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ADAPTIVE NUMERICAL SCHEMES FOR A
PARABOLIC PROBLEM WITH BLOW-UP

RAÚL FERREIRA, PABLO GROISMAN AND JULIO D. ROSSI

Abstract. In this paper we present adaptive procedures for the
numerical study of positive solutions of the following problem,




ut = uxx (x, t) ∈ (0, 1)× [0, T ),
ux(0, t) = 0 t ∈ [0, T ),
ux(1, t) = up(1, t) t ∈ [0, T ),
u(x, 0) = u0(x) x ∈ (0, 1),

with p > 1. We describe two methods, the first one refines the
mesh in the region where the solution becomes bigger in a precise
way that allows us to recover the blow-up rate and the blow-up set
of the continuous problem. The second one combine the ideas used
in the first one with the moving mesh methods and moves the last
points when necessary. This scheme also recovers the blow-up rate
and set. Finally we present numerical experiments to illustrate the
behavior of both methods.

1. Introduction.

In this paper we deal with numerical approximations for the following
problem,

(1.1)





ut = uxx (x, t) ∈ (0, 1)× [0, T ),
ux(0, t) = 0 t ∈ [0, T ),
ux(1, t) = up(1, t) t ∈ [0, T ),
u(x, 0) = u0(x) x ∈ (0, 1).

We assume that u0 is positive and compatible in order to have a regular
solution. If p > 1 it is well known that every positive solution becomes
unbounded in finite time, a phenomena that is known as blow-up. If T
is the maximum time of existence of the solution u then

lim
t↗T

‖u(·, t)‖∞ = +∞,

see [24], [28], [31] and also [17], [23], [27], [30] for general references on
blow-up problems. For (1.1) it is proved in [13], [18] that the blow-up
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rate is given by,

‖u(·, t)‖L∞ ∼ (T − t)−
1

2(p−1) .

The blow-up set, B(u), i.e., the set of points x ∈ [0, 1] where u(x, t)
becomes unbounded, is given by,

B(u) = {1}.
This phenomena is called single point blow-up, see [21].

Here we are interested in numerical approximations of (1.1). Since
the solution u develops a singularity in finite time, it is an interesting
question what can be said about numerical approximations of this kind
of problems. For previous work on numerical approximations of blow-
ing up solutions we refer to [1], [2], [6], [7], [10], [11], [15], [22], [25],
[26] the survey [5] and references therein. For approximations of (1.1)
we refer to [3], [4] and [14]. Those papers deal with the behaviour of
a semidiscrete numerical approximation in a fixed mesh of size h. It is
observed there that significant differences appear between the continu-
ous and the discrete problems. First, it is proved that positive solutions
of the numerical problem blow up if and only if p > 1, see [14], this
is the same blow-up condition that holds for the continuous problem.
Next, it is shown in [3] and [4] that the blow-up rate for the numerical
approximation, U , is given by

‖U(t)‖∞ ∼ (Th − t)−
1

p−1 .

Therefore the blow-up rate does not coincide with the expected for the
continuous problem. Concerning the blow-up set it holds,

B(U) = [1− Lh, 1] if p > 1,

see [4], [16]. The constant L depends only on p, L is the only integer
that verifies

L + 1

L
< p ≤ L

L− 1
.

Hence the numerical blow-up set can be larger than a single point,
x = 1, but as L does not depend on h,

B(U) → B(u), as h → 0.

Collecting all these results, we observe that when computing numer-
ical approximations of a blow-up problem with a fixed mesh significant
differences appear concerning the behaviour of the numerical and the
continuous solutions. For this problem the blow-up rate and the blow-
up set can be different. We conclude that the usual methods with
a fixed grid are not well suited for the problem under consideration.
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Therefore an adaptive mesh refinement is necessary. Some references
that use adaptive numerical methods are [3], [7] and [10].

In this paper we introduce two adaptive methods that give the right
blow-up rate and the exact blow-up set. Our main interest is to provide
rigorous proofs of these facts.

The first method, that we will call adding points method, is based on
a semidiscretization in space and adds points near the boundary, x = 1,
when the numerical solution becomes large. This adaptive procedure
leads to a non-uniform mesh that concentrates near the singularity and
gives the precise blow-up rate and set.

The second one, that we will call moving points method, also uses
a semidiscretization in space but this time we move the last K points
near the boundary when the numerical solution becomes large. The
number of moving points, K, depends only on the exponent p, in fact
we will choose K = [1/(p − 1)]. This procedure is inspired in the
moving mesh algorithms developed in [8], [9], [10], [20]. In our case
we take advantage of the a priori knowledge of the spatial location
of the singularity at x = 1 and instead of moving the whole mesh
continuously as time evolves, we concentrate only the last K points near
the boundary, leaving the rest of the mesh fixed. This allows us to use
a unified approach to analyze rigorously both schemes simultaneously.
One advantage of this moving procedure is keeping the size of the ODE
problem to be solved constant in time, while the adding points methods
enlarges the number of equations as time evolves.

Both numerical schemes are based on the scale invariance of the
heat equation in the half line with the nonlinear boundary condition
placed at x = 0, −ux(0, t) = up(0, t). If u(x, t) is a solution then

uλ(x, t) = λ
1

2(p−1) u(λ
1
2 x, λt) also is a solution. In [18] it is proved that

there exists a self-similar blowing up solution in the half-line of the
form

uS(x, t) = (T − t)−
1

2(p−1) ϕ(ξ), ξ = x(T − t)−
1
2 .

