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ASYMPTOTIC BEHAVIOR OF THE EIGENVALUES OF THE ONE
DIMENSIONAL WEIGHTED p−LAPLACE OPERATOR

JULIÁN FERNÁNDEZ BONDER AND JUAN PABLO PINASCO

Abstract. In this paper we study the spectral counting function for the weighted p-
laplacian in one dimension. We show the existence of a Weyl-type leading term and we
find estimates for the remainder term.

1. Introduction

In this paper we study the following eigenvalue problem:

−(ψp(u′))′ = λr(x)ψp(u),(1.1)

in a bounded open set Ω ⊂ R, with Dirichlet or Neumann boundary conditions. Here, the
weight r is a real-valued, bounded, positive continuous function, λ is a real parameter and

ψp(s) = |s|p−2s,

for s 6= 0 and 0 if s = 0.
From [14] we know that the spectrum consists on a countable sequence of nonnegative

eigenvalues λ1 < λ2 ≤ . . . ≤ λk ≤ . . . (repeated according multiplicity) tending to +∞.
With the same ideas as in [2], Theorem 4.1 it is easy to prove that the sequence {λk}k
coincide with the eigenvalues obtained by the Ljusternik-Schnirelmann theory. We define
the spectral counting function N(λ,Ω) as the number of eigenvalues of problem (1.1) less
than a given λ :

N(λ,Ω) = #{k : λk ≤ λ}.
We will write ND(λ,Ω) (resp., NN(λ,Ω)) whenever we need to stress the dependence on
the Dirichlet (resp., Neumann) boundary conditions.

We obtain the following asymptotic expansion:

N(λ,Ω) ∼ λ1/p

πp

∫
Ω
r1/p,(1.2)

as λ→∞, where πp is defined as

πp = 2(p− 1)1/p
∫ 1

0

ds

(1− sp)1/p .(1.3)

The proof is based on variational arguments, including a suitable extension of the method
of ‘Dirichlet-Neumann bracketing’ in [1].

Moreover, we analyze the remainder term R(λ,Ω) = N(λ,Ω) − 1
πp

∫
Ω(λr)1/p, following

the ideas on [4]. We show that

R(λ,Ω) = O(λδ/p),(1.4)
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where δ ∈ (0, 1] depends on the regularity of the boundary ∂Ω.
When p = 2, the problem has a long history, see [4, 7, 8, 10] and the references therein.
For p 6= 2, the only known result is due to Garcia Azorero and Peral Alonso, [6]. The

authors show that the eigenvalues of the p-laplacian in RN (with r = 1) obtained by the
mini-max theory satisfy

c1(Ω)kp/N ≤ λk ≤ c2(Ω)kp/N .(1.5)

It is easy to see that this eigenvalue inequality is equivalent to

C1(Ω)λN/p ≤ N(λ,Ω) ≤ C2(Ω)λN/p,

for certain positive constants when λ→∞, see Lemma 3.2 below.
Finally, the asymptotic behavior of the eigenvalues in [6] may be improved using the

Dirichlet-Neumann bracketing. For n = 1, we obtain

λk ∼ ckp.

The paper is organized as follows. In §2, we introduce the genus in a version due to
Krasnoselski and we prove some auxiliary lemmas. In §3, we prove the asymptotic expansion
(1.2). We analyze the remainder estimate in §4. Finally, in §5, we compute explicitly a
non-trivial second term for r = 1 and analyze the asymptotic behavior of the eigenvalues.

2. Preliminary results

In this section we introduce the main tools to deal with our problem, the genus and the
Dirichlet-Neumann bracketing.

We want to remark that the results of this section holds for arbitrary dimensions N ≥ 1
if one consider only the variational eigenvalues.

Let X be a Banach space. We consider the class:

Σ = {A ⊂ X : A compact , A = −A}.

We recall the genus γ : Σ→ N ∪ {∞} as

γ(A) = min{k ∈ N there exist f ∈ C(A,Rk \ {0}), f(x) = −f(−x)}.

For some properties of the genus and some of its applications we refer to [15].
By the Ljusternik-Schnirelmann theory, there exists a sequence of nonlinear eigenvalues

of problem (1.1) with Dirichlet (resp. Neumann) boundary condition, given by

λΩ
k = inf

F∈CΩ
k

sup
u∈F

∫
Ω
|u′|p,(2.1)

where
CΩ
k =

{
C ⊂MΩ : C compact , C = −C, γ(C) ≥ k

}
,

MΩ =
{
u ∈W 1,p

0 (Ω) ( resp., W 1,p(Ω) ) :
∫

Ω
r(x)|u|p = 1

}
.

