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MARTIN IÑAKI LORIENTE Y JUAN CRUZ DIEZ

Legajos: 31075 y 31033
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Abstract: In 1950, Harold W. Kuhn introduced a simplified version of poker

referred to as Kuhn Poker and solved it using the notion of Nash Equilibrium. His

pioneering work inspired subsequent scholars who applied similar methodologies

to other poker versions. In contrast, we adopt a different procedure by employing

Harsanyi’s approach to reach a Perfect Bayesian Equilibrium (PBE), a concept

that emerged two decades after Kuhn’s original solutions. While computational

techniques have greatly advanced the analysis of various poker variations, achieving

a PBE remains elusive. Some studies suffer from methodological flaws, as they

overlook the importance of incorporating beliefs into their analysis. In our research,

we also conducted a rationality study and found that relaxing the sophistication

of a player leads to a shift in optimal strategies towards more exploitative ones.

1 Introduction

Poker stands as an undeniable titan among card games, capturing the hearts and minds of

more than 120 million online players worldwide (Offshore, 2021). Notably, a select few have

amassed staggering fortunes, exceeding 10 million dollars in earnings from the prestigious World

Series of Poker Main Event (Mansilla, 2020). Despite its ubiquitous appeal, poker remains an

enigma, presenting an enduring challenge, even to computer science. Recent strides in artificial

intelligence have gravitated toward Nash Equilibrium concepts and loss function minimization to

nurture the growth of formidable algorithms. These breakthroughs have resulted in strategies of

remarkable complexity, surpassing unaided achievements and even excelling in multiplayer poker

games (Risk and Szafron, 2010; Brown and Sandholm, 2019). Noteworthy contributions in this

realm can be found in Bowling et al. (2017), where the authors approximate an equilibrium

akin to Perfect Bayesian Equilibrium (PBE) by harnessing computational methods to minimize

a penalty function. Additionally, in their 2017 study, Moravč́ık et al. harnessed the power

of information asymmetry reasoning and deep learning techniques to enhance poker strategies.

While these contributions are undeniably significant, pursuing a refined equilibrium provides

valuable insights. Artificial intelligence struggles to explain why some actions lead to equilibrium

while others do not, and these findings lack robust verification. We can delve into these concepts

through simplified poker scenarios.

Simple games often serve as gateways to gaining insight into the complexities of more

profound real-world scenarios. Game theory, since its inception, has ardently sought to unveil the

intricacies of bluffing within poker (Borel, 1938; von Neumann and Morgenstern, 1947; Bellman

and Blackwell, 1949; Nash and Shapley, 1950), with bluffing remaining a pivotal subject of poker

research (Norman, 2012; Cassidy, 2015). Remarkably, Harold William Kuhn, in “Contributions

to the Theory of Games Vol. I” introduced “A Simplified two-person-poker” (Kuhn, 1950). In
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this rendition, Kuhn simplified poker to a duel between two players, with a deck compounded by

three cards numbered 1, 2, and 3. The hierarchy is clear: 3 trumps 2, and both beat 1. Players

must compulsorily bet 1 monetary unit, known as the ante, to initiate the game, with a singular

opportunity to increase the pot by 1. No re-bets complicate matters. Player A, named Ana,

commences. Ana’s card influences her decision to bet or check. If she bets, player B, christened

Bill, must choose to call or fold, culminating in a showdown. If Ana checks, Bill faces a similar

decision: to either bet or check. Should he bet, Ana confronts the possibility of calling or folding,

and the game concludes. If both check, they must show their cards directly, and the one who

wins keeps the pot, composed of the antes. Like poker, this simplified version is a zero-sum

game. Interested readers can partake in this game by clicking here, configuring parameters

r =m = 1 and n = 2 (Prisner, 2014). Nevertheless, how should we solve this game?

The advent of Nash Equilibrium in 1951 revolutionized economic studies. It provided a

solution concept where strategies preclude any unilateral deviation to increase expected utility

(Nash, 1951). However, a refinement was needed to address sequentiality and incomplete

information, which ultimately materialized as PBE many years after Kuhn’s pioneering work

(Fudenberg and Tirole, 1991). In PBE, strategies form a Bayesian Equilibrium within each

continuation game, hinging on specified beliefs updated via Bayes’ rule when feasible. Kuhn

Poker operates in the realm of incomplete information, wherein players possess only partial

knowledge of opponents’ cards and strategies. In poker, players navigate decisions grounded in

their beliefs about their opponents’ cards.