For an explicit form of the profile ϕ, see [18]. This solution uS(x, t)
gives the behaviour near the blow-up time T for solutions of (1.1) in
the following sense

(1.2) u(x, t) ∼ (T − t)−
1

2(p−1) ϕ(ξ),

for x = 1 − ξ(T − t)1/2, |ξ| ≤ C. So the behavior near the blow-up
point (1, T ) is given by the self-similar solution in the half-line. The
numerical schemes presented here use this fact to add or move points
near x = 1 trying to reproduce the scaling invariance in the half-line.
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The main goal of this paper is to present rigorous estimates for both
methods simultaneously showing that they give the right blow-up rate
and set. Our result reads as follows and holds for the method that adds
points as well as for the method that moves the last points.

Theorem 1.1. Let u be an increasing in x, smooth solution of (1.1) and
uh be the numerical solution obtained by any of the adaptive schemes
described in section 2. Then, for every τ > 0, the numerical solution
uh converges to the continuous one uniformly in [0, 1] × [0, T − τ ], in
fact there exists a constant C = C(τ) such that

‖u− uh‖L∞([0,1]×[0,T−τ ]) ≤ Ch
3
2 .

The numerical solution uh blows up if and only if p > 1 in the sense
that there exists a finite time Th with

lim
t↗Th

uh(1, t) = +∞.

This numerical blow-up time converges to the continuous one when
h → 0, in fact there exist α > 0 and C > 0 such that

|Th − T | ≤ Chα.

Moreover, the numerical blow-up rate is given by

lim
t↗Th

(Th − t)
1

2(p−1)‖uh(·, t)‖∞ = Γ = ϕ(0)

and the numerical blow-up set is

B(uh) = {1}.
Organization of the paper: In section 2 we describe the numerical
adaptive procedures. In sections 3 to 6 we develop the proofs of the
main result, Theorem 1.1. To begin the analysis we prove in section 3
that numerical approximations converge uniformly in sets of the form
[0, 1]× [0, T − τ ]. In section 4 we prove that the scheme reproduces the
blow-up rate. In section 5 we find the numerical blow-up set that co-
incides with the continuous one. In section 6 we prove that the numer-
ical blow-up time converges to the continuous one. Finally, in section
7 we present some numerical experiments comparing the performance
of both methods and make a few comments on possible extensions of
the ideas developed here to several space dimensions. We leave for the
Appendix the proof of a technical result needed in section 6.
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2. Adaptive numerical schemes

In this section we present the numerical methods. We consider a
semidiscrte scheme, that is, we discretize the space variable, keeping t
continuous. For the spatial discretization we propose piecewise linear
finite elements with mass lumping.

Consider a partition (that can be non-uniform), x1, ..., xN+1 of (0, 1)
of size h (h = max(xi − xi−1)) and its associated standard piecewise
linear finite element space Vh. Let {ϕj}1≤j≤N be the usual Lagrange
basis of Vh. The semidiscrete approximation uh(t) ∈ Vh obtained by
the finite element method with mass lumping is defined by:
∫ 1

0

(u′hv)Idx +

∫ 1

0

(uh)xvxdx = up(1, t)v(1, t), ∀v ∈ Vh,∀t ∈ (0, T )

where the superindex I denotes the Lagrange interpolation. We denote
with U(t) = (u1(t), . . . , uN+1(t)) the values of the numerical approxi-
mation at the nodes xk, at time t. Writing,

uh(t) =
N∑

j=1

uj(t)ϕj,

a simple computation shows that U(t) satisfies the system of ordinary
differential equations (see [12]):{

MU ′(t) = −AU(t) + BUp(t),
U(0) = uI

0,

where M is the mass matrix obtained with lumping, A is the stiffness
matrix and uI

0 is the Lagrange interpolation of the initial data, u0.

Adding points method.

First, let us describe a method that adds points near the boundary.
Let us pay special attention to the numerical solution at the point x = 1
(at this point is where the continuous solution develops the singularity).
Writing the equation satisfied by uN+1 explicitly we obtain the following
ODE,

u′N+1(t) =
2

h2
N

(uN(t)− uN+1(t)) +
2

hN

up
N+1(t),

where hN = 1− xN . Now, let us describe our adaptive procedure. As
we want the numerical blow-up rate to be

uh(1, t) ∼ (Th − t)−
1

2(p−1)

we impose that the last node uN+1(t) = uh(1, t) satisfies

(2.1) c1u
2p−1
N+1 (t) ≤ u′N+1(t) ≤ c2u

2p−1
N+1 (t).
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Imposing (2.1) is equivalent to,

(2.2) c1u
2p−1
N+1 (t) ≤ 2

h2
N

(uN(t)− uN+1(t)) +
2

hN

up
N+1(t) ≤ c2u

2p−1
N+1 (t).

As it is proved in [14] that the scheme with a fixed mesh blows up at
the last node, we have that

R(t; hN) =

2
h2

N
(uN(t)− uN+1(t)) + 2

hN
up

N+1(t)

u2p−1
N+1 (t)

→ 0 as t increases.

Let t1 be the first time such that R(t; hN) = c1, that is the first time
where R(t; hN) meets the tolerance c1. At that time t1 we add a point
z between xN and xN+1 = 1 to the mesh and give the value of uh(z, t1)
such that the slope of the line between (z, uh(z, t1)) and (1, uh(1, t1))
is the same as the slope between (xN , uh(xN , t1)) and (1, uh(1, t1)), see
Figure 1.

�� � �

Figure 1.

Hence we have a new value for the length of the last interval, [z, 1],

hN,1 = 1− z < hN = 1− xN .