Theorem 2.1. Let U1, U2 ∈ RN be disjoint open sets such that (U1 ∪ U2)int = U and
|U \ U1 ∪ U2|N = 0, then

ND(λ, U1 ∪ U2) ≤ ND(λ, U) ≤ NN(λ, U) ≤ NN(λ, U1 ∪ U2).

Here |A|N stands for the N-dimensional Lebesgue measure of the set A.
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Proof. It is an easy consequence of the following inclusions

W 1,p
0 (U1 ∪ U2) = W 1,p

0 (U1)⊕W 1,p
0 (U2) ⊂ W 1,p

0 (U)(2.2)

and

W 1,p(U) ⊂ W 1,p(U1)⊕W 1,p(U2) = W 1,p(U1 ∪ U2),(2.3)

and the variational formulation (2.1). In fact, using that

MU(X) =
{
u ∈ X :

∫
U

r(x)|u|p = 1
}
⊂MU(Y ) =

{
u ∈ Y :

∫
U

r(x)|u|p = 1
}
,

and that CU
k (X) ⊂ CU

k (Y ) where X = W 1,p
0 (U1 ∪ U2) or W 1,p(U) and Y = W 1,p

0 (U) or
W 1,p(U1 ∪ U2) respectively, we obtain the desired inequality.

The Dirichlet-Neumann bracketing is a powerful tool combined with the following result:

Proposition 2.2. Let Ω = ∪jΩj, where {Ωj}j is a pairwise disjoint family of bounded open
sets in RN . Then,

N(λ,Ω) =
∑
j

N(λ,Ωj).(2.4)

Proof. Let λ be an eigenvalue of problem (1.1) in Ω, and let u be the associated eigenfunc-
tion. For all v ∈W 1,p

0 (Ω) we have∫
Ω
|∇u|p−2∇u∇v − λ

∫
Ω
|u|p−2uv = 0.(2.5)

Choosing v with compact support in Ωj, we conclude that u|Ωj is an eigenfunction of
problem (1.1) in Ωj with eigenvalue λ.

For the other inclusion, it is sufficient to extend an eigenfunction u in Ωj by zero outside,
which gives an eigenfunction in Ω.

3. The function N(λ)

In this section we prove the asymptotic expansion (1.2).

Lemma 3.1. Let {λk}k∈N be the eigenvalues of (1.1) in (0, T ), with r = 1. Then,

λk =
πpp
T p
kp.(3.1)

Proof. This result was proved in [12].

Lemma 3.2. Let {λk}k∈N be the eigenvalues of (1.1) in (0, T ) and suppose that m ≤ r(x) ≤
M . Then,

1
M

πpp
T p
kp ≤ λk ≤

1
m

πpp
T p
kp,(3.2)

and

Tm1/p

πp
λ1/p − 1 ≤ N(λ, (0, T )) ≤ TM1/p

πp
λ1/p.(3.3)
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Proof. Equation (3.2) is an easy consequence of the Sturmian Comparison principle in [13]
or [14] and the explicit formula for the eigenvalues. Now,

#
{
k :

πppk
p

T pM
≤ λ

}
≤ #{k : λk ≤ λ} ≤ #

{
k :

πppk
p

T pm
≤ λ

}
.(3.4)

The left hand side is greater than

Tm1/p

πp
λ1/p − 1,

which gives the lower bound. In the same way, we obtain

N(λ, (0, T )) ≤
[
Tm1/p

πp
λ1/p

]
≤ Tm1/p

πp
λ1/p.

The proof is complete.

Remark 3.3. Sometimes is better to bound x− [x] as x instead of O(1), in order to obtain
a convergence result, as in Theorem 3.5 below, or in the second example of Section 5.

Proposition 3.4. Let r(x) be a real-valued, positive continuous function in [0, T ]. Then,

N(λ, (0, T )) =
λ1/p

πp

∫ T

0
r1/p + o(λ1/p).(3.5)

Proof. Let [0, T ] = ∪1≤j≤JIj, Ij ∩ Ik = ∅ with |Ij| = T/J = η. We define

mj = inf
x∈Ij

r(x), Mj = sup
x∈Ij

r(x).

