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SPECTRAL ASYMPTOTICS OF THE NEUMANN LAPLACIAN
ON OPEN SETS WITH FRACTAL BOUNDARIES

JUAN PABLO PINASCO

ABSTRACT. We study the remainder estimate for the asymptotics of the num-
ber of eigenvalues of the Neumann laplacian in a bounded open set Q € R"™
with fractal boundary. We improve the previous results, showing that the
Minkowski dimension and content should be replaced by the interior Minkowski
dimension and content.

1. INTRODUCTION

Let © be an open bounded set in R™ with finitely many connected components.
We consider the following eigenvalue problem:

—Au = \u in Q

1.1 0

(1) 2%y on Of)
an

where % denotes a "normal derivative” along 9. We interpret problem (1.1) in

the variational sense, i.e., we say that )\ is an eigenvalue if there exists a nonzero

u € HY(Q) satisfying

(1.2) /QVUVU = )\/qu Yo e HY(Q)

We assume through the paper that the spectrum is discrete. We will discuss
below some hypothesis on €2 to ensure that the spectrum is a countable set without
accumulation points. Let {)\;}; be the eigenvalues of the Neumann laplacian where
0= A1 < A2 < ... (repeated according to their multiplicity). Let N(\) = #{j :
Aj < A} be the associated spectral counting function. We are interested in the
asymptotic behaviour of N(\).

When 052 satisfies the so-called C-condition (see below), Metivier [Met1] showed
that

(1.3) N(A) = (1+o0(1)e(A)
as A — oo. Here, p(\) = (270) "wn|QnA"/2, |A|, denotes the n-dimensional
Lebesgue measure (or volume) of A C R™, and wy,, is the volume of the unit ball in

R™. For smooth boundaries and under some other geometric assumptions ([Iv, Ph]),
one has a second term when A — oo:

(1.4) N = @A) + ¢ |00 AT1D/2 4 o(A(=D/2)
where ¢, is a constant which depends only on n.
Key words and phrases. asymptotics of eigenvalues, remainder estimates, fractal drums.
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For the Dirichlet laplacian, in 1979 M. Berry [Br] made the following conjecture
for 0 with Hausdorff fractal dimension h:

(1.5) N(A) = @(N) = cnumn(ODA"? + o(A/2),

The conjecture cannot be true with h being the Hausdorff dimension, [B-C], and
the authors suggested to replace h by Dy, the Minkowski (or box) dimension of
the boundary.

In [Lap], the following asymptotic development was proved for the Dirichlet
laplacian:

(1.6) N(A) = p(\) + O(AY?)

as A — oo, with d the interior Minkowski dimension.

For the Neumann laplacian, Lapidus obtained a similar result replacing d by
Dj;. This result was proved with a suitable extension of the Dirichlet-Neumann
bracketing techniques, combined with precise estimates on the growth of the number
of cubes in the tessellations of 2. Moreover, he conjectured:

Conjecture 1.1. Let Q be a bounded open set of R™ with boundary 02 satisfying
either the C-condition or the ”extension property”. Assume that 02 is Minkowski
measurable and that Dy; belongs to the open interval (n — 1,n). Then, for the
Neumann laplacian, we have:

(1.7) N(A) = @A) + €Dy nMp,, (OQANPM/2 4 o(APM/2),
where ¢p,, n 15 a positive constant depending only on n and Dy, and Mp,,(09)

denotes the Minkowski measure of OS).

In this paper we show that Dj; should be replaced by d, the interior Minkowski
dimension. Namely, we prove that

(1.8) N = o(A) + O(A?)

as A — 00, as in the Dirichlet problem. We believe that the method used in
[Lap] suggest the Minkowski dimension as the parameter involved in the spectral
asymtotic. Instead of the Dirichlet -Neumann bracketing, we use the wave equations
techniques. Our proof follows the ideas of Hormander [Hol] and Guillemin, [Gui].

The paper is organized as follows: In section 2, we introduce the necessary
notation and definitions, and we give a precise formulation of our results. Finally,
in section 3 we prove the main theorem.

2. HYPOTHESIS AND MAIN RESULTS.

Let A, denote the tubular neighborhood of radius € of a set A C R", i. e.,
(2.1) Ae ={z e R:dist(z,A) < e}

We define the Minkowski dimension Dj; of 992 as
(2.2) D = Dimp(09) = inf{6 > 0 : limsupe~ "9 |(00).|, = 0}

e—0*+
In a similar way, we define the interior Minkowski dimension as
(2.3) d = dim(9Q) = inf{s > 0 : limsupe~ "9 |(90). N Q|, = 0}

e—0*t
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It is evident that d < Dj;. Moreover, even when |09, is positive, the interior
Minkowski dimension can be strictly lower than n.
We define the interior Minkowski content of 9 as the limit (whenever it exist):

(2.4) Min (09, d) = lim, e~ =D|(00). N Q.

Respectively, M, (0, d)(Myint (052, d) denotes the d—dimensional upper (lower)
interior Minkowski content, replacing the limit in (2.4) by an upper (resp., lower)
limit.

It is not known a geometrical condition on {2 equivalent to the discreteness of
the spectrum, however, we can impose the following condition in Q (see [Met1]) in
order to ensure it:

Definition 2.1. The open set {2 satisfies the C-condition if there exist positive
constants g9, M, to with egM < ¢, an open cover {2;}1<j<n of 9., and nonzero
vectors h; (1 < j < N) in R™ such that Vj, V(z,y) € Q; x Q; with |z —y| < &0,
and Vt € R with M|z — y| < t < o, the line segments [z, x + th;], [y, y + th;] and
[z 4 th;,y + th;] are all contained in .