We remark that uh(z, t1) = uz(t1) satisfies,

1

hN

(uN(t1)− uN+1(t1)) =
1

hN,1

(uz(t1)− uN+1(t1)).
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Let us see what happens with R(t1; hN,1).

R(t1; hN,1) =

2
h2

N,1
(uz(t1)− uN+1(t1)) + 2

hN,1
up

N+1(t1)

u2p−1
N+1 (t1)

=

2
hN,1

(uz(t1)− uN+1(t1)) + 2up
N+1(t1)

hN,1 u2p−1
N+1 (t1)

=
2

hN
(uN(t1)− uN+1(t1)) + 2up

N+1(t1)

hN,1 u2p−1
N+1 (t1)

=
hN

hN,1

R(t1; hN) =
hN

hN,1

c1 > c1.

Therefore with this new mesh x1, ..., xN , z, xN+1 we have that

R(t1; hN,1) > c1,

and we can apply the method with initial data uh(x, t1) in the new
mesh to continue. This gives a solution uh that verifies (2.2) in a time
interval [t1, t2] where at time t2, the function R(t2; hN,1) reaches the
tolerance c1. At that time t2 we have to add another point in the last
interval. As before this increases R(t2; hN,2) and we can continue with
initial data uh(x, t2) in a new mesh that is the old one plus the point
that we have added near the boundary x = 1. This procedure generates
an increasing sequence of times ti and a decreasing sequence hi = hN,i,
at which the tolerance R(ti; hi) = c1 is reached, a sequence of added
points accumulating at x = 1 and a numerical solution uh(x, t).

It remains to be more concrete on the election of the sequence hi, c1

and c2. In fact if we take,

c1 = Γ−2(p−1)(2(p− 1))−1,

and hi and c2 such that

(2.3)
hi

hi+1

→ 1 and c2 = c2(t) ∼ c1,

integrating (2.1) we get that

Γ(Th − t)−
1

2(p−1) ≥ uN+1(t) = max uh(·, t)

≥
(

2(p− 1)

∫ Th

t

c2(s) ds

)− 1
2(p−1)

,
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Hence, as t ↗ Th,

uN+1(t) = max uh(·, t) ∼ Γ(Th − t)−
1

2(p−1) ,

and we have recovered the continuous asymptotic behaviour (1.2). So
we want that hi and c2 verify (2.3). On the other hand, as we have
mentioned in the introduction, the continuous problem verifies that

u(x, t) ∼ (T − t)−
1

2(p−1) ϕ(ξ)

for x = 1 − ξ(T − t)1/2 ∼ C(u(1, t))−(p−1). In order to recover this
self-similar scaling we choose hi such that

hi+1(uN+1(ti))
p−1 =

2

c1

− A

uN+1(ti)
,

this choice make

c2 ∼ c1

(
1

1− c1A
2uN+1(ti)

)
,

and hence,

1− xN = hi+1 ∼ 2

c1

(uN+1(ti))
−(p−1) ∼ C(Th − t)1/2.

This procedure gives an approximation of the curve x = 1−ξ(T −t)1/2.
Notice that if hi+1 and c2 are given as above, relations (2.3) hold. So
we recover the self-similar behavior (1.2).

Moving points method.

As we mentioned in the introduction we may use a procedure in-
spired in the moving mesh method. Let us describe briefly the main
ingredients of such type of schemes, referring to [10] for details. Fol-
lowing [10], the numerical solution is defined on a new mesh xi(t) that
is obtained from a differentiable mesh transformation x = x(ξ, t) with
xi(t) = x(i/N, t). For this approach a new partial differential equa-
tion for x(ξ, t) is solved numerically simultaneously with the original
equation for u(x, t) imposing a self-similar invariance on the resulting
problem. In our case we impose that the blowing up end, xN = 1, is
fixed and move the rest of the points according to the previously de-
scribed procedure, obtaining a 2N system of ODE to be solved. There
are various ways to move the meshes, we refer to [10] for the details.

This type of procedure may loose some accuracy as it concentrates
the points near x = 1 as the solution becomes bigger leaving ”holes”
near the other end x = 0. Our strategy is to take advantage of the
fact that we know a priori that the singular set is x = 1 and hence to
reproduce the main features of the continuous solution: the blow-up
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rate, the structure of the solution near the blow-up time (approximate
self-similar behavior) and the blow-up set. We only need to move the
last K points near x = 1. In fact we use the ideas developed in the
adding points method to move the points not in a continuous way but
at certain times where R(t, hN) = c1.

Next we describe our moving points method that, as we mentioned
before, instead of adding a point when R(t, hN) = c1, moves the last
K points near the boundary x = 1.

Let us begin with a mesh composed by two types of nodes, a uniform
mesh of size h = 1/N (the fact that this mesh is uniform is not essential
for our analysis) and K nodes placed between xN = (N − 1)h and
xN+1 = 1, that we are going to move when appropriate. The number
of moving nodes, K, depends only on p, we choose K = [1/(p − 1)].
The motivation for this choice of K comes from the desired localization
of the blow-up set at x = 1, see Section 5. Let us call 0 = x1 < .... <
xN < xN+1 = 1 the fixed mesh and xN < y1 < .... < yK < xN+1 = 1
the moving nodes. As before, we use a semidiscretization in space,
using the mesh composed by the xi and the yi together, and arrive to
a system of ODE

{
MU ′(t) = −AU(t) + BUp(t),
U(0) = uI

0.