We can choose η > 0 such that
J∑
j=1

ηm
1/p
j =

∫ T

0
r1/p − ε1,

J∑
j=1

ηM
1/p
j =

∫ T

0
r1/p + ε2,

with ε1, ε2 > 0 arbitrarily small.
From Theorem 2.1 and Proposition 2.2, we obtain

J∑
j=1

ND(λ, Ij) ≤ N(λ, (0, T )) ≤
J∑
j=1

NN(λ, Ij).

Hence, using that

ND(λ, Ij) ≥ m
1/p
j

λ1/p

πp
− 1 and NN(λ, Ij) ≤M

1/p
j

λ1/p

πp
,

we have
λ1/p

πp

(∫ T

0
r1/p − ε1

)
− J ≤ N(λ, (0, T )) ≤ λ1/p

πp

(∫ T

0
r1/p + ε2

)
.

Letting λ→∞, we have
N(λ, (0, T ))
λ1/p

πp

∫ T
0 r1/p

→ 1

and the proof is complete.

Now we prove the main Theorem of this section:
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Theorem 3.5. Let r(x) be a real-valued, positive and bounded continuous function in Ω.
Then,

N(λ,Ω) =
λ1/p

πp

∫
Ω
r1/p + o(λ1/p).(3.6)

Proof. It is an easy consequence of Proposition 2.2 and Proposition 3.4. Let Ω = ∪∞j=1Ij,
then

N(λ,Ω) =
∞∑
j=1

N(λ, Ij) ∼
∞∑
j=1

λ1/p

πp

∫
Ij

r1/p =
λ1/p

πp

∫
Ω
r1/p.(3.7)

This completes the proof.

4. Remainder estimates

In order to get better asymptotic results, we will put some restrictions on Ω and r. Given
any η > 0 sufficiently small, we consider a tessellation of R by a countable family of disjoint
open intervals {Iζ}ζ∈Z, of length η.

Definition 4.1. Let Ω be a bounded open set in R. Given β > 0, we say that the boundary
∂Ω satisfies the “β-condition” if there exist positive constants c0 and η0 < 1 such that for
all η ≤ η0,

#(J \ I)
#I

≤ c0η
β,(4.1)

where

I = I(Ω) = {ζ ∈ Z : Iζ ⊂ Ω},(4.2)

J = J(Ω) = {ζ ∈ Z : Iζ ∩ Ω 6= ∅}.(4.3)

It is easy to see that if the set is Jordan contented (i.e., it is well approximated from
within and without by a finite union of intervals), then it verifies the “β-condition” for
β = 1. The coefficient β allows us to measure the smoothness of ∂Ω.

Definition 4.2. Given γ > 0, we say that the function r satisfies the “γ-condition” if there
exist positive constants c1 and η1 < 1 such that for all ζ ∈ I(Ω) and all η ≤ η1,∫

Iζ

|r − rζ |1/p ≤ c1η
γ,(4.4)

where rζ =
(
|Iζ |−1

∫
Iζ
r1/p
)p

is the mean value of r1/p in Iζ .

Remark 4.3. 1. The coefficient γ enable us to measure the smoothness of r, the larger γ,
the smoother r.

2. When r is Holder continuous of order θ > 0 and is bounded away from zero on Ω,
then it satisfies the γ-condition for 0 < γ ≤ 1 + θ/p.

If r is only continuous and positive on Ω, then it satisfies the γ-condition for 0 < γ ≤ 1

We can now state the main theorem of this section:
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Theorem 4.4. Let Ω be a bounded open set in R with boundary ∂Ω satisfying the “β-
condition” for some β > 0, and let r be a bounded, positive and continuous function satisfy-
ing the “γ-condition” for some γ > 1. Set ν = min(β, γ−1). Then, for all δ ∈ [1/(ν+1), 1],
we have

N(λ,Ω)− 1
πp

∫
Ω

(λr)1/p = O(λδ/p)(4.5)

Proof. For the convenience of the reader, the proof is divided into several steps.
Moreover, we will stress the dependence of problem (1.1) in the weight function, writing