By applying Harsanyi’s (1967) approach, we recast the game of incomplete information,

reinterpreting it as one of imperfect information. Nature begins by selecting realizations of

random variables determining player types: their cards. These random variables are concealed

from the players, with each player only privy to their respective card. This paradigm shift

into imperfect information means information sets encompass multiple decision nodes. Kuhn

(1950) did not recognize this facet in his solutions, as more sophisticated methods emerged

after his work. Prisner’s (2014) solutions to many versions of this game, like Kuhn’s original

work, grapple with methodological flaws due to a similar oversight. This problem holds for

Borel (1938) and von Neumann and Morgenstern (1947), who tackled simplified poker variants

without incorporating beliefs, leading to flawed solutions (Norman, 2012). This issue persists

in modern attempts to solve intricate iterations of Kuhn Poker employing artificial intelligence

(Szafron et al., 2013; Billingham, 2018; van der Werf, 2022) and in mathematical solutions to

other similar games like VNM Poker (Prisner, 2014; Valenzuela, 2021).

While less refined equilibrium notions may suffice in some simultaneous games or contexts

with perfect information, they buckle under the weight of private information in sequential

games. To thrive, we must scrutinize each information set, extracting optimal actions in harmony

with our beliefs about the unfolding situation aligning with our chosen strategies. Perfect

2

https://maa.org/sites/default/files/ebooks/AppletKuhnPoker3.html


Bayesian Equilibrium coalesces strategy profiles with descriptions of players’ beliefs across their

information sets (Watson, 2013). These beliefs reflect players’ assessments regarding each other’s

types, adapting as new information surfaces. PBE is invaluable for dissecting games where

players continually gain insights and adjust their strategies and beliefs accordingly.

Some authors have correctly solved simplified poker games (Reiley et al., 2008). Nonetheless,

our work aspires to a loftier pinnacle within PBE solutions in poker due to the intricate interplay

of beliefs. Keen observers will notice that this game encompasses no subgames apart from itself

due to these elaborate interactions.

It is necessary to acknowledge that all Nash Equilibriums serendipitously qualify as PBE

in this specific case, though this may not hold for all games. However, PBE might still

encompass equilibria that appear counterintuitive. This challenge arises because PBE imposes

no restrictions on beliefs in scenarios of zero probability, often described as an off-equilibrium

path. Hence, a more nuanced refinement, such as the concept in Kreps and Wilson (1982)

of consistent beliefs, could narrow the spectrum of permissible beliefs in off-equilibrium path

situations, potentially reshaping Kuhn’s solutions.

2 Solving the Game

We begin solving the game by studying the dominated strategies. In Figure 1 we can find

the extensive form of the Kuhn Poker. In Table 1 we show the definitions of all the actions and

beliefs used on the extensive form. In this case, the order in which we exclude strategies from

the game does not affect the equilibrium.

First, there are some evident flaws with folding with a 3 after a bet. This is because players

know it would generate a higher payoff to call, as there is no better card. This situation holds for

both players. The same logic appears when a player calls or folds against a bet with a 1. Calling

with a 1 always leads to losing more money than just folding. However, in both cases, we are

talking of weakly dominated strategies because if the other player never bets these decisions will

not affect the expected payoff. So, strategies that include these actions will be weakly dominated

by those with the same actions except for the flawed ones.

Then, there is also a more sophisticated dominated strategy. When a player has a 2, he

should not bet. Why? Because he can only enlarge his losses but never his income. The other

player can only have a 1 or a 3. If we are on the first case, the second player will never call; if we

are on the second case, it is strictly worse for the first player to bet. When we join both cases, we

can see that strategies that include betting with a 2 are dominated by the same strategies that

play check with a 2. In the case of A, this is strictly dominated after we remove the previous

weakly dominated actions for B, as it reduces the expected payoff. For B, betting with a 2 is

weakly, and not strictly, dominated because if A plays a strategy that will always bet at the

3



start with a 3, then the payoff will not be reduced by betting with a 2 later, as A will not hold

a 3. Player B has another group of weakly dominated strategies. These are the ones that play

check with a 3. If B has a positive belief of cA2 (A calling a bet when she has a 2), he should

always play bet with a 3.