Condition C holds in many cases, for instance if 2 satisfies the so-called ”segment
condition” or the ”cone condition”, or if 92 is locally Lipschitz. See [F-M] or [Met2]
for details.

Another condition is the ”extension property” (i.e., the existence of a continuous
linear extension map from H™(Q) to H™(R™)). Under such hypothesis, it is pos-
sible to ensure that the embedding mapping from H!(Q) to L?(f) is compact and
as a consequence that the spectrum is discrete. Sufficient condition for the domain
2 to satisfy the ”extension property” are obtained by Jones in [Jn].

Let us state our main results:

Theorem 2.2. Let Q) € R™ be an open, bounded set, and d € [n — 1,n] such that
M3, (09,d) < +00. We have the following estimates
i) If d € (n — 1,n], then:

(2.5) N Q) = o(\) +0\?)

when A — 00.
i) Ifd=n—1, then

(2.6) N(A Q) = o(\) + OAY21n(N))

when A — oo.

The next result deals with the degenerate case when M7, (99, d) = +o0:
Corollary 2.3. Let Q € R™ be an open, bounded set. Let d € [n— 1,n] be the inte-

rior Minkowski dimension of 9Q). Then we have the following remainder estimates
(2.7) N(A,Q) = 9()) +o(A2)
when A — oo, for all D > d.

Remark 2.4. The same asymtotics are valid changing the Neumann boundary condi-
tion by a mixed Dirichlet-Neumann boundary condition, i.e., imposingu =0 in I C
99 and §% =0 in 9Q\T.
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Remark 2.5. When d = n and M7,,,(09Q,d) = +o00, the Weyl’s term ¢(A\) may be
changed. See [P1i] for related examples.

3. PROOF OF THE MAIN THEOREM

We will need in the proof the following tauberian theorem (we refer the reader
to [Gui] in [Ho2] for a proof):

Theorem 3.1. (Hormander) Let v, : [0,00) — R be the function y,(\) = A"
and let m : [0,00) — R be any non-decreasing function of polynomial growth with

m(0) = 0. Suppose the cosine transforms o %\1, %\” are equal on the interval
[t| < 0. Then

1 An—l
(3.1) m() = < € (54 75

for X > 0, where C,, is a universal constant depending only on n.

Let ¢1, 2, ... be the normalized eigenfunctions corresponding to the eigenvalues
A1, A2, -+ . Let E(A) be the orthogonal projection on the space spanned by the
eigenfunctions corresponding to A; < A2, The Schwartz kernel of E()) is the
spectral function

(3.2) elw,y; \) = Y eilx)pily)-

Ai<A2

Obviously, N(\?) = [e(z,z; \)dz, and it is easy to see, using the maximum prin-
ciple for parabolic equations, that e(z,z; \) < CA™ Va € Q (see [Gui] for a proof).

Now we prove Theorem 2.2.

Proof. Following Hormander, the cosine transform

L° d
(3.3) u(z,y;t) = / cos(At)——e(z, y; A)dA
o 3
is the fundamental solution of the wave equation (see [R-T] for arbitrary open sets):
amu(z,yit) = Au(z,y;t) in O
(3.4) {
76“(57’;”“ = 0 on 99

The free space solution wug(x,y;t) of 3.4 has a closed form expression,

[T d
(3.5) Uo(T,y;t) = (;:r)" /0 cos(st)gs"ds
where w,, = vol(S"!)/n, and they must agree with the solution u(z,y;t) if t <
dist(y,00), as a consequence of the wave’s finite speed of propagation.
Using the Tauberian Theorem (3.1), we obtain:
Wn, 1 An—1

n < _
Gy = Ol )

(3.6) le(z, z; \) —
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for dist(x,0) > 0. We can estimate |[N(\) — (2";”)’” [QIA™| by

W A" W AT 1 AL
€ Jf,Z‘,A — dx < / € J:,Jf,)\ - dx_'_/ Cn (+> dx
/Q o)~ (el < [ e ) = e [ 0 (547

where U = {x € Q : dist(x,00) > 1/\}.
The second integral is majorized by

t 1\t
3.7 c/ < + ) dé
(3.7) L \57 5

for ¢ large enough, which is of order O(A\"*~!1In(\)).

To estimate the other integral, we note that, when 02 is sufficiently smooth, it
is of order O(A"~!) because we have e(x, z; \) < CA™ uniformly on Q, and |Q\ U],
is approximately 1/\ times the perimeter.

In our situation, we can use the interior Minkowski content of 92 to obtain:

1
(3.8) 9\ Ul = 1091/, N 0 < 4 (H>

with A = sup{5<1}s*("’d) |092:NQ| < co. It follows immediately that the integral is
of order O(A\?), which is greater than the other integral if and only if d >n—1. O

Remark 3.2. Note that Corollary (2.3) follows from Theorem (2.2), since according
to the definition of Minkowski dimension, D > d implies M7,,,(99,d) < +o0.

Taking d’ with d < d’ < D, we can replace the estimate O()\d// 2) obtained from
Theorem (2.2) by o(AP/2). Further, when d = n—1 we can substitute O(A%/2In()))
by o(AP/?).
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