
Universidad de San Andrés
Departamento de Economía

Maestría en Economía

Selection of optimal window size and
ensemble methods for rental price

estimation with XGBoost: Evidence
from Buenos Aires

Juan Bautista SOSA

Supervisors: Paula MARGARETIC &
Walter SOSA ESCUDERO

SELECTION OF OPTIMAL WINDOW SIZE AND ENSEMBLE METHODS
FOR RENTAL PRICE ESTIMATION WITH XGBOOST: EVIDENCE FROM

BUENOS AIRES

Abstract

In the context of forecasting rental prices of residential properties, the fact that the relationship
between rents and property characteristics may be subject to significant changes over time can hinder
the predictive performance of models that do not adjust to these changes. Previous studies have
tested the accuracy of different statistical models in predicting rent prices, but none has focused
on how the definition of the estimation window of observations used in the training stage can
affect predictive performance. This paper explores the impact of selecting different window sizes
in a forecasting experiment of rent prices in the City of Buenos Aires from 2020 to 2022 using
the machine learning algorithm XGBoost. The results obtained for out-of-sample one-month-ahead
forecasts indicate that the decision to use an expanding window or rolling windows is not trivial in
terms of the achieved predictive performance. Among a set of rolling window sizes, the model with
a size of 6 months yields the lowest error in terms of root mean square error and mean absolute
error. Additionally, three methods that dynamically combine the predictions of models with different
window sizes are tested. An ensemble method that outputs a weighted average of the predictions
using time-varying weights based on the inverse of previous forecasting errors emerges as the superior
strategy, producing a mean absolute percentage error of 19.7%. Overall, these results underscore
the need to take into account the temporal dimension when selecting observations for training if the
goal is to maximize out-of-sample predictive performance.

Keywords: House prices · Adaptive learning · XGBoost

I thank Máximo Ripani, Manuel Der and Sebastián Grill for their insightful comments.

1

1 Introduction

Accurately estimating the market rental price of residential properties is a relevant problem for
many actors in an economy. It can inform the decisions of investors who look to maximize the
returns of their investments in real estate, aid financial planning for home-buyers, and help local
governments assess housing affordability in their jurisdictions. This paper investigates how consid-
ering the temporal dimension in the selection of the sample used to train a model to predict rent
prices can impact its predictive accuracy.

There is an extensive literature on real estate valuation based on properties’ characteristics and
location, guided mainly by the theory of the hedonic pricing model (Rosen, 1974). This microeco-
nomic model is based on the conception that the price of certain goods is equal to the sum of the
prices of its characteristics. In the case of real estate, property prices can be conceived as the sum of
the valuation of relevant amenities, such as the number of rooms of the property, and dis-amenities,
such as the distance to the nearest green space.

A standard methodological approach to the problem of estimating the price of a property based
on its characteristics consists of using linear regression models. In the real estate market, these
models have commonly been used as a method of indirect valuation of desirable amenities such as
sea view (Fleischer, 2012), energy efficiency (Fuerst et al., 2015), and green spaces (Trojanek et al.,
2018), as well as to estimate the negative effect that variables such as noise pollution (Zheng et al.,
2020) and air pollution (Amini et al., 2022) have on property prices. Some studies use a modified
version of the linear regression model to account for the presence of spatial dependence in the de-
pendent variable or the error term and ensure unbiased and efficient estimators (Anselin & Le Gallo,
2006; Bisello et al., 2020; Margaretic & Sosa, 2023).

The aforementioned methods are useful for making inference on the estimated parameters, but
they are not characterised by having considerable predictive capacity over other methods. Nu-
merous studies have shown that supervised machine learning models consistently outperform linear
regression models in terms of predictive capacity in settings where the goal is to predict property
prices (Abidoye et al., 2019; Antipov & Pokryshevskaya, 2012; Pérez-Rave et al., 2019; Rico-Juan
& Taltavull de La Paz, 2021). The different machine learning models that have been used for this
purpose include Artificial Neural Networks (Xu & Zhang, 2021), Support Vector Machines (Ho et
al., 2021; Lahmiri et al., 2023), and tree-based methods such as Random Forest (Carranza et al.,
2019; Levantesi & Piscopo, 2020) and gradient boosting algorithms (Baur et al., 2023; Rampini &
Re Cecconi, 2022), among others. Their superior performance can be attributed to their ability to
capture non-linearities in the relationship between property prices and the variables that explain
them, as well as to exploit the bias-variance trade-off (Breiman, 2001). The present study uses an
implementation of gradient boosting algorithms on decision trees called XGBoost (Chen & Guestrin,
2016), which is adapted to improve out-of-sample predictive performance by adding regularization
to the objective function, to predict rent prices from a rich data set of 168,423 property listings
published in an e-commerce platform in the City of Buenos Aires between 2020 and 2022.

In most of the existing literature regarding the prediction of real estate prices at the property-
level, it is uncommon to frame the relationship between the price of a property and its characteristics
as one that is affected intimately by the temporal dimension. After all, most of the characteristics
of residential properties only change slowly (like the socio-economic conditions of neighbourhoods)

2

or are even time-invariant (like many of the physical aspects of the buildings). When the interest
lies on inference about parameters in a model that explains prices, it is reasonable to focus on the
estimate of the average effect of one particular independent variable on a relatively large period
of time, ignoring the possible fluctuations that may be observed in the short run. Also, when the
interest lies on exploring the importance that certain variables have for predicting property prices, it
is also usual in the literature to adopt an ex-post stance and make conclusions out of a relatively long
period of time, ignoring the time-varying nature of the relationship. Hence, despite the proliferation
of studies that predict property prices, very few of them explicitly incorporate the time-dimension
in their estimations.

There are some studies that have employed traditional time-series methods or machine learn-
ing models to forecast the evolution of an aggregated index of property sale prices (Abidoye et al.,
2019; Levantesi & Piscopo, 2020; Xu & Zhang, 2021) and rent prices (Stevenson, 2007) in different
locations. Some other studies have used the forecasts of price indices as a tool to predict the prices
of individual properties (Glennon et al., 2018). However, these aggregate measures cannot capture
the rich time-varying relationship between the price of a property and the relevant characteristics
that determine its price. The focus of the current study is to predict the rent prices of individual
properties based on their characteristics and their surroundings, which allows exploiting the full
extent of the information contained in the data set of property listings.

In situations where the focus is exclusively on the accurate prediction of the dependent variable,
ignoring the time-varying nature of the data can be detrimental for various reasons. Firstly, in addi-
tion to the temporal fluctuations in the average price per square meter that are regularly observed
across cities, there are reasons to believe that the way in which properties’ amenities or dis-amenities
are valued in the real estate market is also subject to change across time. For example, there is
evidence that as a result of the 2020 COVID-19 pandemic and the consequent surge in remote work,
the valuation of private yard space in residential buildings increased significantly (Malik et al., 2023).
Similarly, by including year-dummies in an estimation of rent prices with machine learning, Lorenz
et al. (2022) report estimates of the marginal effect of the variables “distance to the city center”
and “distance to the nearest department store” that vary across the different years in their sample.
In light of these results, it is possible that not considering the dynamic changes in the valuation of
properties’ characteristics can harm predictive performance. Although the current paper does not
focus specifically on how the market valuation of specific property characteristics have changed over
time, it uses an adaptive learning strategy that deals with this issue to improve predictive perfor-
mance. By repeatedly retraining the model with more recent observations and discarding old ones,
the parameters of the explanatory variables are updated constantly to adapt to these changes.

Secondly, even in a situation where the underlying valuation of properties’ amenities and dis-
amenities does not change with time, the sample distribution of the characteristics of the observations
available to the analyst at the moment of estimation may change significantly from period to period,
either by chance or due to an omitted variable that affects the data-gathering process. In either case,
if the analyst’s goal is to maximize predictive accuracy on the sample obtained at each upcoming
period rather than having unbiased estimators of the population parameters (as it happens in many
real-world forecasting applications), the methodological strategy adopted should take the changing
characteristics of the available training and test samples into account.

This paper contributes to the established machine learning literature on adaptive learning strate-

3

gies to deal with the issue of concept drift, which refers to a situation in which the relation between
the dependent variable and the independent variable is subject to fluctuations across time. Gama
et al. (2014) provides a survey of various methodologies used to adapt to concept drift in online
supervised learning applications. One adaptive learning strategy used to deal with concept drift
consists of shortening the predictive model’s “memory” or window of estimation. This refers to the
the length of the time-frame from which observations used to train a model are obtained. This
window can be shortened through a forgetting mechanism: discarding old observations that were
obtained before a certain amount of periods in the past from the target period.