Again, we pay special attention to the numerical solution at the point
x = 1. Writing the equation satisfied by uN+1 explicitly we obtain the
following ODE,

u′N+1(t) =
2

h2
N

(uN(t)− uN+1(t)) +
2

hN

up
N+1(t),

where hN = 1− yK . Now we proceed as follows to obtain an adaptive
procedure: as before we want the numerical blow-up rate to be

uh(1, t) ∼ (Th − t)−
1

2(p−1) .

Hence we impose that the last node uN+1(t) = uh(1, t) satisfies (2.1),
this is equivalent to

(2.4) c1u
2p−1
N+1 (t) ≤ 2

h2
N

(uN(t)− uN+1(t)) +
2

hN

up
N+1(t) ≤ c2u

2p−1
N+1 (t).

In this case hN = 1− yK . We have that

R(t; hN) =

2
h2

N
(uN(t)− uN+1(t)) + 2

hN
up

N+1(t)

u2p−1
N+1 (t)

→ 0 as t increases.
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Let t1 be the first time such that R(t; hN) = c1, that is the first time
where R(t; hN) meets the tolerance c1.

We remark that our criteria to stop and modify the mesh is the same
as before.

Assume, to simplify the exposition, that K = 1, that is, we only have
one moving point, yK between xN−1 and xN = 1. At that time t1 we
move the point yK between xN and xN+1 = 1 to the point z and give the
value of uh(z, t1) such that the slope of the line between (z, uh(z, t1))
and (1, uh(1, t1)) is the same as the slope between (xN , uh(xN , t1)) and
(1, uh(1, t1)), see Figure 2.

PSfrag replacements

xN−1
yKyK xN = 1

Figure 2.

Hence, exactly as before, we have a new value for the length of the last
interval, [z, 1],

hN,1 = 1− z < hN = 1− yK .

As before, R(t1; hN,1) verifies,

R(t1; hN,1) =
hN

hN,1

R(t1; hN) =
hN

hN,1

c1 > c1.

Therefore with this new mesh x1, ..., xN , z = yK , xN+1 we have that

R(t1; hN,1) > c1,

and we can apply the method with initial data uh(x, t1) in the new
mesh to continue.

We remark that the number of nodes does not increase. We have
only moved the node yK from its previous position to its new position,
z. Hence, the size of the ODE system does not increase.

This gives us a solution uh that verifies (2.2) in a time interval [t1, t2]
where at time t2, the function R(t2; hN,1) reaches the tolerance c1. At
that time t2 we have to move again the moving point, yK , in the last
interval. As before this increases R(t2; hN,2) and we can continue with
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initial data uh(x, t2). This procedure generates an increasing sequence
of times ti and a decreasing sequence hi = hN,i, at which the tolerance
R(ti; hi) = c1 is reached, a sequence of moving points accumulating at
x = 1 and a numerical solution uh(x, t). It remains to be more concrete
on the election of the sequence hi, c1 and c2. In fact if we take, exactly
as before,

c1 = Γ−2(p−1)(2(p− 1))−1,

and hi such that

hi

hi+1

→ 1 and c2 = c2(t) ∼ c1,

we get that

uN+1(t) = max uh(·, t) ∼ Γ(Th − t)−
1

2(p−1) ,

and we have recovered the continuous asymptotic behavior (1.2). On
the other hand, to recover the self-similar behavior, we choose hi as in
the adding points method, that is such that

hi+1(uN+1(ti))
p−1 =

2

c1

− A

uN+1(ti)
,

so

c2 ∼ c1

(
1

1− c1A
2uN+1(ti)

)
.

Hence,

1− yK = hi+1 ∼ 2

c1

(uN+1(ti))
−(p−1) ∼ C(Th − t)1/2.

This procedure gives an approximation of the curve x = 1−ξ(T −t)1/2.
Notice that if hi+1 and c2 are given as above, relations (2.3) hold. So
we recover the self-similar behavior (1.2).

In case we have K > 1 we proceed in the same way, but in this case
we have to move K points near xN+1 = 1. Observe that the scaling
factor that we are using places yK at z, we move the rest of the points
lying between xN and 1 such that the mesh remains uniform in the
interval [y1, 1]. This imposes on yj, j = 1, . . . , K the same behavior
described above for yK .

Let us remark that the criteria that we use to modify the mesh is
the same in the adding points method and in the moving points method.
This allows us to make a unified approach in the course of the proofs
contained in the following sections.
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3. Convergence of the numerical schemes

In this section we prove a uniform convergence result. We use ideas
from [14] and we include the arguments here to make the paper self-
contained. For any τ > 0 we want that uh → u (when h → 0) uniformly
in [0, 1] × [0, T − τ ]. This is a natural requirement since on such an
interval the exact solution is regular.

In particular, uniform convergence can be obtained by using standard
inverse inequalities. In the following Theorem we give a proof of the
L2 convergence for a problem like (1.1) considering mass lumping. As
a corollary, we will obtain uniform convergence for problem (1.1).

Theorem 3.1. Let u be the solution of (1.1) and let uh its semidiscrete
approximation obtained by any of the adaptive schemes described in
Section 2. If u ∈ C2,1([0, 1] × [0, T − τ ]) for some τ > 0 then, there
exists a constant C depending on τ such that:

‖u− uh‖L∞([0,T−τ ],L2) ≤ Ch2.

Proof. We fix our attention on the convergence of the method in a time
interval of the form [ti, ti+1], that is between two consecutive refinement
times. Next we will show that this is enough for our purposes. Let us
begin by t ∈ (0, t1).

In this proof we use the notation L2 = L2((0, 1)) that refers to the
L2 norm in the x variable for each t (we will use analogous notations
for other norms below) and u′ for the derivative respect to time, ut.