N(λ,Ω, f).
Step 1. Let η > 0 be fixed. We define

ϕ(λ) = π−1
p

∫
Ω

(λr)1/p, ϕ(λ, ζ) = ηπ−1
p (λrζ)1/p.(4.6)

From Theorem 2.1 we obtain∑
ζ∈I

ND(λ, Iζ , r)− ϕ(λ) ≤ ND(λ,Ω, r)− ϕ(λ)(4.7)

and

ND(λ,Ω, r)− ϕ(λ) ≤
∑
ζ∈I

NN(λ, Iζ , r) +
∑
ζ∈J\I

NN(λ, Iζ ∩ Ω, r)− ϕ(λ).(4.8)

We are reduced to find a bound for the left (resp., right) term of (4.7) (resp., (4.8)).

Step 2. We can rewrite (4.7) as:∑
ζ∈I

ND(λ, Iζ , r)− ϕ(λ) ≤
∑
ζ∈I

ND(λ, Iζ , rζ)− ϕ(λ, ζ) +
∑
ζ∈I

ϕ(λ, ζ)− ϕ(λ)

+
∑
ζ∈I

ND(λ, Iζ , r)−
∑
ζ∈I

ND(λ, Iζ , rζ).
(4.9)

Let us note that both
∑

ζ∈I ND(λ, Iζ , rζ)−ϕ(λ, ζ) and
∑

ζ∈I ϕ(λ, ζ)−ϕ(λ) are negative.
Now, by Lemma 3.2:∑

ζ∈I

|ND(λ, Iζ , rζ)− ϕ(λ, ζ)| ≤ #(I)M ≤ η−1|Ω|.(4.10)

We can bound∑
ζ∈I

ϕ(λ, ζ)− ϕ(λ) = π−1
p λ1/p

∑
ζ∈I

∫
Iζ

(r1/p − r1/p
ζ ) +

∑
ζ∈J\I

∫
Iζ∩Ω

r1/p


as

Cλ1/p#(J \ I)ηM ≤ Cλ1/pηβ.(4.11)

Here we have used that r ≤M, and that ∂Ω satisfies the β-condition.
Finally, the third term in (4.9) can be handled using the monotonicity of the eigenvalues

with respect to the weight (see [14]). Replacing r ≤ rζ + |r − rζ |, a simple computation
shows that

N(λ, Iζ , r) ≤ N(λ, Iζ , rζ) +N(λ, Iζ , |r − rζ |),
which gives∑

ζ∈I

ND(λ, Iζ , r)−ND(λ, Iζ , rζ) ≤
∑
ζ∈I

N(λ, Iζ , |r − rζ |) ≤ Cλ1/p#(I)ηγ
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and using the same arguments as above and the fact that r satisfies the γ-condition, we
obtain ∑

ζ∈I

ND(λ, Iζ , r)−ND(λ, Iζ , rζ) ≤ Cλ1/pηγ−1.(4.12)

Collecting (4.10), (4.11) and (4.12) we have the lower bound

Cλ1/p(ηβ + ηγ−1) + Cη−1.(4.13)

Step 3. In a similar way, we can find an upper bound for (4.8),(∑
ζ∈I

NN(λ, Iζ , r)− ϕ(λ)

)
+
∑
ζ∈J\I

NN(λ, Iζ ∩ Ω, r).(4.14)

We only need to estimate the last term, but

NN(λ, Iζ ∩ Ω, r) ≤ Cλ1/p
∫
Iζ∩Ω

r1/p ≤ C(Mηλ)1/p

and again, using the β-condition, we have∑
ζ∈J\I

NN(λ, Iζ ∩ Ω, r) ≤ Cλ1/pηβ.(4.15)

Hence, we obtain an upper bound for (4.8):

Cλ1/p(ηβ + ηγ−1) + Cη−1.(4.16)

Step 4. From (4.13) and (4.16) we obtain

|N(λ,Ω)− 1
πp

∫
Ω

(λr)1/p| ≤ Cλ1/p(ηβ + ηγ−1) + Cη−1.(4.17)

We now choose η = λ−a, with 0 < a ≤ δ. It is clear that the last term in (4.17) is
bounded by Cλδ. Also, it is easy to see that, if a ≥ 1

β
(1
p
− δ), then λ1/pηβ ≤ λδ. Likewise,

choosing a ≥ 1
γ−1(1

p
− δ), we have λ1/pηγ−1 ≤ λδ. When β = 0, or γ = 1, we must choose

a = 1/p.
This completes the proof.