The present study uses a forgetting mechanism which consists of defining a rolling window with
a fixed size, so that, for the predictions for rent prices made in each new period, the property listings
from the most recent past period are added to the training set, and the property listings from the
oldest period are discarded. This strategy is compared to an estimation strategy that has no forget-
ting mechanism, meaning that all available observations before the target period are used to train
the model, regardless of how far in the past they were observed. This is commonly refer to as using
an expanding window, given that the amount of periods that are used to train the model increases
with time. This paper provides evidence regarding the relative advantage of using a rolling window
over an expanding window. It finds that, in the context of forecasting one-month-ahead rent prices
in the City of Buenos Aires, a rolling window outperforms the expanding window in terms of root
mean square error (RMSE) and mean absolute error (MAE), but not in terms of mean absolute
percentage error (MAPE).

Similarly, there is a long standing literature in the field of time-series econometrics devoted to
dealing with structural breaks. These refer to a change in the parameters of a model that occurs in a
certain period of time. Much of this literature is focused on the precise estimation of the timing and
size of the breaks (Chow, 1960; Hansen, 2001; Perron et al., 2006). The advantage of doing this is
that, once the breaks have been identified, only post-break data can be used to train the model and
make predictions. However, Pesaran and Timmermann (2007) argue that only using post-break data
may not be optimal in situations when breaks are small and difficult to identify. The authors show
that there can be large gains in terms of out-of-sample predictive performance by using pre-break
data as well. In this context, the choice of the length of the estimation window becomes relevant,
as there can be a trade-off in terms of predictive performance involved. On the one hand, a model
with shorter estimation window can adapt more quickly to large and abrupt structural breaks in
the data-generating process by only using the most recent observations for training. On the other
hand, longer windows include a larger amount of observations in the training set, which reduces
the variance of the estimators and can improve forecasting accuracy, specially in the absence of
structural breaks, and even when these are sufficiently small or hard to identify.

The main contribution of this paper is providing empirical evidence to determine the optimal
size of the rolling window used to forecast rent prices in the real estate market in an online learning
scenario that mimics a real application. The predictive performance of 5 different rolling window
sizes (1, 3, 6, 12 and 24 months) is compared according to three distinct error metrics (RMSE,
MAE and MAPE). The choice of this set of window sizes is driven by several factors: a) having a
sufficiently fine grid of possible candidates, b) with a considerably wide range of values, c) while
being able to allocate a good amount of months to the out-of-sample evaluation of all the models,
and d) incurring in reasonable computational costs. A period 6 months emerges as the preferred
window size, significantly outperforming all the other sizes tested along the first two error metrics.

4

The only study found in the literature that tests the predictive accuracy of different rolling window
sizes in the context of rent prediction is the one by Füss and Koller (2016), who use spatiotemporal
autoregressive (STAR) models for one-day-ahead forecasts of rent offer prices in Zurich between
2002 and 2014. The authors try specifications with three different window sizes (400, 500, and 600
days) as a robustness test for their forecasting experiment, and they do not find significant variations
between them in terms of RMSE. They do not provide details on how the performance of different
window sizes varies across the periods in the sample, nor the carry out tests for the significance of
the difference in performance between the estimations. Given that the present study has the explicit
goal of determining the optimal rolling window size, that it tests a finer grid of window sizes, that
it provides detailed results on how the models’ performance change with time, and that statisti-
cal tests are carried out to support its conclusions, it provides novel results that can be considered
as a benchmark in subsequent forecasting exercises that utilise rolling windows to predict rent prices.

Another important result that emerges from the current research is that, even though some mod-
els have better forecasting accuracy than others on average across the entire sample period, there
is no single rolling window size that consistently outperforms the rest. Consequently, this study
explores the extent to which three additional forecasting strategies that dynamically combine the
forecasts of all the models estimated using different window sizes can reduce the forecast error in
comparison to using the predictions of individual models. The first one is a cross-validation method
which outputs the prediction of the model with the rolling window size that had the lowest fore-
casting error in the period immediately before the target period. The second one is an ensemble
method that outputs a simple average of the predictions of the models with different rolling window
sizes. The third one is an ensemble method that outputs a weighted average of the predictions of
these models, using time-varying weights determined by the inverse of the error of each model in
the previous period. These strategies are based on the work by Pesaran and Timmermann (2007),
so this paper can be considered as an empirical application of their proposed methodologies.

The results obtained show that the weighted ensemble model is the best methodology among
all the models tested, yielding significantly lower errors than all the individual models with differ-
ent rolling window sizes and the model with an expanding window. These results are in line with
the literature that highlights the diversification gains produced by forecast combination methods
(Timmermann, 2006). In the presence of structural breaks, it may be unreasonable to expect that
one single model outperforms all others in all the periods in the sample. In this context, finding
the optimal model may be difficult or even unfeasible. Therefore, taking an average across various
models can be thought of as an “insurance against selecting a poor model” (Sun et al., 2021). The
results obtained here are also in line with the empirical literature on house price estimation that
uses forecast combinations. For example, using data of individual property transactions from US
counties, Glennon et al. (2018) find that combining forecasts based on house price indices with five
different methods reduce the bias and the variance of the forecast error and significantly outperform
single-model forecast in the vast majority of time periods. Similarly, Gupta et al. (2011) find that
a combination of predictions from 10 time-series models yields better results in predicting the US
house price index than the individual models.

A further contribution of this paper is to provide empirical evidence about the performance of
using ensembles of XGBoost models in a real-time forecasting scenario regarding rent prices. The
weighted ensemble of XGBoost models trained with different window sizes, which emerged as the
superior strategy, produced an average MAPE value of 19.7% across the entire target sample. Stud-

5

ies for other cities have produced similar results with related methodologies. Only those studies
that report MAPE values are comparable, given that this error metric is expressed in the same unit
even across real estate markets with different currencies. Glennon et al. (2018) obtain an average
MAPE of 22.59% predicting sale prices in US counties using a strategy that combines forecasts of
different models with a weighting scheme based on the inverse of the mean square error (MSE)
calculated once over a fixed holdout sample. Baur et al. (2023) obtain a lower MAPE of 9.17%
when estimating rental offers in Berlin expressed in euros per square meter with gradient boosting
and feature extraction from property descriptions. They also obtain a MAPE of 20.57% for house
purchase offers in Los Angeles in dollars per square feet.

In a closer relation to the data used in this paper, some studies produce results for real estate
markets in other Argentinian cities using machine learning models. Carranza et al. (2019) find a
MAPE of 20% when estimating land values with Random Forest and kriging in City of San Francisco
in the province of Córdoba, and Cerino et al. (2021) a MAPE of 18.57% using Quantile Regression
Forest in the same province. Perhaps the paper that is most closely related to the current study is
the one by Rapaport and Normand (2023), who obtain a MAPE of 13.9% using Random Forest to
predict of asking prices of properties for sale in the City of Buenos Aires using data obtained from
the same source used in the current study.

Apart from the fact that the current study focuses on rents rather than sales or land values,
a significant departure from the previous studies conducted in Argentina is that, while this study
pays particular attention to the temporal dimension of the observations at the time of defining the
forecasting experiment, the other studies indiscriminately mix observations across time in the train-
ing and test sets. When the goal is to to maximize predictive performance in a forecasting exercise
that mimics a real-world application, doing this amounts to making the methodological error known
as data leakage. This involves making use of data that is only available to the analyst because she
frames the estimation problem retrospectively, but that would otherwise not be available in all pe-
riods in a real application1. The results obtained by a strategy that suffers from data leakage in the
training stage cannot be considered as valid evidence in favour of its forecasting ability because the
prediction problem is ill-defined, as it would not be applicable to any real forecasting application.
This is something that the current study is deliberately careful to avoid and therefore the perfor-
mance metrics obtained are not strictly comparable to the other studies for Argentina mentioned.
In this sense, the results obtained can be considered as novel evidence about the efficacy of using
XGBoost and forecast combination methods to predict rent prices in Argentina.

The structure of the paper is the following: Section 2 describes the data set and the data cleaning
procedure, Section 3 explains how the gradient boosted decision tree model as implemented by the
XGBoost algorithm works, Section 4 provides details on the design of the forecasting exercise, Sec-
tion 5 presents the results obtained, and Section 6 summarises the main conclusions and mentions
possible extensions.

1One common example of data leakage is to split the observations into the training and testing samples in a random
fashion, without taking into account the period in which each observation was obtained. This leads to the erroneous
practice of training the model with observations that were observed after some of the observations in the test set.
There are additional examples of data leakage, such as those that commit it in the processes of feature standardization,
outliers deletion, or missing value imputation.

6

2 Data

The data set used for this analysis contains all active listings of residential properties for rent
in the City of Buenos Aires, published in the biggest e-commerce platform in Latin America, called
Mercado Libre, with a monthly frequency, spanning from January 2018 to December 2022. The
choice of the sample period was determined by the availability of the data shared by the company.
All periods available at the time of producing the results were used.

For each property listing, the data set contains information on the following property characteris-
tics: whether it is a house or a flat, whether it is furnished or unfurnished, its total and covered area
in square meters, the number of rooms, bathrooms and bedrooms, whether it has a pool, security, a
heating system, air conditioning, parking, a fitness space, and/or a common space, the coordinates
for its location, its asking price, and whether it is originally invoiced in US dollars or Argentine
pesos. All prices in this analysis are expressed in real pesos using December 2022 as the base year
and the mean monthly exchange rate from Argentine pesos to US dollars. Using the location for
each property, dummy variables for each of the 15 communes of the city2 and continuous variables
for the distance to the nearest train or subway station and to the nearest green space are created.