We will exclude strictly and weakly dominated strategies to determine a solution in this game.

These strategies are highlighted in red within the extensive form for clarity. This procedure seems

natural for a poker game where experienced players aim to maximize their expected earnings

and minimize potential losses. They avoid actions that might lead to greater losses without

increasing their expected earnings and refrain from playing strategies that limit their income

without reducing their losses. This is also consistent with the literature on random mistakes

while employing a strategy. Even if an equilibrium path is reached where player A will never

call a bet with a 2, if player B believes there is a little possibility of A making a mistake, he will

always want to bet with a 3. We will not apply this mistake procedure, but it is an insight that

may be useful to understand why we should not validate an equilibrium with weakly dominated

strategies.

As we look for an equilibrium where players have consistently updated beliefs, we need Ana

and Bill to determine them with Bayes’ rule whenever possible. Then, we will calculate it

for every belief, and we will use this information with caution. We must apply the rule only

when the node is reached with a positive probability. If this does not happen, we are facing

less restrictions. The definition of PBE requires the receiver’s belief to be consistent with the

sender’s strategy and Bayes’ rule. However, it does not require anything about signals the sender

never sends since Bayes’ rule is not applicable for events with zero probability.

Behavioral strategies provide a simplified approach to tackling this complex game. They

differ from mixed strategies. While both share similarities, behavioral strategies are notably

more handy in our context. In mixed strategies, one must consider numerous potential strategies

for the game and then decide which probabilities to employ. In contrast, behavioral strategies

involve crafting explicit probabilities as instructions that cover every conceivable situation.

Rather than randomizing these instructions, we enumerate all available options and assign

probabilities to each. Like mixed strategies, other players remain unaware of the specific

actions employed, as the player implements a random way to determine which option to choose.

Consequently, the behavior remains unpredictable. However, unlike mixed strategies, the player

has to repeatedly randomize while playing rather than making a single initial randomization.

4



N

qB′2 qA1

−1
Fold

−2

Call

Bet

−1

Check

Check

qB2

+1

Fold

−2

Call

cB2

Bet

bA1

1 − qB′2 1 − qA3

−1
Fold

+2
Call

Bet

+1
Check

Check

1 − qB2

+1
Fold

+2

Call

cB2

Bet

bA3

qB′31 − qA1

−1
Fold

−2

Call

Bet

−1

Check

Check

qB3

−2

Call

+1

Fold

Bet

bA1

1 − qB′1 qA3
−1

Fold

+2

Call

BetbB1

+1

Check

Check

1 − qB1

+1

Fold

+2

Call

Bet

bA3

1 − qB′31 − qA2

−1
Fold

−2
Call

cA2

Bet

−1
Check

Check

1 − qB3

+1
Fold

−2

Call

Bet

qB′1qA2
−1

Fold

+2

Call

cA2

Bet bB1

+1

Check

Check

qB1

+2

Call

+1

Fold

Bet

(1,3)

1/6

(2,3)
1/6

(2,1)

1/6

(3,1)

1/6

(3,2)
1/6

(1,2)

1/6

Figure 1: Kuhn Poker Player A Player B Dominated Strategies
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Variable Definition

Actions

bA1 Probability that A plays Bet on the start when she has a 1

cA2 Probability that A plays Call at the end when she has a 2

bA3 Probability that A plays Bet on the start when she has a 3

bB1 Probability that B plays Bet after A checks when he has a 1

cB2 Probability that B plays Call after A checks when he has a 2

Beliefs

qA1 Probability that A, when she gets a 1, assigns to B having a 2, conditional on B betting

1 − qA1 Probability that A, when she gets a 1, assigns to B having a 3, conditional on B betting

qB1 Probability that B, when he gets a 1, assigns to A having a 2, conditional on A betting

1 − qB1 Probability that B, when he gets a 1, assigns to A having a 3, conditional on A betting

qB
′

1 Probability that B, when he gets a 1, assigns to A having a 2, conditional on A checking

1 − qB′1 Probability that B, when he gets a 1, assigns to A having a 3, conditional on A checking

qA2 Probability that A, when she gets a 2, assigns to B having a 1, conditional on B betting