5. Concluding remarks

We end this paper showing a family of examples with a power-like second term, and an
example with an irregular second term. Finally, we discuss the asymptotic behavior of the
eigenvalues.

In the examples below, the parameter d provides some geometrical information about
∂Ω. In both cases, d is the interior Minkowski (or box) dimension of the boundary, we refer
the reader to [3] and references therein.
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Examples of explicit second term. Let Ω = ∪jIj, where |Ij| = j−1/d, and 0 < d < 1.
We have the following asymptotic expansion for the spectral counting function when r = 1 :

N(λ,Ω) =
|Ω|
πp
λ1/p + C(d)λd/p +O(λd/p(2+d)).(5.1)

The proof can be obtained with number-theoretic methods. We have:

N(λ,Ω) =
∞∑
j=1

[j−1/d

πp
λ1/p] = #{(m,n) ∈ N2 : m.n1/d ≤ π−1

p λ1/p}.

In fact, for each j we can draw the vertical segment of length j−1/dλ1/p/πp in the plane, and
the series in the left is the number of lattice points below the function y(x) = λ1/p

πp
x−1/d.

See [11] for a detailed proof.
When p = 2 and |Ij| ∼ j−1/d, Lapidus and Pomerance in [9] showed that

N(λ,Ω) =
|Ω|
πp
λ1/p + C(d)λd/p + o(λd/p),

without the lattice point theory, the same result is valid for p 6= 2. However, let us note
that the error in equation (5.1) is better, which enables us to obtain more precise estimates
whenever we know more about the asymptotic behavior of |Ij|. On the other hand, the
result in [9] holds for more general domains that the ones considered here.

Example of irregular second term. Let Ω be the complement of the ternary Cantor
set, and r = 1. We have:

N(λ,Ω) =
|Ω|
πp
λ1/p − f(ln(λ))λln(2)/p ln(3) +O(1).(5.2)

Here f(x) is a bounded, periodic function. Our proof follows closely [5], where the usual
Laplace operator on a self-similar set in Rn was studied for every n ≥ 2.

Let us define ρ(x) = x− [x], it is evident that |ρ(x)| ≤ min(x, 1). Hence,

N(λ,Ω)− |Ω|
πp
λ1/p = −

∞∑
j=0

2jρ
(

λ1/p

3j+1πp

)
≤ Cλ1/p.(5.3)

It remains to prove the periodicity of f . We write the error term as
∞∑

j=−∞

2jρ
(

λ1/p

3j+1πp

)
−

−1∑
j=−∞

2jρ
(

λ1/p

3j+1πp

)
.(5.4)

Using that |ρ(x)| ≤ 1, the second series converges and it is bounded by a constant.
Let us introduce the new variable

y =
ln(λ1/p)− ln(πp)

ln(3)
,(5.5)

which gives 3y = λ1/p/πp and 2y = (λ1/p/πp)d, where

d =
ln(2)
ln(3)

.(5.6)
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Replacing in (5.4), we obtain

1
2

∞∑
j=−∞

2jρ
(
λ1/p

3jπp

)
=

1
2

(
λ1/p

3jπp

)d ∞∑
j=−∞

2j−yρ(3y−j).(5.7)

Thus, as j − (y − 1) = (j + 1)− y, we deduce that f(x) is periodic with period equal to
one.

Asymptotics of eigenvalues. From Theorem (3.6) it is easy to prove the following as-
ymptotic formula for the eigenvalues:

λk ∼ ckp.

It follows immediately since k ∼ N(λk), which gives:

λk ∼
(

πp∫
Ω r

1/p

)p
kp.

Using the Dirichlet-Neumann bracketing, it is possible to improve the constants in equa-
tion (1.5). In [6] the authors only consider two cubes Q1 ⊂ Ω ⊂ Q2, and they obtain a
lower and an upper bound for the eigenvalues in cubes which depends on the measure of
the cubes Q1, Q2 instead of the measure of Ω.

A similar argument as in [6], changing the functions {sin(kx)}k for {sinp(kx)}k, gives the
upper bound:

λk ≤
(
πp
|Ω|

)p/n
kp/n.

However, it seems difficult to improve the lower bound obtained with the aid of the
Bernstein’s Lemma.
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