Each property listing is observed once during each month in which it was active on the web-page.
Thus, listings that are published for a longer period appear as having more observations in the data
set. It is reasonable to expect that the properties that were not taken down from the web-page for
a long period of time were probably not sold during that period. This can be considered as a sign
that their asking price is not in line with the market transaction price for similar properties. Given
that this study uses asking prices as a proxy for the true variable of interest, which is the unobserved
price of the transacted rent, this possible source of bias is removed by only using listing appearances
with a maximum of 12 months since they were first published. On top of this, to avoid giving more
weight to listings that appear for longer periods in the data set, only one monthly appearance for
each listing is selected at random.

After going through a data cleaning procedure described in Appendix A, the resulting data set
contains 168,423 monthly appearances of unique property listings active during the period of anal-
ysis. This large volume of data on property prices and characteristics that spans across 5 years
provides sufficiently rich information to reserve a holdout sample for model calibration, and to thor-
oughly evaluate the performance of models’ forecasts across several months, including models that
use very small estimation windows (starting from 1 month). Table B.1 in Appendix B shows the
description of the final features in the data set and Table C.1 in Appendix C the summary statistics
for the relevant variables. The median rent price for the entire data is 94,907.12 pesos (330.75 US
dollars) and the mean covered area is 69.86 square meters.

Figure 1 shows the evolution of an index of the monthly median price in pesos per covered square
meters for the full sample, setting the first month to 100. The index shows substantial variation
across the entire period, which motivates the presumption that it may not always be optimal to use
the full sample for training a model to make one-period-ahead predictions.

2The communes are the official administrative divisions of the city.

7

Figure 1: Evolution of Median Price Index

Source: Own-elaboration using the cleaned data set from Mercado Libre

3 Model

The statistical model used for this prediction exercise is Extreme Gradient Boosting, imple-
mented using the open-source package for the Python programming language called XGboost3(Chen
& Guestrin, 2016). XGBoost is a machine learning algorithm based on gradient boosted decision
trees (GBDT) (Friedman, 2001, 2002). GBDT is a boosting algorithm for classification and regres-
sion trees (or CARTs). Appendix D contains a detailed explanation of how these models work.

4 Forecasting experiment

This study proposes a forecasting experiment that mimics the conditions of an out-of-sample
forecasting application in real-time. One-month-ahead rent prices are predicted on the basis of the
characteristics and the location of properties only using past data. Multiple XGBoost models are
trained using different estimation windows, so that each model is trained on a distinct set of obser-
vations belonging to varying amounts of periods in the past. In this way, for all the observations in
each period, several predictions are done.

The first goal is to test which is the length of the estimation window that minimizes the mean
prediction error across all periods. Then, two different methods to define the estimation window
are tested: an expanding window and a rolling window. Finally, three methods to combine the
predictions of models with different rolling window sizes are used: a cross-validation approach which

3The documentation of the package is available at https://xgboost.readthedocs.io/en/stable/.

8

https://xgboost.readthedocs.io/en/stable/

selects the prediction from the model with the lowest error in the period before the target period,
an ensemble that combines all models with rolling windows using a simple mean, and an ensemble
that uses a weighted mean based on past performance. These methods are explained below.

4.1 Expanding window

An expanding estimation window has a fixed starting point (usually the first available period
in the data) and an end point that increases as the target period moves into the future. Formally,
consider a time-series that starts from a period t = 0 and ends in period t = T . An expanding
window uses all the data in periods t = {0, ..., T} to train the model to make predictions in T + 1.
This is equivalent to using the full historical data set available up to the target period to train the
model. Therefore, the length of the expanding window is variable and increases with time.

In the absence of structural breaks in the predicted time-series, Pesaran and Timmermann (2007)
show that using all the available information for training is optimal because it reduces the variance
of the estimators. However, if breaks are present in the data, using the full series in the training
stage will lead to biased forecast errors. Furthermore, the fact that the size of the data used for
training increases with time means that this method becomes increasingly computationally expen-
sive as time goes by. This is particularly relevant when the forecasting exercise is designed to mimic
a real application in which computing resources are limited.

Considering that the estimation of this model is straightforward in terms of selecting the train-
ing sample since it always involves using all the available data up to each period without having to
defined the size of a fixed window, it is considered as the benchmark specification in this study.

4.2 Rolling windows of different sizes

If it is possible to precisely estimate the timing and the size of the structural breaks that the time
series is subject to, using only the historical data belonging to the post-break period may be the
superior strategy. Yet, in many applications the timing and size of breaks are difficult to estimate.
This study considers the timing and size of structural breaks as unknown. In this context, Pesaran
and Timmermann (2007) show that it can be optimal to include pre-break data in the training stage.
Thus, the question of how much of the pre-break data should be included in order to maximize fore-
casting accuracy becomes relevant. To answer this question, the second method used here to define
the size of the estimation window consists of using rolling windows of different sizes.

A rolling window is characterised by having a fixed size and variable starting and ending points.
If s is the window size, then, for the target period T + 1, the rolling window uses data in periods
t = {T − s, ..., T} for training. As time passes, the fixed-size window is moved one period ahead,
therefore the oldest period is dropped from the training set, and the most recent period is included.
The values for the window size s that are tested in this study are S = {1, 3, 6, 12, 24}, where the
unit is 1 month. The forecasting exercise tests if one of these window sizes performs significantly
better than the others across all periods.

Despite the fact that a rolling window may potentially discard useful data in the absence of

9

breaks, it has the advantage of being computationally less expensive as the size of the training data
is roughly fixed across time.

4.3 Cross-validation method

It may be the case that the size of the rolling window that yields the best performance is not the
same one across all periods. If this is true, then a strategy that chooses a single window size across
all periods (i.e. the one with the best average performance across all periods) may be sub-optimal.

A superior strategy may involve dynamically changing the window size by selecting the one
that performs best in each period. However, knowing the performance of the models with different
window sizes beforehand is unfeasible. Thus, a feasible strategy of this kind, which Pesaran and
Timmermann (2007) denote “cross-validation approach”, involves using performance in the most re-
cent periods of the data as the basis to select the model that is used to make the prediction in the
target period.

Formally, the cross-validation method consists of using the prediction error of each model that
uses a rolling window on the observations in the last τ periods in the data as a measure to compare
them with each other, and subsequently use the model with the lowest error across observations in
the τ periods to make predictions in T +1. In this exercise, τ is set to 1 so that only the observations
in the period immediately before the target period are used.

4.4 Ensemble methods

In addition to the cross-validation approach, a strategy that dynamically combines the prediction
of the pre-trained models with different window sizes is considered. In this exercise, two ensemble
methods based on models with different rolling window sizes are used: an ensemble that takes an
average of the prediction from all models and a weighted ensemble based on the inverse of the fore-
cast error in past periods. Formally, the prediction of the target variable by the ensemble methods
for each observation i is the weighted average of the predictions of the models with different window
sizes S:

ŷensi =
∑
s∈S

ws∑
s∈S ws

ŷsi (1)

where ŷensi is the prediction for observation i done by the ensemble, ŷsi is the prediction of the
model indexed by its rolling window size s, and ws is the weight attributed to it. In the ensemble
method with equal weights, ws takes the same value for all window sizes. If this value is normalized
to 1,

∑
s∈S ws is simply the amount of window sizes used n(S). This method is less costly to com-

pute that the weighted ensemble because it does not require calculating the predictive performance
of the individual models in past periods.

10

In the weighted ensemble method, each weight is defined by the inverse of the prediction error
calculated on the observations in last τ periods before T + 1:

ws(s|T + 1, τ) =
1

Err(s|T + 1, τ)
(2)

where Err(s|T + 1, τ) is the value of the error metric of the model that uses a rolling window
size s to make a prediction for the observations in the last τ observations before the target period
T +1. As in the cross-validation approach explained above, τ is set to 1, so that the models’ predic-
tions are weighted by the their performance on the last period before the target period. Also, it is
easy to see that the cross-validation approach is equivalent to setting the weight in equation (1) of
the model with the lowest error metric in each period equal to 1 and the rest of the weights equal to 0 .