1 − qA2 Probability that A, when she gets a 2, assigns to B having a 3, conditional on B betting

qB2 Probability that B, when he gets a 2, assigns to A having a 1, conditional on A betting

1 − qB2 Probability that B, when he gets a 2, assigns to A having a 3, conditional on A betting

qB
′

2 Probability that B, when he gets a 2, assigns to A having a 1, conditional on A checking

1 − qB′2 Probability that B, when he gets a 2, assigns to A having a 3, conditional on A checking

qA3 Probability that A, when she gets a 3, assigns to B having a 1, conditional on B betting

1 − qA3 Probability that A, when she gets a 3, assigns to B having a 2, conditional on B betting

qB3 Probability that B, when he gets a 3, assigns to A having a 1, conditional on A betting

1 − qB3 Probability that B, when he gets a 3, assigns to A having a 2, conditional on A betting

qB
′

3 Probability that B, when he gets a 3, assigns to A having a 1, conditional on A checking

1 − qB′3 Probability that B, when he gets a 3, assigns to A having a 2, conditional on A checking

Table 1: Actions and beliefs

We begin using Bayes’ rule, which calculates the conditional probability of reaching each

node given our prior information. We give the Bayes’ rule for the belief qB
′

1 :

qB
′

1 =
1
6

1
6 + 1

6(1 − bA3 )
= 1

2 − bA3
In this example, player B has drawn a 1 and has to develop beliefs of what card player A

got, either a 2 or a 3. For the top node to be reached, player A will always play check as she

has a 2, so it is reached with probability 1
6 . The probability of reaching the information set will

be the probability of reaching the top node, which is 1
6 , plus the probability that the bottom

node is reached, which is 1
6 times the probability player A checks with a 3, (1 − bA3 ).
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We showcase the Bayes’ rules for all the beliefs in the game. Notice that qA1 = qB1 = 0 because

the players with a 2 will never bet as it is a dominated strategy, so beliefs that the other player

did play bet with a 2 are equal to 0. The same occurs with qA3 = qB3 = 1. In this case, the player

has a 3, so when the other player plays bet, he is confident that he is betting with a 1, as betting

with a 2 is dominated. Our reader can visually find the null beliefs at the red nodes defined in

the extensive form.

The Bayes’ rules of the game result:

qA1 = 0 qB1 = 0 qB
′

1 =
1

2 − bA3
qA2 =

bB1
1 + bB1

qB2 =
bA1

bA1 + bA3
qB

′

2 =
1 − bA1

2 − bA1 − bA3
qA3 = 1 qB3 = 1 qB

′

3 =
1 − bA1
2 − bA1

You should notice that these probabilities are in the interval [0,1] and that we can find the

remaining ones simply by subtracting each belief from 1; for example, 1 − qA1 = 1 − 0 = 1.
As we now understand the application of Bayes’ rules, we develop the process for calculating

the Perfect Bayesian Equilibrium. To do it, we will first exhibit each player’s conditions to

play each possible action willingly. We can call them the incentive compatibility constraints.

Remember, we analyze each action separately under the logic of behavioral strategies. We are

assessing the remaining actions, having excluded those that were dominated. So, we only have

five: bA1 , c
A
2 , b

A
3 , b

B
1 and cB2 (Definitions in Table 1).

A

A will weakly want bA1 = 1 if cB2 ≤ 1
3 B will weakly want bB1 = 1 if qB

′

1 ≥ 1
3−3cA2

A will weakly want bA1 = 0 if cB2 ≥ 1
3 B will weakly want bB1 = 0 if qB

′

1 ≤ 1
3−3cA2

A will be indifferent with bA1 if cB2 = 1
3 B will be indifferent with bB1 if qB

′

1 = 1
3−3cA2

B

A will weakly want cA2 = 1 if qA2 ≥ 1
4 B will weakly want cB2 = 1 if qB2 ≥ 1

4

A will weakly want cA2 = 0 if qA2 ≤ 1
4 B will weakly want cB2 = 0 if qB2 ≤ 1

4

A will be indifferent with cA2 if qA2 = 1
4 B will be indifferent with cB2 if qB2 = 1

4

A

A will weakly want bA3 = 1 if cB2 ≥ bB1
A will weakly want bA3 = 0 if cB2 ≤ bB1
A will be indifferent with bA3 if cB2 = bB1
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We have three possible decisions for each of the five actions, leaving us with 35 = 243 options.