As u is a solution of (1.1) it satisfies
∫ 1

0

u′v +

∫ 1

0

uxvx = up(1, t)v(1, t) ∀v ∈ H1.

The numerical scheme is equivalent to
∫ 1

0

((uh)
′v)I +

∫ 1

0

uxvx = up
h(1, t)v(1, t) ∀v ∈ Vh.

Hence we have that e = u− uh satisfies the following error equation,
∫ 1

0

(e′v)I dx +

∫ 1

0

exvx dx = (up − up
h)(1, t)v(1, t) +

∫ 1

0

((u′v)I − u′v) dx

for all v ∈ Vh. Writing

e = u− uh + uI − uI = u− uI + η

and using known error estimates for Lagrange interpolation it rest to
estimate η = uI − uh.
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First, it is easy to see that,
∫ 1

0

(u− uI)xvx = 0 ∀v ∈ Vh,

and therefore, replacing in the error equation we have an equation for
η,

∫ 1

0

(η′v)I+

∫ 1

0

ηxvx = (up(1, t)− up
h(1, t))v(1, t)

+

∫ 1

0

((u′v)I − u′v)−
∫ 1

0

((u′ − (uI)′)v)I ∀v ∈ Vh.

In particular if we choose v = η ∈ Vh we obtain

1

2

d

dt
(

∫ 1

0

(η2)I) +

∫ 1

0

(ηx)
2 = (up − up

h)(1, t)η(1, t)

+

∫ 1

0

((u′η)I − u′η) = I + II.

First, let us estimate I.

|I| = |(up(1, t)− up
h(1, t))η(1, t)| = ∣∣((uI)p(1, t)− up

h(1, t))η(1, t)
∣∣ .

Hence we get that

|I| ≤ C|η(1, t)|2.
Using the well known inequality,

|η(1, t)|2 ≤ (C +
C

ε
)‖η‖2

L2((0,1)) + ε‖ηx‖2
L2((0,1)),

we have that

|I| ≤ Cε‖η‖2
L2((0,1)) + ε‖ηx‖2

L2((0,1)).

In order to get a bound for II we decompose it in the following form,

II =

∫ 1

0

((u′η)I−u′η) dx =

∫ 1

0

((u′η)I−(u′)Iη) dx+

∫ 1

0

((u′)Iη−u′η) dx.

We proceed as before, for each subinterval Ij of the partition we know
that,

‖((u′)Iη)I − (u′)Iη‖L1(Ij) ≤ Ch2‖((u′)Iη)xx‖L1(Ij)

≤ Ch2‖((u′)I)xηx‖L1(Ij)
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because (u′)I and η are linear over Ij. Hence, summing over all the
elements Ij and using that ‖((u′)I)x‖L2 ≤ C‖u′‖H1 we obtain,

∫ 1

0

((u′η)I− (u′)Iη) dx ≤ Ch2

∫ 1

0

|((u′)I)x||ηx| dx

≤ Ch2‖((u′)I)x‖L2((0,1))‖ηx‖L2 ≤ Ch4‖u′‖2
H1 + 1

4
‖ηx‖2

L2 .

It rests to estimate the second summand of II. We have,
∫ 1

0

((u′)I− u′)η dx ≤ ‖(u′)I − u′‖L2‖η‖L2

≤ ‖(u′)I − u′‖2
L2 + ‖η‖2

L2 ≤ Ch4‖u′‖2
H2 + ‖η‖2

L2 .

Collecting all the previous bounds we obtain,

1

2

d

dt

∫ 1

0

(η2)I+

∫ 1

0

|ηx|2 ≤ Cε‖η‖2
L2((0,1)) + Cε‖ηx‖2

L2((0,1))

+ Ch4‖u′‖2
H2 + ‖η‖2

L2 + Ch4‖u′‖2
H1 + 1

4
‖ηx‖2

L2 .

We choose ε such that Cε = 1/4 and we obtain,

1

2

d

dt

∫ 1

0

(η2)I +
1

2

∫ 1

0

|ηx|2 ≤ C‖η‖2
L2((0,1)) + Ch4‖u′‖2

H2 .

Since
∫ 1

0
(η2)I dx ∼ ‖η‖2

L2 we can apply Gronwall’s Lemma to obtain
for t ∈ [0, T1],

‖η(t)‖L2 +

(∫ t1

0

‖ηx‖2
L2 dt

)1/2

≤ CeC(t1)h2.

In particular,

‖η‖L2 ≤ C(u, t1)h
2.

and hence,

‖e‖L2 ≤ ‖u− uI‖L2 + ‖η‖L2 ≤ C(u, t1)h
2.

This proves the result in [0, t1]. Assume that the result is true in
[0, ti]. The same arguments used before prove that the bound holds up
to ti+1. The observation that for h small enough there exists i0 such
that ti0 > T − τ finishes the proof. 2

As a corollary of Theorem 3.1 we can prove the following result that
gives uniform, L∞, convergence in an interval of the form [0, T − τ ].
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Corollary 3.1. Let u be the solution of (1.1) and uh its numerical
approximation. Given τ > 0, there exists a constant C depending on
‖u‖ in C2,1([0, 1]× [0, T − τ ]) such that, for h small enough:

‖u− uh‖L∞([0,1]×[0,T−τ ]) ≤ Ch
3
2 .