4.5 Error metrics

Three error metrics are used to evaluate the performance of all the methods, as well as to create
the weights for the ensemble methods: root mean square error (RMSE), mean absolute error (MAE)
and mean absolute percentage error (MAPE). These are defined as follows4:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (3)

MAE =
1

N

N∑
i=1

|yi − ŷi| (4)

MAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (5)

The main difference between RMSE and MAE is that, given that the RMSE squares the dif-
ference between the prediction and the target variable before taking its square root, it gives more
weight to larger errors. The MAE metric, by weighting the errors equally regardless of their size, is
less influenced by outlier errors. In addition, MAE is more easy to interpret because it is expressed
in the same unit as the target variable. The MAPE metric, on the other hand, is expressed in
percentage terms. Its scale-independence makes it directly comparable to prediction results from
other studies. However, it has the disadvantage that it penalizes positive errors more than negative
errors (for a further discussion, see Hyndman and Koehler (2006)). Using multiple error metric helps

4For simplicity of notation, the indices that define the specific time period for which the error metrics are calculated
are omitted. The periods may correspond to the target period T + 1 for model evaluation, or to the periods that go
from T − τ + 1 to T used in the cross-validation and weighted ensemble approaches.

11

to provide a more complete picture of the models’ performance and makes the results more robust
if common patterns across are found.

4.6 Hyper-parameter tuning

Before estimation, it is necessary to set values for the hyper-parameters of the XGboost algo-
rithm. This is not straightforward, as the choice of values can yield different results across different
forecasting exercises. Hyper-parameter tuning refers to the strategy used to select the optimal values
for the model’s hyper-parameters.

One possible approach to this problem involves updating the hyper-parameters each time the
model is fitted to a new sample. In this exercise, given that a large number of models is fitted
according to the different methods tested and the time periods in the sample, this strategy is too
computationally expensive. A simpler strategy is chosen: a single XGBoost model is calibrated
once using only observations from the first year of the data and the selected values for the hyper-
parameters are used in all the other models. The entire sample goes from January 2018 to December
2022, so the data used in the calibration stage goes from January 2018 to December 2018. The ob-
servations that were used for tuning are not included in the out-of-sample test set.

To select the best set of hyper-parameters, the Grid Search cross-validation method (Hastie et
al., 2009) with 5 folds is implemented. The hyper-parameters of the XGBoost algorithm that are
calibrated in this study are:

• Learning rate: a value between 0 and 1 that is multiplied with the prediction of each tree in
each step of the algorithm.

• Number of estimators: the number of trees used in the XGboost ensemble.

• Minimum child weight: the minimum number of observations in each new leaf required to
make a partition.

• Maximum tree depth: the maximum level of partitions in a tree.

• Minimum split loss: the minimum reduction in the loss function required to make a new
partition.

• Column sample by tree: a value between 0 and 1 that denotes the proportion of randomly
sampled features that are used to fit each tree.

• L1 regularization: value of the L1 regularization penalty used on the predicted values in each
leaf.

To enable the definition a sufficiently fine grid for each parameter while keeping a reasonably
short computation time, the parameters are divided into two sets, and the calibration is carried out
in two stages. More details about the distribution of parameters into the two sets, the values chosen
for the grids, and the final values selected can be found in Appendix E.

12

5 Results

The forecasting performance of the different methods explained above was evaluated on the ba-
sis of one-month-ahead predictions for all listing in the processed data set. Notwithstanding the
fact that the available data set goes from January 2018 to December 2022, the evaluation sample
selected goes from February 2020 to December 2022. This choice of time period is made to allow
comparison between all methods in the same amount of periods. The method that uses the largest
rolling window of 24 months can only be estimated starting from January 2020. Moreover, the
cross-validation method and the two ensemble methods require one additional month so that the
weights that they assign to the pre-trained models can be calculated for the initial period. The
model with the expanding window used the largest window of all models, starting with a size of 25
months in the first target period and reaching a size of 59 months in the last.

The independent variables used to predict properties’ rent prices in real Argentine pesos of De-
cember 2022 were: covered_area, uncovered_area, bedrooms, bathrooms, pool, security, furnished,
heating, air_conditioning, parking, common_space, fitness_space, distance_to_transport,
distance_to_greenspace and 14 dummy variables for the city’s communes.

The results of the evaluation of the model with an expanding window and the models with rolling
windows for all periods are shown in Figures 2, 3, and 4, respectively. The models were evaluated
using the RMSE, MAE, and MAPE metrics. The model that used a rolling window of 6 months
showed the best performance in terms of RMSE and MAE, with mean values of 138,909.62 and
51,543.04, respectively. These results suggest that using all the available data at each period is not
always the superior strategy. They may be indicative of the fact that the relationship between house
prices and their characteristics is subject to concept drift.

However, not all the error metrics led unanimously to this conclusion. The model with the lowest
MAPE was the one that uses an expanding window, with a value of 20.1%. It was followed by the
model with a window size of 24 months, with a value of 20.6%. Starting from March 2021, the model
with the expanding window outperformed all the rolling window models in all periods in terms of
MAPE. Interestingly, the average performance across all periods in terms of MAPE increased with
the size of the estimation window.

Table 1: Difference in forecasting performance in comparison to model with rolling window of size 6

Model RMSE MAE MAPE
Rolling window size 1 1.252*** 1.203*** 1.159***
Rolling window size 3 1.074*** 1.048*** 1.036***
Rolling window size 12 1.091** 1.076** 0.981
Rolling window size 24 1.082* 1.067** 0.974
Expanding window 1.063 1.044 0.949

Notes: The values in the cells correspond to the ratio of the mean of the error metric across all periods for
each model and the same measure for the model with a rolling window of size 6. The statistical significance
of the difference in forecasting performance was calculated using the Diebold-Mariano test with Newey-West
standard errors. *10%, **5%, ***1%.

13

Figure 2: Evolution of RMSE for models with rolling windows and model with expanding window

Notes: The dashed horizontal lines correspond to the mean value for each series across the entire sample
period. The mean values for the models with rolling window size 1, 3, 6, 12, and 24 and the expanding
window are, respectively, 173,904.75, 149,191.22, 138,908.62, 151,507.69, 150,259.45, and 147,708.97. Each
dot represents the error value of the model that yielded the lowest error in each month.

14

Figure 3: Evolution of MAE for models with rolling windows and model with expanding window

Notes: The dashed horizontal lines correspond to the mean value for each series across the entire sample
period. The mean values for the models with rolling window size 1, 3, 6, 12, and 24 and the expanding window
are, respectively, 62,018.05, 54,014.45, 51,543.04, 55,453.06, 54,986.02, and 53,828.64. Each dot represents
the error value of the model that yielded the lowest error in each month.

15

Figure 4: Evolution of MAPE for models with rolling windows and model with expanding window

Notes: The dashed horizontal lines correspond to the mean value for each series across the entire sample
period. The mean values for the models with rolling window size 1, 3, 6, 12, and 24 and the expanding
window are, respectively, 0.245, 0.219, 0.211, 0.207, 0.206, and 0.201. Each dot represents the error value of
the model that yielded the lowest error in each month.

Table 1 shows the values of the ratio of the error metrics of the model with a rolling window of size
6 with respect to the other models mentioned so far. A value that is less than 1 in the table means
that the corresponding model had a lower mean error metric across all periods in the evaluation set
than the model with window size 6. Additionally, the table shows the results of the Diebold-Mariano
test with Newey-West standard errors to establish the significance of the difference in forecasting
performance. It can be seen that the model with window size 6 significantly outperformed the rest

16

of the models with rolling windows according to RMSE and MAE, but the difference in these error
metrics with the expanding window model was not significant. On the other hand, even though the
model with window size 6 was outperformed in terms of MAPE by the models with window sizes
of 12 and 24, as well as the one with an expanding window, the difference between their forecasting
performance was not significant.

Table 2 provides a comprehensive summary of the figures by showing the amount of periods
in which each model had the best performance among all models for each error metric. The first
three columns compare the performance only for the models with rolling windows. The model with
rolling window of size 6 was the best model in 57% of the 35 months according to the RMSE, 63%
according to the MAE, and 17% according to the MAPE, while the same results for the model
with rolling window of size 24 were 20%, 20% and 71%. In the subsequent three columns of the
table, the model with an expanding window is also considered. The model with rolling window size
6 was outperformed by the model with an expanding window according to the RMSE in 2 of the
months in which it was the best model in comparison to the rest of the models with rolling windows,
in 3 months according to the MAE, and in 1 month according to the MAPE. The model with an
expanding window was the best model in 29% of all months according to the RMSE, 37% according
to the MAE, and 66% according to the MAPE. The model with the shortest window size of 1 month
was not the best model in any period.

Table 2: Amount of months in which each model yielded the lowest error metric: rolling windows
and expanding window

Only rolling windows Rolling windows and
expanding window

Model RMSE MAE MAPE RMSE MAE MAPE
Rolling window size 1 0 0 0 0 0 0
Rolling window size 3 2 1 0 2 0 0
Rolling window size 6 20 22 4 18 19 3
Rolling window size 12 6 5 6 2 2 4
Rolling window size 24 7 7 25 3 1 5
Expanding window - - - 10 13 23

In light of these results, the conclusion about which size of estimation window is the preferred
one for this forecasting application depends on which error metric is considered. What stands out
from them is that no single model consistently outperformed the rest in all periods in the sample. In
fact, there were models that showed the worst performance in some periods (such as window size 12
on January 2021 in terms of MAE) and the best performance in other periods (the same model and
error metric on July and August 2022). This motivated the idea of using a strategy that aims to
select the best-performing model in each period or a combination of predictions from more than one
model. The next step involved testing whether a feasible strategy that dynamically chooses models
with different rolling window sizes or takes an average of their predictions could yield better results.