PBE usually starts by searching for separating or pooling strategies (Levin, 2002). In that case,

different types of player A use different actions so information is perfectly informed, or different

types of A use the same actions so no information is transmitted in A’s actions. All these pure

strategies do not conform an equilibrium in Kuhn’s game. This also applies to semi-separating

situations, where multiple types of the player select the same specific actions, while a single type

chooses other actions. In such cases, some degree of learning takes place. As none of these ideas

helped, we must search for mixed strategies in equilibrium.

We will check for PBE to get all possible equilibrium by individually analyzing the 243

possible behavioral strategies. We divided the strategies by groups and subgroups using the

compatibility constraints. For the first group, we define the first action of Ana. We know that

with a 2 she will always check, but with a 1 or a 3 she can either bet, check, or play a probability

between zero and one. So, with that in mind, we get the group of 9 possible first actions in

which A can play a set of pure or mixed strategies.

Then, we will have a subgroup from each possible group that will contain the actions of Bill.

This subgroup will follow the first group as it is the second step in the game. In this case, player

B can call or fold with a 2 after a bet from player A, and check or bet with a 1; he will always

bet with a 3. This can also be either pure, or he can mix the probabilities of his actions and

is composed of 9 possible plans. Note that even though player A might never bet, we include

player B’s probability of calling with a 2 as a strategy must be a complete contingent action

plan.

Finally, we have a final subgroup as we reach the third step in the game. Ana has to decide

between calling or folding against Bill’s bet at this stage. We get a set of 3 possible actions:

player A calls, folds, or randomizes. In this case, we also need to define player A strategy even

though the information set may not be reached as the game may always end.

Given this approach, we solved the game by checking if the players’ beliefs were consistent

with the strategies. We have the following example of the procedure:

• Player A bets with some probability with a 1 but leaves some probability to check, bA1 ∈
(0,1), and always checks with a 3, bA3 = 0.

• By the incentive compatibility constraints, cB2 = 1
3 and cB2 ≤ bB1 .

• Given this, Bayes’ rules require that the following beliefs are qB
′

1 = 1
2 , q

B
2 = 1.

• But as qB2 = 1 this requires by the constraints that cB2 = 1. This is an absurd, as Ana would

need cB2 = 1
3 to want to hold her strategy.

The group described before shows a contradiction as the beliefs are inconsistent with what

players would like to do, so we do not need to check the subgroups in the other steps, as there
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cannot be any equilibrium with that set of actions. We continue this process for all the possible

combinations.

After rejecting 240 options, we only have three left: bA1 = bA3
3 , cA2 = 1

3 +
bA3
3 , bA3 ∈ (0,1),

bB1 = 1
3 , c

B
2 = 1

3 and the two corner solutions with an identical composition but bA3 = 0 or bA3 = 1.
Understanding them as three different equilibria under the same structure is relevant because

the incentive compatibility constraint changes in the two exceptional cases. We can write these

behavioral strategies for Ana and Bill as A ∶ (bA1 = bA3
3 , bA2 = 0, bA3 ∈ [0,1], cA1 = 0, cA2 = 1

3 +
bA3
3 , cA3 =

1),B ∶ (bB1 = 1
3 , b

B
2 = 0, bB3 = 0, cB1 = 0, cB2 = 1

3 , c
B
3 = 1), where we have the probabilities for each

player to bet and to call with every card in their corresponding nodes.

We have found infinite equilibria under a structure where Ana bluffs. Specifically, all

equilibria with bA3 > 0 imply bA1 > 0. In those cases, she decides to bet even with the worst

card. This structure is logical when we think about it. Ana would like to always bet with a 3

and never with a 1, but as she can only play bet on the first round, this would give Bill enough

information to know that he should never call when he sees a bet. In order to mitigate this issue

and optimize her expected payoff, Ana opts to reduce her bets when she has a 3 and increases

them when she has a 1. Conversely, Bill can perfectly predict her actions in equilibrium, but as

he does not know Ana’s card, he cannot take great advantage. In the end, playing bet with a 1

one-third of the time and a call with a 2 one-third of the time is part of a best response of B,

so A can be indifferent to betting with a 1. On her side, the probability of Ana calling this bet

will increase proportionally with her bet with a 3. We can find in the equilibrium the insights of

bluffing in a context where both players do not know the other player’s type. As von Neumann

claimed: “Real life consists of bluffing, of little tactics of deception, of asking yourself what is

the other man going to think I mean to do” (Bronowski, 1973).