Proof. It is known that before the blow up time u is regular, more
precisely, u ∈ C2,1([0, 1] × [0, T − τ ]). Let g(u) be a globally Lips-
chitz function which agrees with f(u) = up for u ≤ 2M where M =
‖u‖L∞([0,1]×[0,T−τ ]). Let u and uh be the exact and approximate solu-
tions of a problem like (1.1) with f(u) = up replaced by g(u). By
uniqueness u = u in [0, 1]× [0, T − τ ]. A bound for ‖u− uh‖L∞ can be
obtained from Theorem 3.1. Indeed, it is enough to bound ‖uI−uh‖L∞ ,
and using a standard inverse inequality (see [12]) we have,

‖uI − uh‖L∞ ≤ Ch−
1
2‖uI − uh‖L∞([0,T−τ ],L2)

≤ Ch−
1
2

{‖uI − u‖L∞([0,T−τ ],L2)

+C‖u− uh‖L∞([0,T−τ ],L2)

} ≤ Ch
3
2

with C depending on u and the constant in Theorem 3.1 and so on τ .
Consequently, for h small enough |uh| ≤ 2M . Therefore up

h =
f(uh) = g(uh) and so uh is the finite element approximation of u and,
by uniqueness uh = uh which concludes the proof. 2

To finish this Section, we state a Lemma that says that the maximum
of U(t) is attained at the last node, xN+1.

Lemma 3.1. If U(0) is increasing, then the numerical solution U(t)
is increasing for every time t. Hence it satisfies

max uh(·, t) = uN+1(t),

for every t.

Proof. As U(0) is increasing then ui+1(0) > ui(0), let us see that this
holds for every t > 0. Assume not, then there exists a first positive
time t0 and an index i such that ui+1(t0) = ui(t0). From the equations
satisfied by ui+1 and ui we have that at that time t0 it holds u′i+1(t0)−
u′i(t0) > 0 a contradiction that proves the result. 2

4. Numerical blow-up.

In this section we prove that solutions of the numerical problems
blow up if and only if p > 1 and we find the blow-up rate in this case.
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Lemma 4.1. If p > 1 then every positive solution of any of the nu-
merical schemes blows up. Moreover, if U(0) is increasing, then

lim
t↗Th

(Th − t)
1

2(p−1)‖U(t)‖∞ = Γ,

where Th is the blow-up time of U .

Proof. If U(0) is increasing, by Lemma 3.1 U(t) has its maximum at
uN+1(t). At a modifying time ti we have that R(hi, ti) = c1 and we
modify the mesh to get

c1 < R(hi+1, ti) =
hi

hi+1

R(hi, ti) =
hi

hi+1

c1

We obtain that

u′N+1

u2p−1
N+1

(t) ≥ c1,

for every t. By integration we get that, as p > 1, uN+1 (and hence uh)
cannot be global. Moreover, if we call Th the blow-up time, using that
hi/hi+1 → 1 (i →∞), we have

(4.1) lim
t→Th

u′N+1

u2p−1
N+1

(t) = c1.

Integrating (4.1), we get

(c1 − ε2(t))(Th − t) ≤
∫ Th

t

u′N+1

u2p−1
N+1

(s) ds ≤ (c1 + ε1(t))(Th − t).

where εi(t) → 0 as t ↗ Th. Changing variables we obtain

(c1 − ε2(t))(Th − t) ≤
∫ +∞

uN+1(t)

1

s2p−1
ds ≤ (c1 + ε1(t))(Th − t).

Hence

lim
t→Th

(Th − t)
1

2(p−1) uN+1(t) = (2(p− 1)c1)
−1

2(p−1) = Γ,

as expected from the description of the method. 2

We remark that this rate coincides with the blow-up rate of the
continuous problem.
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5. Numerical blow-up set.

Now we turn our interest to the blow-up set of the numerical solution.
We want to look at the set of points, x, such that uh(x, t) → +∞ as
t ↗ Th.

In [3] and [16] it is proved that for a fixed mesh the numerical blow-
up set is given by B(U) = [1 − Lh, 1], where L depends only on p.
Notice that as L does not depend on h, the blow-up set converges to
the continuous blow-up set B(u) = {1}.

We remark that for the methods introduced in this paper at least K
points are collapsed near x = 1 when the solution blows up, therefore
the parameter hi goes to zero and formally the blow-up set for the
method must be B(U) = {1}. In order to prove this, we take a point
x̄ < 1 and we claim that the numerical solution is bounded in [0, x̄].

Lemma 5.1. Let x̄ < 1 then for all nodes xi < x̄ the numerical solution
is bounded, i.e., there exists C = C(x̄) > 0 such that

uh(x, t) ≤ C,

for all x ∈ [0, x̄], t ∈ [0, Th).

Proof. First we focus on the adding points method. The proof for the
moving points method is slightly different.

Let L be the first integer such that L − 1/2(p − 1) > −1, i.e. L =
[1/2(p− 1)], this implies that the function g(t) = t−1/2(p−1) is L times
integrable.

From Lemma 4.1 we have that

max uh(·, t) = uN+1(t) ∼ C(Th − t)−
1

2(p−1) .

Since we adapt near x = 1 collapsing (at least) L points in {1} as
the solution gets large, we can consider a node xiL > x̄ such that at
time tiL there exits L + 1 nodes between x̄ and xiL .

On the other hand, as we modify the location of the nodes only
for points between xN and xN+1 = 1, we obtain that for the points
xi, i = 1, · · · , N − 1 the mesh is fixed. Therefore from the equation
satisfied by these nodes we have that for t > tiL

u′i(t) ≤ C max (ui+1, ui−1) ≤ C(Th − t)−
1

2(p−1) ,

and then for i = 1, · · · , N − 2 we get

ui(t) ≤ C(Th − t)−
1

2(p−1)
+1.