Figures 5, 6 and 7 show the performance of the expanding window, cross-validation, unweighted
ensemble, and weighted ensemble methods in terms of RMSE, MAE and MAPE across all periods in
the sample. Overall, the expanding window method yielded the worse performance among this new

17

set of models in terms of the mean of the three error metrics across all periods, though the difference
in terms of MAPE with the second worst model, the cross-validation approach, was not large (20.1%
vs 20.0%). The best-performing model across all error metrics was the weighted ensemble, with an
RMSE of 134,739.82, a MAE of 49,949.48, and a MAPE of 19.7%. The ensemble with equal weights
had a very similar performance, resulting as the second-best method across the mean of all three
metrics. The dots in the figures represent the model that yielded the lowest error in each month
among all the models considered so far, including the rolling window models. In the majority of
periods (60% for RMSE, 66% for MAE, and 71% for MAPE), the best model was either the one
with an expanding window or any of the forecast combination methods, and not a model with a
fixed rolling window.

The first three columns of Table 3 show how the three methods that combine the forecasts of
multiple models fared against each other and the expanding window model. The weighted ensem-
ble method was the preferred model in most periods according to RMSE and MAE, and had the
same number of winning months than the expanding window model according to the MAPE. The
cross-validation method correctly selected the prediction of the best-performing model with a rolling
window in 6 out of 35 months in terms of RMSE, 2 in terms of MAE, and 14 in terms of MAPE.
For this to have happened, any of the rolling window models would have had to produce the lowest
error metric in at least two consecutive months.

The last three columns of Table 3 show the number of months in which each model produced
the best results, considering all models tested so far5. Of all the models, the weighted ensemble had
the best performance in the greatest number of periods in terms of RMSE and MAE, and yielded
similar results to the model with an expanding window in terms of MAPE (12 vs. 13 periods). The
second best model with this criterion was the one with a rolling window of size 6 in terms of RMSE
and MAE, but not MAPE.

Table 3: Amount of months in which each model yielded the lowest error metric: rolling windows,
forecast combinations and expanding windows

Forecast combinations and
expanding window

All models except
cross-validation

Model RMSE MAE MAPE RMSE MAE MAPE
Rolling window size 1 - - - 0 0 0
Rolling window size 3 - - - 1 0 0
Rolling window size 6 - - - 10 11 3
Rolling window size 12 - - - 2 1 4
Rolling window size 24 - - - 1 0 3
Expanding window 6 2 14 4 2 13
Cross-validation 9 10 7 - - -
Unweighted ensemble 2 3 0 1 3 0
Weighted ensemble 18 20 14 16 18 12

5The cross-validation method is excluded from the analysis in the last three columns because it only yields the
best performance when any of the rolling window models do so. The latter are included in the summary, so adding
the cross-validation method as well would be redundant.

18

Figure 5: Evolution of RMSE for models that use a cross-validation approach, ensemble methods,
and an expanding window

Notes: The dashed lines correspond to the mean value for each series across the entire sample period. The
mean values for the model with an expanding window, the model that uses the cross-validation approach,
the unweighted ensemble, and the weighted ensemble are, respectively, 147,708.97, 140,587.28, 135,498.11,
and 134,739.83. The dots represent the lowest value of the error metric for all models in each month and
the colour corresponds to the model that produced that value. In the periods in which the cross-validation
method selected the rolling window model that yielded the lowest error, a small cross is added on top of the
dot. The lines for the models with rolling windows were removed for ease of visualization.

19

Figure 6: Evolution of MAE for models that use a cross-validation approach, ensemble methods,
and an expanding window

Notes: The dashed lines correspond to the mean value for each series across the entire sample period. The
mean values for the model with an expanding window, the model that uses the cross-validation approach,
the unweighted ensemble, and the weighted ensemble are, respectively, 53,828.64, 51,434.92, 50,122.31, and
49,949.48. The dots represent the lowest value of the error metric for all models in each month and the
colour corresponds to the model that produced that value. In the periods in which the cross-validation
method selected the rolling window model that yielded the lowest error, a small cross is added on top of the
dot. The lines for the models with rolling windows were removed for ease of visualization.

20

Figure 7: Evolution of MAPE for models that use a cross-validation approach, ensemble methods,
and an expanding window

Notes: The dashed lines correspond to the mean value for each series across the entire sample period. The
mean values for the model with an expanding window, the model that uses the cross-validation approach,
the unweighted ensemble, and the weighted ensemble are, respectively, 0.201, 0.200, 0.199, and 0.197. The
dots represent the lowest value of the error metric for all models in each month and the colour corresponds
to the model that produced that value. In the periods in which the cross-validation method selected the
rolling window model that yielded the lowest error, a small cross is added on top of the dot. The lines for
the models with rolling windows were removed for ease of visualization.

21

Finally, Table 4 provides a summary of how all the different models tested performed in compar-
ison to the model that used an expanding window, which was considered as the benchmark strategy
as it did not require defining the size of the window beforehand nor any computation of previous
performance. The tables also includes the results of the tests for statistical significance in the differ-
ence in forecasting performance. The cross-validation method outperformed the expanding window
model across all error metrics, but without statistical significance. The two ensemble methods, on
the other hand, yielded significantly lower error metrics than the expanding window model, in terms
of RMSE and MAE, and also in terms of MAPE but without statistical significance.

Table 4: Difference in forecasting performance between all models and the model that uses an
expanding window

Model RMSE MAE MAPE
Rolling window size 1 1.177*** 1.152*** 1.221***
Rolling window size 3 1.010 1.003 1.092***
Rolling window size 6 0.940 0.958 1.053
Rolling window size 12 1.026** 1.030*** 1.033
Rolling window size 24 1.017 1.022** 1.026**
Cross-validation 0.952 0.956 0.998
Ensemble with equal weights 0.917*** 0.931*** 0.989
Weighted ensemble 0.912*** 0.928*** 0.984

Notes: The values in the cells correspond to the ratio of the mean of the error metric across all periods for each
model and the same measure for the expanding window model. The statistical significance of the difference
in forecasting performance was calculated using the Diebold-Mariano test with Newey-West standard errors.
*10%, **5%, ***1%.

6 Conclusion

This study relied on an out-of-sample one-step-ahead forecasting experiment to find the optimal
window size for predicting real estate rental prices in the City of Buenos Aires using the XGBoost
algorithm. It meticulously examined models based on different window sizes, a cross-validation ap-
proach, and ensemble methods, leveraging a rich set of variables obtained from property listings
published in an online platform.

Its findings provide evidence that a rolling window of a size of 6 months significantly outperforms
windows of sizes 1, 3, 12 and 24 months in terms of predictive accuracy, as measured by both the
root mean square error (RMSE) and the mean absolute error (MAE). This rolling window of size 6
also outperforms the traditional expanding window approach according to those two error metrics,
albeit without statistical significance. Notably, an approach that combines predictions from models
with distinct window sizes weighted according to their recent performance emerged as the superior
strategy overall, yielding an average MAPE of 19.7% across the evaluated sample. It significantly
outperformed all models that use a rolling window, as well as the model with an expanding window
in terms of RMSE and MAE, and in terms of MAPE but without statistical significance.

These findings emphasize the benefit of leveraging recent historical data in a manner that adapts

22

to the evolving dynamics of the real estate market to handle the issue of concept drift. They also
challenge the conventional approach of utilizing all available data regardless of how far in the past it
was obtained, suggesting that a more nuanced strategy of selective data inclusion can yield superior
predictive accuracy. Furthermore, the findings add evidence to an established empirical literature
that favours the use of forecast combination strategies over the prediction of individual models.

Overall, the methodology used in this study, which emphasizes the prevention of data leakage
at all stages and designs a setup to compare the performance of different models, serves as a robust
framework for developing models of house price prediction that carefully consider the temporal di-
mension of the problem. The methodological approach outlined ensures that the predictive strategy
is applicable to real-world forecasting applications, providing valuable insights for investors, poli-
cymakers, and other stakeholders in the real estate market. The results obtained can serve as a
benchmark for the efficacy of the machine learning models in predicting house prices in the City of
Buenos Aires, as well as to inform interested actors about what the length of the relevant time-frame
of pricing decisions in this real estate market is. Finally, even though this paper focuses solely on
rent prices, considering that the forecasting horizon is only one-month ahead, its methodological
approach can offer practical insights about how to incorporate the influence of time in an exercise
of property valuation, which is a common policy challenge encountered by tax agencies.