Behavioral strategies have proven efficient in solving the game. Let us go from them to

a mixed strategy. Equilibrium behavioral strategies yield three numbers between 0 and 1 for

A and two for B. The process to transform these numbers is natural: we take all the pure

strategies and multiply them for the probabilities corresponding to each information set. We

show the procedure for one example of A and then state the results. Let us define B1 as

betting with a 1, C2 calling with a 2, and C3 calling with a 3. Then, the probability that A

plays the pure equilibrium that combines these decisions in her mixed equilibrium strategy is

PA(B1,C2,B3) = bA3
3 (13 +

bA3
3 )bA3 =

(bA3 )2
9 + (bA3 )39 . We take

bA3
3 corresponding to B1 because it is the

probability that the behavioral strategy assigns to A betting with a 1. In the same way, we take

1
3 +

bA3
3 corresponding to C2 and bA3 to B3. When we have the opposite option in a probability,

we do the complement by subtracting the probability the behavioral strategy assigns to one.
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PA(B1,C2,B3) = (b
A
3 )2
9
+ (b

A
3 )3
9

PB(B1,C2) = 1

9

PA(B1,C2,C3) = bA3
9
− (b

A
3 )3
9

PB(C1,C2) = 2

9

PA(B1, F2,B3) = 2(bA3 )2
9
− (b

A
3 )3
9

PB(B1, F2) = 2

9

PA(B1, F2,C3) = 2bA3
9
− (b

A
3 )2
3
+ (b

A
3 )3
9

PB(C1, F2) = 4

9

PA(C1,C2,B3) = bA3
3
+ 2(bA3 )2

9
− (b

A
3 )3
9

PA(C1,C2,C3) = 1

3
− bA3

9
− (b

A
3 )2
3
+ (b

A
3 )3
9

PA(C1, F2,B3) = 2bA3
3
− 5(bA3 )2

9
+ (b

A
3 )3
9

PA(C1, F2,C3) = 2

3
− 11bA3

9
+ 2(bA3 )2

3
− (b

A
3 )3
9

Here, we can see the mixed strategies of equilibrium for both players. These are the positive

probabilities assigned to pure strategies. A simple way to check that this procedure was proper

is that the sum of all these probabilities for each player equals one independent of the value of

bA3 . We also need to define the beliefs in equilibrium. We have three cases. For bA3 = 0 we have

qA1 = 0, qB1 ∈ [0,1], qB
′

1 = 1
2 , q

A
2 = 1

4 , q
B
2 = 1

4 , q
B′

2 = 1
2 , q

A
3 = 1, qB3 ∈ [0,1], qB

′

3 = 1
2 . For bA3 = 1 we

have qA1 = 0, qB1 = 0, qB
′

1 = 1, qA2 = 1
4 , q

B
2 = 1

4 , q
B′

2 = 1, qA3 ∈ [0,1], qB3 = 1, qB
′

3 = 2
5 . For bA3 ∈ (0,1)

we have qA1 = 0, qB1 = 0, qB
′

1 = 1
2−bA3

, qA2 = 1
4 , q

B
2 = 1

4 , q
B′

2 = 3−bA3
6−4bA3

, qA3 = 1, qB3 = 1, qB
′

3 = 3−bA3
6−bA3

. Some

beliefs are free because they are never reached in equilibrium. This is an example of the lack of

PBE conditions under them that we discussed earlier.

Now, what are the expected payoffs of both players? We can find this number for any infinite

equilibrium, which will be all equal. There are many ways to get to this number; for example,

we can extract the payoff for any pure strategy involved inside a mixed strategy against the

mixed strategy of the rival. If we do this, we will get the same payoffs Kuhn found by achieving

a NE:

UA = 1
6
[bA1 (1 − 3cB2 ) + cA2 (3bB1 − 1) + bA3 (cB2 − bB1 ) − bB1 ]

UA = 1
6
[bB1 (3cA2 − bA3 − 1) + cB2 (bA3 − 3bA1 ) + (bA1 − cA2 )]

We can see both equilibrium payoffs with these conditions as it is a zero-sum game: UA = − 1
18 ,

UB = 1
18 . This result is consistent with the dealer advantage found in poker by Bowling et al.