This bound implies that

u′i(t) ≤ C max (ui+1, ui−1) ≤ C(Th − t)−
1

2(p−1)
+1,
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for i = 1, · · · , N − 2. Integrating again we get

ui(t) ≤ C(Th − t)−
1

2(p−1)
+2,

for every i = 1, · · · , N − 3. Repeating the same argument L times we
have that ui(t) is bounded for all i = 1, · · · , N − L− 1.

Hence, as there are L nodes between x̄ and xN+1, for t close to Th,
we get that for all nodes xi < x̄, ui(t) is bounded.

In the case of the moving points method the idea of the proof is the
same but we deal with the K moving points between xN and xN+1 = 1.
In fact, arguing as before, for uK the value of the numerical solution
at the moving node yK , we have

u′K(t) ≤ C(t)(Th − t)−
1

2(p−1) .

The behavior of C(t) depends on our choice of h in the adaptive pro-
cedure, hence

C(t) ∼ (Th − t)−
1
2 .

Therefore,

uK(t) ≤ C(Th − t)−
1

2(p−1)
+ 1

2 .

For uK−1 we get

u′K−1(t) ≤ C(t)(Th − t)−
1

2(p−1)
+ 1

2 ≤ C(Th − t)−
1

2(p−1) .

Integrating we get

uK−1(t) ≤ C(Th − t)−
1

2(p−1)
+1.

Iterating this procedure K times we get that the value of the numerical
solution at y1 is bounded. Since y1 goes to 1 as t → Th and the
numerical solution is increasing in space we conclude that uh(x̄, t) is
bounded. 2

We remark that this result implies that B(U) = {1}.

6. Convergence of the numerical blow-up times.

In this section we prove that the numerical blow-up times, Th, con-
verges to the continuous one, T , when h goes to zero.

Lemma 6.1. The numerical blow-up times converge to the continuous
one when h → 0, in fact there exist α > 0 and C > 0 such that

|Th − T | ≤ Chα.
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Proof. The idea of the proof is as follows, first we get bounds for the
first time t0 such that the error verifies

(6.1) ‖(uh − u)(t)‖L∞([0,1]) ≤ 1, for all t ∈ [0, t0],

then we use this bound to prove our convergence result.
To get a bound for t0 let us look at our scheme between two consec-

utive refinement times, from section 2 we have,

(6.2) MU ′ = −AU + BUp.

If we call zi(t) = u(xi, t) we get that Z = (z1, . . . , zN+1) satisfies

(6.3) MZ ′ ≤ −AZ + BZp + Ch(T − t)θ,

where θ depends only on p, in fact θ = −2− 1/2(p− 1). Let us remark
that C(T − t)θ is a bound for the first four spatial derivatives of u(x, t)
a regular solution of (1.1).

Subtracting (6.2) from (6.3) we have, for E = U − Z,

(6.4)
ME ′ ≤ −AE + B(Zp − Up) + Ch(T − t)θ

≤ −AE + Bpξp−1E + Ch(T − t)θ,

where ξ is a point between uN+1 and zN+1. Using that t ∈ [0, t0], (6.1),
and the blow-up rate we get

ξp−1 ≤ C(T − t)−
1
2 .

Hence (6.4) gives

(6.5) ME ′ ≤ −AE + BC
E

(T − t)
1
2

+ Ch(T − t)θ,

This inequality is a discretization of the problem

(6.6)





Et ≤ Exx + C(T − t)θh (x, t) ∈ (0, 1)× [0, T ),
Ex(0, t) ≤ 0 t ∈ [0, T ),
Ex(1, t) ≤ C(T − t)−1/2E(1, t) t ∈ [0, T ),
E(x, 0) ≤ Ch x ∈ (0, 1).

In the appendix we construct a supersolution for problem (6.6) such
that

(6.7) E(x, t) ≤ Ch(T − t)−γ

and with the first four spatial derivatives positives in [0, 1].
Now we take ei(t) = E(xi, t) and we get a supersolution for (6.5).

We use a comparison argument, see [14], between two consecutive re-
finement times to obtain that

ei(t) ≤ ei(t).
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Therefore, using (6.7) we conclude that

ei(t) ≤ C(T − t)−γh.

The same arguments applied to E = Z − U gives the lower bound

ei(t) ≥ C(T − t)−γh.

Therefore

|ei(t)| ≤ C(T − t)−γh.

We get a bound for t0 as follows, let t∗ be the first time such that
C(T − t∗)−γh = 1. That is, T − t∗ = Ch1/γ. As t0 ≥ t∗ we have

T − t0 ≤ Ch1/γ.

This means that the first time where the error is of size one is less than
a power of the parameter h. With this bound for T − t0 we can get the
desired result as follows

|Th − T | ≤ |T − t0|+ |Th − t0| ≤ Ch1/γ + |Th − t0|.
Now we observe that the blow-up rate for uh gives that

|Th − t0| ≤ C(uN+1(t0))
−2(p−1) ≤ C(zN+1(t0) + 1)−2(p−1)

≤ C(T − t0) ≤ Ch
1
γ ,

and the result follows. 2

Let us observe that we can obtain a convergence result using these
ideas. However, the methods used in Section 3 provided a better esti-
mate.