Future research could explore the use of additional statistical models and apply them to differ-
ent geographical areas and with a different data source to investigate if the results obtained here
can be replicated in other contexts. Another valuable extension would be the inclusion additional
predictive factors to improve predictive performance. Variables that may be particularly interesting
for this purpose are macroeconomic indicators that are known to affect the real estate market with
considerable frequency. Asides from improving performance, including them may help to develop
an economic explanation of the determinants of the length of the time-horizon of agents’ pricing
behaviour, as well as to identify specific macroeconomic shocks that may significantly alter the dy-
namics of the market. Also, perhaps more accuracy can be obtained by defining dummy variables
for neighbourhoods with a data-driven methodology (as it was done in Füss and Koller (2016)),
instead of using their administrative definition. Lastly, if the findings of this paper were to be used
to produce valuations for properties’ rents for a practical application, it would be recommendable
to incorporate methods of uncertainty quantification such as conformal prediction (Angelopoulos &
Bates, 2021; Gammerman et al., 2013).

23

References

Abidoye, R. B., Chan, A. P., Abidoye, F. A., & Oshodi, O. S. (2019). Predicting property price index
using artificial intelligence techniques: Evidence from Hong Kong. International journal of
housing markets and analysis, 12 (6), 1072–1092.

Amini, A., Nafari, K., & Singh, R. (2022). Effect of air pollution on house prices: Evidence from
sanctions on Iran. Regional Science and Urban Economics, 93, 103720.

Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-
free uncertainty quantification. arXiv preprint arXiv:2107.07511.

Anselin, L., & Le Gallo, J. (2006). Interpolation of air quality measures in hedonic house price
models: Spatial aspects. Spatial Economic Analysis, 1 (1), 31–52.

Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass appraisal of residential apartments: An
application of random forest for valuation and a CART-based approach for model diagnostics.
Expert Systems with Applications, 39 (2), 1772–1778.

Baur, K., Rosenfelder, M., & Lutz, B. (2023). Automated real estate valuation with machine learning
models using property descriptions. Expert Systems with Applications, 213, 119147.

Bisello, A., Antoniucci, V., & Marella, G. (2020). Measuring the price premium of energy efficiency:
A two-step analysis in the Italian housing market. Energy and Buildings, 208, 109670.

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the
author). Statistical science, 16 (3), 199–231.

Carranza, J. P., Piumetto, M. A., Salomon, M. J., Monzani, F., Montenegro, M. G., & Córdoba, M.
(2019). Valuación masiva de la tierra urbana mediante inteligencia artificial: El caso de la
ciudad de San Francisco, Córdoba, Argentina.

Cerino, R. M., Carranza, J. P., Piumetto, M. A., Bullano, M. E., Donalisio, V. C., & Monzani, F.
(2021). Propuesta para la valuacin masiva del suelo urbano. aplicacin espacial del algoritmo
Quantile Regression Forest. Revista Vivienda y Ciudad, 8, 261–274.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd
acm sigkdd international conference on knowledge discovery and data mining, 785–794.

Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econo-
metrica: Journal of the Econometric Society, 591–605.

Fleischer, A. (2012). A room with a view—a valuation of the mediterranean sea view. Tourism
Management, 33 (3), 598–602.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of
statistics, 1189–1232.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis,
38 (4), 367–378.

Fuerst, F., McAllister, P., Nanda, A., & Wyatt, P. (2015). Does energy efficiency matter to home-
buyers? An investigation of EPC ratings and transaction prices in England. Energy Eco-
nomics, 48, 145–156.

24

Füss, R., & Koller, J. A. (2016). The role of spatial and temporal structure for residential rent
predictions. International Journal of Forecasting, 32 (4), 1352–1368.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept
drift adaptation. ACM computing surveys (CSUR), 46 (4), 1–37.

Gammerman, A., Vovk, V., & Vapnik, V. (2013). Learning by transduction. arXiv preprint arXiv:1301.7375.

Glennon, D., Kiefer, H., & Mayock, T. (2018). Measurement error in residential property valuation:
An application of forecast combination. Journal of Housing Economics, 41, 1–29.

Gupta, R., Kabundi, A., & Miller, S. M. (2011). Forecasting the US real house price index: Struc-
tural and non-structural models with and without fundamentals. Economic Modelling, 28 (4),
2013–2021.

Hansen, B. E. (2001). The new econometrics of structural change: Dating breaks in US labor pro-
ductivity. Journal of Economic perspectives, 15 (4), 117–128.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: Data
mining, inference, and prediction (Vol. 2). Springer.

Ho, W. K., Tang, B.-S., & Wong, S. W. (2021). Predicting property prices with machine learning
algorithms. Journal of Property Research, 38 (1), 48–70.

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. Interna-
tional journal of forecasting, 22 (4), 679–688.

Lahmiri, S., Bekiros, S., & Avdoulas, C. (2023). A comparative assessment of machine learning meth-
ods for predicting housing prices using Bayesian optimization. Decision Analytics Journal,
6, 100166.

Levantesi, S., & Piscopo, G. (2020). The importance of economic variables on London real estate
market: A random forest approach. Risks, 8 (4), 112.

Lorenz, F., Willwersch, J., Cajias, M., & Fuerst, F. (2022). Interpretable machine learning for real
estate market analysis. Real Estate Economics.

Malik, K., Kim, S., & Cultice, B. J. (2023). The impact of remote work on green space values in
regional housing markets.

Margaretic, P., & Sosa, J. B. (2023). How local is the crime effect on house prices? The Journal of
Real Estate Finance and Economics, 1–40.

Pérez-Rave, J. I., Correa-Morales, J. C., & González-Echavarría, F. (2019). A machine learning
approach to big data regression analysis of real estate prices for inferential and predictive
purposes. Journal of Property Research, 36 (1), 59–96.

Perron, P., et al. (2006). Dealing with structural breaks. Palgrave handbook of econometrics, 1 (2),
278–352.

Pesaran, M. H., & Timmermann, A. (2007). Selection of estimation window in the presence of breaks.
Journal of Econometrics, 137 (1), 134–161.

Rampini, L., & Re Cecconi, F. (2022). Artificial intelligence algorithms to predict Italian real estate
market prices. Journal of Property Investment & Finance, 40 (6), 588–611.

25

Rapaport, M., & Normand, A. (2023). Predicción de precios de inmuebles en CABA mediante
técnicas de aprendizaje automático. Undergraduate thesis, Universidad Nacional de Luján.

Rico-Juan, J. R., & Taltavull de La Paz, P. (2021). Machine learning with explainability or spatial
hedonics tools? An analysis of the asking prices in the housing market in Alicante, Spain.
Expert Systems with Applications, 171, 114590.

Stevenson, S. (2007). A comparison of the forecasting ability of ARIMA models. Journal of Property
Investment & Finance, 25 (3), 223–240.

Sun, Y., Hong, Y., Lee, T.-H., Wang, S., & Zhang, X. (2021). Time-varying model averaging. Journal
of Econometrics, 222 (2), 974–992.

Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting, 1, 135–196.

Trojanek, R., Gluszak, M., & Tanas, J. (2018). The effect of urban green spaces on house prices in
Warsaw. International Journal of Strategic Property Management, 22 (5), 358–371.

Xu, X., & Zhang, Y. (2021). House price forecasting with neural networks. Intelligent Systems with
Applications, 12, 200052.

Zheng, X., Peng, W., & Hu, M. (2020). Airport noise and house prices: A quasi-experimental design
study. Land Use Policy, 90, 104287.

26

Appendix A Data cleaning process

Before any estimation, the property data is subject to a thorough cleaning procedure. Even
though the online platform imposes some restrictions on the information contained in each property
listing, users have some degree of freedom to complete it, leaving space for inconsistencies. There-
fore, the cleaning procedure involves dropping observations with missing data in certain features,
observations with incorrect feature values, and observations with outlying feature values, as well as
doing missing value imputation and feature engineering.

The following criteria were used to remove observations with missing or incorrect information
from the data set:

• Observations without location coordinates.

• With incorrect location attributes such as being located outside the boundaries of the city or
with a value for the commune that does not coincide with the actual location according to
the coordinates (except when the value corresponds to one of the adjacent communes to the
actual one).

• With a negative listing price or with a price equal to 11,111,111, 1,111,111, 111,111, 11,111,
or 1,111, for both currencies.

• With a negative value for total or covered area, or with a covered area greater than total area.

• With less rooms than bedrooms.

• Marked as invoiced in US dollars, but with a listing price that differs from the dollar-converted
listing price which is given in the original data set.

• Marked as invoiced in Argentine pesos, but with a listing price that is equal to the dollar-
converted listing price which is given in the original data set.

• Houses with duplicated values in all of these variables: location, property type, total area,
and covered area, in the same month, with different listing ID (only one listing ID, chosen at
random, is kept).

• Flats with duplicated values in all of these variables: location, property type, total area,
covered area, bedrooms, bathrooms, and rooms, in the same month, with different listing ID
(only one listing ID, chosen at random, is kept).

• Monthly listings appearances with more than one year after the month they were first pub-
lished.

Additionally, some observations with extreme values were removed either because the values are
highly implausible or because they were considered outliers. Listings that complied with any of the
following criteria were removed:

• Flats with less than 25 square meters of covered area.