(2017) and of common knowledge in competitive poker. The intuition behind this is that the

last player observes the previous actions and gets an information rent. It means that being

capable of receiving signals of the other player type, their cards, is useful even on equilibrium.
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3 Rationality

Kuhn Poker simplifies real poker, so we want to translate these intuitions into more popular

versions. No Limit Texas Hold’em Poker is the most played type of poker. It is a table game with

incomplete information that game theory still needs to solve due to its complexity (Sandholm,

2010). This is why progress has been made with some hands of cards to determine specific

ranges of best plays or to solve simplified versions (Bowling et al., 2017). Thus, given hands

and positions, considering what the opponents did, we have a range of best responses called

Game Theory Optimal Strategy (GTO poker). This way of playing poker is trendy as it is often

used as a synonym for Nash Equilibrium, allowing players not to be exploited (Acevedo, 2019).

Are these GTO poker strategies always the best choice, or are there specific situations where

employing an exploitative strategy, such as targeting an opponent’s weaknesses like frequent

bluffing or under-betting strong hands, would be more effective? We may find some intuitions

here.

Rationality assumptions imply that two sophisticated players are facing, that they are cold

so that no emotions may affect their decisions, and that they care about the game and analyze

it to take the best possible actions. When rationality assumptions apply, which could be the

case in poker tournaments, where much money is disputed and players are sophisticated, we

could translate intuitions from our Kuhn’s Poker equilibrium. First, players should avoid letting

their rivals exploit the information they reveal. The best example is Ana’s actions in her first

node. She decides to bet more with the best cards, but this does not mean she will always bet

with highs and never with lows. She has to take a position in the trade-off between showing

information about her type and placing money in the game. We believe this principle would

hold, although we cannot solve a complete poker game. Another idea we can sustain is the

seconds’ mover advantage. We also suspect that seeing information about other players’ types

with their actions could be better than being first in poker games.

But what happens in a Casino game where some players may not be entirely rational? This

could be the case if Bill is a professional player, but Ana is just trying to have fun while caring

about her money. In real life, players are somewhat sophisticated and have different reasoning

levels (Camerer et al., 2004; Feng et al., 2021). This seems to happen with complex games like

chess or poker, where complexity leads to errors in the perception of alternatives’ values. People

underestimate how bad very complex wrong actions are and how good very complex right actions

are (Salant and Spenkuch, 2023). Also, cognitive skills have a causal impact on sophistication,

and individuals who are not probabilistically sophisticated tend to have low cognitive ability

(Carpenter et al., 2013; Almeida and Rangel, 2014). It has been proven that the heterogeneity

of cognitive skills of groups of players affects the strategic interaction, and the less intelligent

player could also learn a sophisticated strategy from the other player if we were on a repeated
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game (Proto et al., 2021). In this situation, cognitive capacity could prove to change our solution

(Fé et al., 2022). As B is a more sophisticated player, he could manipulate A’s beliefs to make

her think that he is not (Bhatt et al., 2010). These are problems that regular Game Theory

or computational approaches cannot solve. This is because these methods do not calculate

exploitative strategies against weak players; they only provide its core strategy in equilibrium.

So, we will need to shock the assumptions made for rationality and force the equilibrium concept

to make it more realistic in poker under new assumptions.

Let us face the same game, but now we will relax rationality for player A. Ana will be a

recreational player, and she will believe she can play like a sophisticated player. We will model

this as if both players can see the equilibrium strategies, but Ana deviates from it because of

an external shock called σ ∈ (0, 13]. This shock may be defined as noise, and it may be related

to a distraction, a confused desire to bet, or just a low sophistication. We assume that Ana

plays this strategy: A ∶ (bA1 = 1
3 + σ, bA2 = 0, bA3 = 1, cA1 = 0, cA2 = 2

3 + σ, cA3 = 1). As Bill is a poker

expert, he sees that Ana will not play as in equilibrium. Now, he has to decide which strategy

maximizes his payoff against Ana. If he plays the previous optimal strategy, he would expect a

payoff of 1
18 , which is exactly the one expected in equilibrium before. But we will calculate his

best response strategy.

