(m)−1/2, we get

αn
t + � ω(m)

m
,µn

t � ≥ αn+1
t + � ω(m)

m
,µn+1

t � ≥� ω(m)

m
,µt �

for all n ∈ N, and it follows from Lemma 3 that αn
t ≥ αn+1

t . We can hence
define the monotone limits

αt = lim
n→∞

αn
t , µt = lim

n→∞
µn

t ,

which satisfy

µt ≤ µt, αt+ � ω(m)

m
,µ

t
� ≥ � ω(m)

m
,µt � .

Since ω(m)/m > 0, in the case that αt = 0 a.e. we can conclude that µt = µt

a.e., for all t ∈ [0, T ]. The uniqueness of the solution to (5.1) will then follow
from the uniqueness of the solution to (5.6).

We will now show that αt vanishes. We start by proving that hn(t) =

sups≥0 ‖ � ω2(m)
m , Psµ

n
t � ‖∞ can be bounded uniformly in n and t ∈ [0, T ].

We apply Ps to the definition of µn
t , multiply by ω2(m)/m and integrate

over En to obtain

� ω2(m)

m
,Psµ

n
t �≤� ω2(m)

m
,Psν �

+

∫ t

0
� ω2(m)

m
,Ps+t−rKn(µn

r ) � dr. (5.12)

By the subadditivity of ω and ω a−1/2, for any u ≥ 0, x, z ∈ T, we have

ω2(m + m′) pz,x
u (m + m′) − ω2(m) pz,x

u (m) − ω2(m′) pz,x
u (m′)

≤ ω(m) pz,x
u (m)ω(m′) + ω(m)ω(m′) pz,x

u (m′).
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Then

� ω2(m)

m
,Ps+t−rKn(µn

r ) � (x)

≤ 2

∫

T×E2
n

ω(m) pz,x
s+t−r(m)ω(m′)

κ(m,m′)

mm′
µn

r (z, dm)µn
r (z, dm′) dz

≤ 2
∥

∥

∥
� ω2

m
p·,xs+t−r, µ

n
r �� ω $

m
,µn

r �

+ � ω $

m
p·,xs+t−r, µ

n
r �� ω2

m
,µn

r �
∥

∥

∥

1

≤ 2
∥

∥� ω $

m
,µn

r �
∥

∥

∞
� ω2

m
,Ps+t−rµ

n
r � (x)

+ 2
∥

∥� ω2

m
,µn

r �
∥

∥

∞
� ω $

m
,Ps+t−rµ

n
r � (x)

where we used the bound κ(m,m′) ≤ ω(m)$(m′)+$(m)ω(m′). Now, if we
replace ω2 by ω $ in (5.12), the subadditivity of a−1/2ω $ implies that the
time integral term is non-positive, and therefore

sup
r

sup
s≥0

∥

∥� ω $

m
,Psµ

n
r �

∥

∥

∞
≤ 〈ω $

m
, ν∗〉 < ∞

by condition (5.4) on ν. This assumption also implies that

sup
s≥0

� ω2

m
,Psν �≤ Γ < ∞

for some positive constant Γ. Taking the supremum over s ≥ 0 in (5.12), we
conclude that

hn(t) ≤ Γ + 2Γ′

∫ t

0
hn(r) dr, with Γ′ > 0.

Note that the constants Γ, Γ′ can be chosen independently of n. Then
hn(t) ≤ Γe2Γ′T holds uniformly in n and t ≤ T , as claimed.

We now consider the L1 norm of αn
t . We replace γn

t (x,m) by its upper
bound ω(m)αt(x) in the definition of λn and pass to the limit as n → ∞.
By dominated convergence we have

‖αt‖1 ≤
∫ t

0

∫

T×T×R+

ω2(m)

m
αs(z) pz,x

t−s(m)µ
s
(dm, dz) dx ds

≤
∫ t

0

(

sup
n

sup
s≥0

∥

∥� ω2

m
,µn

s �
∥

∥

∞

)

‖αs‖1 ds

≤ Γ(T )

∫ t

0
‖αs‖1 ds.
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Since ‖αt‖1 ≤ 〈ω/m, ν∗〉 < ∞, this implies αt = 0 a.e., as required. The
theorem follows.
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