• Houses with less than 35 square meters of covered area

• Flats with more than 1,500 square meters of covered area.

27

• Houses with more than 3,000 square meters of covered area.

• A ratio of uncovered area to covered area of more than 3.

• Zero or more than 10 bedrooms.

• Zero or more than 10 bathrooms.

• Zero or more than 15 rooms.

• Property age greater than 100.

All prices in US dollars were converted to Argentine pesos using the mean monthly rate of
the unofficial exchange rate (or “blue” dollar), which was the appropriate reference exchange rate
for property transactions during the period. Next, all prices were converted to real pesos with
December 2022 (the last month of the sample) as the base year using the national Consumer Price
Index. Additional outliers were removed according to absolute values of the resulting rent price:

• Listing price in pesos lower than 8,000 (roughly USD 25).

• Listing price in pesos greater than 8,000,000 (roughly USD 25,000).

• Listing price in pesos per covered square meter lower than 350 (roughly USD 1).

• Listing price in pesos per covered square meter greater than 20,000 (roughly USD 60).

In addition to this, observations with a price per square meter smaller (greater) than the 1th
(99th) percentile were removed. In order to avoid data leakage at the time of defining the cut-off
values for outliers, percentiles for each month were calculated only using observations from that
month and the previous 11 months. Furthermore, the percentiles were calculated by groups accord-
ing to the property type (house or flat) and the neighbourhood. For groups that have less than
10 observations, broader groups were defined according to property type and commune, and if the
problem persists, to commune only.

Following the cleaning procedure, most of the listings still appeared more than once in the data
as they were published for more than 1 month. To ensure that the results are not skewed by the
duration of the listings’ presence in the website, the analysis is limited to a single entry of each
listing, which is chosen at random.

Zero-imputation was done for the missing values in the following the binary variables related to
property amenities: multi-purpose room, party room, playground, business center, parking, pool,
security, gym, jogging track, grill area, tennis court, cinema, air conditioning, furnished, and heating.

The variable “common space” was defined as having at least one of the following amenities:
multi-purpose room, party room, playground, business center, grill area, and cinema. The variable
“fitness space” was defined as having a gym, tennis court and/or jogging track.

Data for train and subway stations and green spaces were downloaded from the Open Data
portal of the Government of the City of Buenos Aires6. Green spaces were defined as all public

6https://data.buenosaires.gob.ar/dataset/

28

squares, gardens or parks larger than 10,000 square meters. Parks with semi-public access were not
considered.

Appendix B Variable description

Table B.1: Variable description

Variable Description
id Identicication number for each unique listing
listing_month Date of publication
listing_age Number of days since start of publication
month Month of the year of publication (1 to 12)
invoiced_in_usd Binary equal to 1 if listing was published invoiced in US dollars
price_realpesos Rent asking price in real pesos of December 2022
price_usd Rent asking price in current US dollars
total_area Total property area in square meters
covered_area Covered property area in square meters
uncovered_area Uncovered property area in square meters
price_realpesos_per_covered_sqm Price in real pesos per covered square meter
price_usd_per_covered_sqm Price in US dollars per covered square meter
house Binary equal to 1 if property is a house, 0 if it is a flat
rooms Number of rooms
bedrooms Number of bedrooms
bathrooms Number of bathrooms
furnished Binary equal to 1 if property is offered as furnished
property_age Property age in years
heating Binary equal to 1 if property has a heating system
air_conditioning Binary equal to 1 if property has air conditioning
parking Binary equal to 1 if property or building has parking
security Binary equal to 1 if property or building has private security
pool Binary equal to 1 if property or building has swimming pool

common_space
Binary equal to 1 if property or building has at least one of the
following ammenities: multi-purpose room, party room, playground,
business center, grill area, cinema

fitness_space Binary equal to 1 if property has at least one of the following
ammenities: gym, tennis court, jogging track

latitude Latitude in decimal degrees (EPSG 4326)
longitude Longitude in decimal degrees (EPSG 4326)
commune Official administrative area in which the property is located
neighbourhood Unofficial neighbourhood in which the property is located
distance_to_transport Distance to nearest subway or train station in meters
distance_to_greenspace Distance to nearest green space in meters

29

Appendix C Descriptive statistics

Table C.1: Summary statistics

variable min Q0.25 median mean Q0.75 max sd
listing_age 0.00 17.00 29.00 38.28 47.00 364.00 37.52
total_area 25.00 42.00 55.00 78.03 83.00 3,753.00 73.64
covered_area 25.00 40.00 50.00 69.86 75.00 1,480.00 59.42
uncovered_area 0.00 0.00 3.00 8.17 8.00 2,600.00 25.82
price_realpesos 19,933.03 70,645.54 94,907.12 189,500.71 150,020.24 7,655,372.07 316,440.62
price_usd 48.60 223.60 330.75 635.49 553.16 21,000.00 999.62
price_realpesos_per_covered_sqm 382.13 1,576.87 1,899.89 2,298.14 2,401.95 17,593.72 1,412.88
price_usd_per_covered_sqm 0.91 4.78 6.38 7.84 9.16 60.00 4.81
rooms 1.00 2.00 2.00 2.61 3.00 15.00 1.12
bedrooms 1.00 1.00 1.00 1.67 2.00 10.00 0.90
bathrooms 1.00 1.00 1.00 1.39 2.00 10.00 0.75
property_age 0.00 1.00 17.06 21.83 40.00 100.00 20.66
distance_to_transport 1.07 255.67 447.32 541.04 708.42 3,296.82 404.69
distance_to_greenspace 0.00 347.72 693.22 743.47 1,057.41 2,712.54 476.60
invoiced_in_usd 0.00 0.00 0.00 0.11 0.00 1.00 0.31
house 0.00 0.00 0.00 0.02 0.00 1.00 0.15
furnished 0.00 0.00 0.00 0.06 0.00 1.00 0.23
heating 0.00 0.00 0.00 0.25 1.00 1.00 0.43
air_conditioning 0.00 0.00 0.00 0.32 1.00 1.00 0.47
parking 0.00 0.00 0.00 0.24 0.00 1.00 0.43
security 0.00 0.00 0.00 0.08 0.00 1.00 0.27
pool 0.00 0.00 0.00 0.15 0.00 1.00 0.35
common_space 0.00 0.00 0.00 0.13 0.00 1.00 0.33
fitness_space 0.00 0.00 0.00 0.09 0.00 1.00 0.29

Appendix D Regression trees, GDBT and XGBoost

D.1 Regression tree

A regression tree is a model that splits the space of features into non-overlapping regions accord-
ing to their values. Then, for each region, it predicts the mean value of the target variable for all
the training observations in the region. Formally, given a training set {xi, yi}ni=1 of n observations,
with a vector x of features and a continuous target variable y, a regression tree can be defined by
the following function (Hastie et al., 2009):

f̂(x) =
J∑

k=1

cj · I(x ∈ Rj) (6)

where f̂(x) is the predicted value for the target variable using the features, cj is the mean value
of the target variable of the training observations within the region, and I(x ∈ Rj) is an indicator
function which equals 1 if x falls into the jth region and 0 otherwise.

30

The first step in building a regression tree consists of finding a way to partition the data into J
regions R1, R2, . . . , RJ in order to minimize a loss function, which is typically the sum of squared
residuals

∑N
i=1(yi − ŷi)

2. This involves choosing the optimal combination of features and splitting-
points used to segment the feature space. Trying all possible combinations of features and splitting-
points is too computationally expensive. To avoid this, the regression tree relies on an exact greedy
algorithm: it begins by finding the feature-splitting-point combination that divides the data into two
half-planes such that the loss function is minimized, looking at all possible candidates according to
the feature values of the observations in the training data. Then, it proceeds recursively by repeat-
ing this step for each of the two half-planes created by the previous binary split, without regarding
future splits in each step.

This process of splitting the data could potentially go on until the tree has one terminal node
(also called a leaf) for each distinct observation. However, in this scenario, the model would be over-
fitting the training data and thus its ability to generalize and predict accurately on new data would
be hindered. For this reason, strategies to make the tree stop growing have been devised. These
include setting a minimum number of observations required for each region, or setting a minimum
reduction in the loss function required to make a further partition. Another approach consists of
growing the tree until a minimum amount of leafs is reached, and then pruning it by sequentially
collapsing the internal nodes which hold the observations that are the least similar to each other.

D.2 Gradient Boosted Decision Trees

Generally, predictions by CARTs present high variance due to the hierarchical nature of the
tree-building process (Hastie et al., 2009). Instead, a significant increase in predictive performance
can be achieved by using an ensemble of trees. A widely used ensemble method in the context of
CARTs is the boosting algorithm, which combines the predictions several weak learners (the CARTs)
to produce more accurate predictions. GBDT is an example of a boosting algorithm that combines
a sequence of tree models by addition, based on the idea of gradient descent. Algorithm 1 shows the
steps involved in GBDT.