With the incentive compatibility constraints and the corresponding Bayes’ updates for B,

we will find that the best response for B is to play bB1 = 0 and cB2 = 1, followed by the already

defined actions. Bill would play a pure strategy where he continuously checks with a 1 and bets

with a 2. He wants to play a pure strategy because Ana lacks the sophistication to adapt to

his decision. He no longer needs to choose a mixed strategy that implements a random way to

determine which option to choose. Bill will turn to this pure strategy even when the shock is

little. This discontinuous jump in decisions is natural: Ana’s strategy was the one that allowed

Bill to mix his actions, so she randomized it perfectly to give the same expected payoff to both

decisions. Now that Ana is deviating, Bill will adopt a pure strategy even with a shock close to

0. This new strategy would give him an expected payoff of 1
18 + σ

2 , increasing his utility.

We can compare the payoffs and see that when player A deviates following her external shock,

her expected utility stays at − 1
18 , meaning that a deviation from the equilibrium would make

her expect the same payoff. Furthermore, if player B updates his strategy, given the external

shock in Ana’s strategy, her expected payoff lowers from − 1
18 to − 1

18 − σ
2 . This means that when

we change our assumptions of the capability of the players to reach equilibrium, the attitude

a sophisticated player should take may vary. This change takes a structure natural for poker

players. There is an existing debate between the GTO strategies and the exploitative ones.

This analysis should shed some light on this debate, showing that, under different assumptions,

sometimes much more realistic, an exploitative strategy is better than a GTO one.

To test the robustness of our result, we can check if this result is something particular to
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a shock on the first player. Then, we return to the basic game and add a shock to Bill’s play

on equilibrium with σ ∈ (0, 13]. So, we assume Bill will play B ∶ (bB1 = 1
3 + σ, bB2 = 0, bB3 = 0, cB1 =

0, cB2 = 1
3 + σ, cB3 = 1). Ana, a poker expert, sees that Bill will not play as in equilibrium. She

would expect a payoff of − 1
18 if she maintains the previous optimal strategy. However, her best

response is to play bA1 = 0, cA2 = 1 with bA3 ∈ [0,1]. Under this best response, her new payoff is

− 1
18 + σ

3 , greater than before.

We can conclude that the debate of GTO vs. Exploitative strategies makes sense when

our assumptions about rationality tremble. However, we also show that the equilibrium of the

previous section is fragile to little shocks. This result is mainly driven by breaking the indifference

principle that allows players to take mixed strategies. Both cases of non-pure rationality show

that softly relaxing the rationality concept leads to new best responses for a sophisticated player

against a casual one. We found that little changes around the actions of the previous equilibrium

turn the best possible sophisticated strategy into an exploitative one.

4 Conclusions

Nash, Kuhn, and von Neumann stand as pioneers in the field of Game Theory, revolutionizing

our understanding of strategic interactions. Their work has spurred an extensive body of

literature, ushering in significant advancements that have equipped us with tools to refine and

build upon earlier research.

These advancements have become increasingly relevant in the academic sphere, as many

scholars continue to place unwavering faith in the accuracy of Nash Equilibrium-based solutions.

However, our analysis reveals that blind adherence to this equilibrium concept is not always

warranted. Even in cases where previous solutions appear sound, as seen in the context of

Kuhn Poker, a more nuanced approach is essential. This game involves incomplete information,

requiring the incorporation of beliefs into the equation. While this approach may introduce

complexities in the calculations, it bestows invaluable insights into the game’s dynamics and the

motivations underlying each equilibrium strategy.

Our examination has reaffirmed the “last player advantage”, a phenomenon previously

identified in poker literature. Furthermore, through a rationality analysis, we have discerned

that sophisticated players should transition from equilibrium to exploitative strategies under

adjusted assumptions, more in line with common scenarios in casual poker. This shift in strategy

opens up exciting avenues for future research. We also show that equilibrium is fragile to

little shocks. Subsequent studies could explore diverse models for representing unsophisticated

players, thereby testing the robustness of our findings. Additionally, these investigations could

extend their scope to solve historical games correctly, shedding new light on classic problems in

Game Theory.
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