7. Numerical experiments.

In this section we present numerical experiments. Our goal is to show
that the results presented in the previous sections can be observed when
one perform numerical computations. For the numerical experiments
we use an adaptive ODE solver to integrate in time. We take as initial
datum u0(x) = (x2+1)/2. In Figures 1, 2 below we compare the adding
points scheme with one with a fixed mesh of the same size h = 1/50,
for p = 2 and p = 1.5. We present the evolution of ln(uh(1, t)) as a
function of − ln(Th − t). The slope of the obtained curves measures
the blow-up rate. As expected these slopes for p = 2 are 1/2 with the
adding points scheme and 1 with a fixed mesh, while for p = 1.5 are 1
and 2 respectively.
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Figure 1. Blow-up rates. p = 2.
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Figure 2. Blow-up rates. p = 1.5.

In Figures 3, 4 we show the performance of the moving points method,
using the same initial datum and the same powers (p = 2 and p = 1.5)
used above. Again we can observe that the slopes of the resulting lines
reproduce the expected blow-up rates.
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Figure 3. Blow-up rates. p = 2.
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Figure 4. Blow-up rates. p = 1.5.

Finally Figures 5, 6 show the evolution of the moving nodes in the
case of the moving points method for p = 2 (just one node is moved)
and p = 1.5 (two moving nodes) respectively. In these figures it can be
observed that the moving nodes satisfy

− ln(Th − t) ∼ 2(− ln(1− yi)) + Ci
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which means that they obey the scaling invariance of the problem, that
is,

1− yi√
Th − t

∼ ξi,

and so this method recovers the self-similar behavior of the continuous
solution as it was proved.
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Figure 5. Position of the moving point. p = 2.
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Comments and Extensions.

Moving mesh methods, based in moving mesh partial differential
equations are also expected to reproduce these asymptotic behaviors,
in spite of the evidence is just heuristical and experimental. Rigorous
proofs are not available. However, the moving mesh algorithms can be
applied to a large family of problems. The idea behind these procedures
is to take advantage of the self-similar scaling of the problems under
consideration. This seems to us to be the more natural way to face
blow-up problems. Our results can be viewed as a preliminary step to
obtain rigorous proofs for these kind of schemes.

The results contained in the paper are restricted to one space dimen-
sion. We may try to extend these ideas to several space dimensions. If
Ω is a bounded domain we face the problem ut = ∆u in Ω× (0, T ) with
a boundary condition of the form ∂u

∂η
= up on ∂Ω× (0, T ) and an initial

datum u0(x). See [13], [17], [21], [28] for references that includes the
blow-up rate and set. There is a natural extension of the ideas devel-
oped here to deal with the higher dimensional case. However, in order
to extend any of the two adaptive procedures described in Section 2 we
need to have an a priori knowledge of the spatial location of the blow-
up set. This is the case for example if the domain under consideration
is a square Ω = [0, 1]× [0, 1] for certain initial conditions that forces the
blow-up set to be one of the corners (see [19]). Assume that we know
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where a single point blow-up set is located and that the maximum of
the solution is placed at that point for every time (as in the case of the
square described in [19]), then we place a node at that point and look
for the asymptotic behavior of that node. It turns out that we get a
condition of the form c1 ≤ R(t, hN,1, hN,2, ..., hN,J). When R(t, ·) = c1

we modify the mesh locally near the blow-up point, adding or moving
the adjacent nodes, by performing a contraction by a factor r < 1. A
simple calculation shows that when such a contraction is performed the
new value of R(t, ·) increases, allowing us to proceed just as described
in Section 2.

However, if the maximum of the solution moves from one node to
another then we have to perform adaptive procedures at different points
that may compensate as time evolves and hence our proofs are no longer
valid.

8. Appendix.

In this appendix we find a supersolution for



Et = Exx + C(T − t)θh (x, t) ∈ (0, 1)× [0, T ),
Ex(0, t) = 0 t ∈ [0, T ),
Ex(1, t) = C(T − t)−1/2E(1, t) t ∈ [0, T ),
E(x, 0) = Ch x ∈ (0, 1),

such that

E(x, t) ≤ Ch(T − t)−γ

and with the first four spatial derivatives positives in [0, 1].
Let us look for a supersolution of the form

E(x, t) = Ch(T − t)θa(x, t),

with a(x, t) a solution of

(8.1)





at = axx (x, t) ∈ (0, 1)× [0, T ),
ax(0, t) = 0 t ∈ [0, T ),
ax(1, t) = C(T − t)−1/2a(1, t) t ∈ [0, T ),
a(x, 0) = a0(x) x ∈ (0, 1).

In order to get a supersolution, E, with the first four spatial derivatives
positives, we impose that a0(x) is a smooth compatible initial datum
with the first four spatial derivatives positives. The positivity of the
derivatives is preserved for every t ∈ [0, T ).

Now let us see that there exists r such that

(8.2) a(x, t) ≤ C

(T − t)r
.
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To this end we want to construct a supersolution to (8.1) such that (8.2)
holds. This can be easily done by the following procedure: take v(x, t)
a solution of (1.1) with boundary condition given by vx(1, t) = vq(1, t),
with q small, and initial datum v0 such that v(x, t) blows up exactly at
time T , see [29] for a proof of the fact that for every time T there exist
an initial datum such that v(x, t) blows up at time T . The blow-up
rate for solutions of (1.1), see [18], [21], gives that v(x, t) verifies

v(1, t) ∼ L

(T − t)
1

2(q−1)

,

with Lq−1 → +∞ as q ↘ 1, see [18] for an explicit formula for L(q). Let
us fix q such that Lq−1(q) > C. With this choice, v is a supersolution
of (8.1). In fact,

vx(1, t) = vq(1, t) = vq−1v(1, t) ≥ Lq−1

(T − t)
1
2

v(1, t),

as we wanted to prove.
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