Algorithm 1 Gradient Boosted Decision Trees

1: F0(x) = argminŷ
∑N

i−1 l(yi, ŷ)

2: for m = 1 to M do

3: Compute n pseudo-residuals rim = −
[
∂l(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

4: Fit a regression tree fm to the set {xi, rim}ni=1 to create Jm terminal regions Rjm

5: For regions j = 1....Jm compute ŷjm = argminŷ
∑

xi∈Rjm
l(yi, Fm−1(xi) + ŷ)

6: Update Fm(x) = Fm−1(x) + η
∑Jm

j=1 ŷjmI(x ∈ Rjm)

7: end for

The GBDT algorithm starts by finding an initial value for ŷ, denoted by F0(x), which minimizes

31

a loss function l(yi, ŷ) across all observations in the training set. The loss function 1
2(y − ŷ)2 is

usually used for this purpose because it is particularly convenient, given that its derivative with
respect to ŷ is simply the sum of the negative residuals. The result is that the first prediction for
y is its mean across all observations of the training set. In this way, the algorithm begins with the
prediction of a single tree with only one leaf.

The algorithm proceeds by adding the predictions of a sequence of M regression trees to the
previous predictions, down-scaled by a factor η called the learning rate7. For each step m in this
sequence, the algorithm first computes the derivative of the loss function with respect to the pre-
diction F (x), evaluated at the previous prediction Fm−1(x)

8. Considering the squared loss function
used, this is equivalent to calculating the pseudo-residuals rim of the previous prediction for all ob-
servations. Next, a regression tree fm(xi) is fit using the features as inputs, and the pseudo-residuals
as target variables. The fitted tree creates Jm terminal regions Rjm into which the training set is
divided. Step 5 involves computing the optimal predicted value for the observations in each leaf of
the tree (which, given the loss function chosen, is equal to the mean of the pseudo-residuals in each
region). Finally, the previous prediction Fm−1(x) for each observation is updated by adding the
predicted value of the latest estimated regression tree, multiplied by the learning rate 0 < η ⩽ 1. In
sum, the algorithm takes small steps towards improving its accuracy by correcting the error of its
last prediction using multiple regression trees.

D.3 Extreme Gradient Boosting

XGBoost adapts the GBDT algorithm to improve its out-of-sample performance. It does so
mainly by adding a regularization term to the objective function of the gradient boosting algorithm
(Chen & Guestrin, 2016). Formally, the modified objective function is:

L =
N∑
i=1

l(yi, ŷi) +
M∑

m=1

Ω(fm) (7)

where Ω(fm) = γJm +
1

2
λ∥ŷm∥2 (8)

For each of the M regression trees fm estimated, an additional term Ω(fm) is added to the
original loss function l(yi, ŷi) of GBDT in the objective function. The coefficient γ puts a penalty
on the number of leafs Jm in each tree, while λ penalizes the size of the predictions of all leafs in
the tree, denoted by the Euclidean the norm of ŷm.

7For simplicity, the learning rate η is assumed to be pre-defined and constant across iterations. This is actually
how XGBoost operates, but other methodologies may admit a varying value for η.

8This derivative is the gradient that gives the name to the algorithm. Taking its negative provides guidance to
perform gradient descent. By calculating the value of this negative gradient, the algorithm finds the “steepest” direction
in which one could move along the domain of the loss function, starting from the position of the last prediction, to
achieve the largest possible reduction in the loss. By doing this in any iterative fashion, the algorithm aims to take
the shortest route towards a minimum of the loss function.

32

As with GBDT, after an initial guess, the tree ensemble is constructed by greedily adding sub-
sequent regression trees, only that the optimization problem that has to be solved for each new tree
is now the following:

Lm =

N∑
i=1

[l(yi, ŷm−1,i + fm(xi))] + Ω(fm) (9)

To calculate the gradient of the objective function for optimization, the algorithm uses a second-
order Taylor approximation:

Lm ≈
N∑
i=1

[l(yi, ŷm−1,i) + gifm(xi) +
1

2
hif

2
m(xi)] + Ω(fm) (10)

where gi and hi are the the first and second order gradients of the loss function l(yi, ŷm−1,i) with
respect to ŷm−1,i. Again, if the loss function 1

2(y − ŷ)2 is used, gi is simply the negative residual of
the last prediction, and hi equals 1. Using this approximation, by expanding Ω(fm) and taking the
derivative of Lm with respect to ŷjm, the optimal value for the prediction in each leaf j takes the form:

ŷ∗jm = −
∑

i∈Rjm
gi∑

i∈Rjm
hi + λ

(11)

If the parameter λ is set to 0, then ŷ∗jm would be simply the mean value of the residuals for all
observations in each region. When λ > 0, the magnitude of the prediction for each leaf is reduced,
and this effect is proportionately greater for regions with fewer observations.

Next, by plugging the obtained expression for ŷ∗jm into equation (10), and ignoring the constant
term l(yi, ŷm−1,i), the optimal value for the approximated loss function is obtained:

L∗
m = −1

2

∑
i∈Rjm

(
∑Jm

j=1 gi)
2∑

i∈Rjm
hi + λ

+ γJm (12)

The value of L∗
m is the basis for deciding whether or not to split a node, and on which split

point. The gain or loss reduction obtained by splitting a node is equal to:

∆Lm =
1

2

 (
∑

i∈Rleft
jm

gi)
2∑

i∈Rleft
jm

hi + λ
+

(
∑

i∈Rright
jm

gi)
2∑

i∈Rright
jm

hi + λ
−

(
∑

i∈Rjm
gi)

2∑
i∈Rjm

hi + λ

− γ (13)

33

where Rleft
jm and Rright

jm are the left and right regions of the new split. Each of the three terms
inside the brackets in equation (13) can be interpreted as a similarity score for each leaf. Assuming
the squared loss function 1

2(y − ŷ)2 is used, this score is equivalent to the sum of the residuals,
squared, over the number of residuals plus λ.

When γ is set to 0, the gain in terms of loss reduction after any split is equal to the similarity
scores for the left and right regions created by the split, minus the similarity score of the root or
preceding node9. This gain is compared across candidates for feature-split point combinations10. A
split is then made if the gain of the best candidate is greater than 0.

Given that the two new regions will always have less observations than their parent region, in-
creasing λ decreases their score in greater proportion than the score of the parent node. In this way,
λ acts as a pruning parameter, discouraging node splits. Additionally, when γ is different from 0, it
also discourages tree-splitting. A split will be made only if the gain is greater than the chosen value
for γ. Thus, a greater value for γ will lead to trees with fewer branches.

Once the new regression tree is constructed, the algorithm proceeds in the same manner as
GBDT, updating its previous prediction by adding the prediction of the new tree, down-scaled by a
learning rate η. It finishes after M trees are built.

XGBoost also allows for the use of additional strategies to prevent overfitting. These include:
setting a maximum level of splits or maximum depth for each tree; using a random sub-sample of
the observations without replacement to train each tree; using a random sub-sample of the features
without replacement for each tree, split level, or node; and setting the requirement of a minimum
sum of the Hessians hi in each leaf (which are equivalent to the amount of observations in each
leaf if the squared loss function mentioned above is used) to further partition a node. Lastly, the
algorithm boasts several computational optimization techniques used to make its training faster and
scalable to large data sets.

Appendix E Hyper-parameter tuning

Table E.1 contains the grids of values tested for each hyper-parameter, together with the individ-
ual values that yielded the best performance in terms of the mean squared error of the cross-validation
sample.

9Given that the similarity score is only used as a relative measure, the 1
2

in equation (13) can be ignored.
10Differently from GBDT, XGBoost allows the use of an approximate greedy algorithm for finding optimal split

points, instead of the exact greedy algorithm. Instead of trying all feature values in the training data, this algorithm
tries their percentiles to reduce computing costs.

34

Table E.1: Hyper-parameter grids for model calibration

Hyper-parameter Grid values Value chosen

Stage 1

Learning rate 0.01, 0.1, 0.15, 0.3 0.15
Number of estimators 50, 100, 200, 300 300
Minimum child weight 1, 3, 5, 7 7
Maximum tree depth 3, 5, 7, 9 7

Stage 2
Minimum split loss 0, 0.1, 0.2, 0.4 0
Column sub-sample by tree 0.5, 0.75, 0.9, 1 1
L1 regularization 0, 1, 50, 100 0

In the first stage, the values of the first group of four parameters were selected. Then, a second
iteration of the Grid Search algorithm was run, fixing the values for the parameters found in the
first stage, and searching over the grids for the three remaining parameters.

35

	Introduction
	Data
	Model
	Forecasting experiment
	Expanding window
	Rolling windows of different sizes
	Cross-validation method
	Ensemble methods
	Error metrics
	Hyper-parameter tuning

	Results
	Conclusion
	Data cleaning process
	Variable description
	Descriptive statistics
	Regression trees, GDBT and XGBoost
	Regression tree
	Gradient Boosted Decision Trees
	Extreme Gradient Boosting

	Hyper-parameter tuning

