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Abstract

In this study, we investigate the effect drought has on school attendance in
Tanzania. To do so, we exploit exogenous rainfall variability to explore its effect
on the proportion of school attendance after they experienced a drought shock. We
resulted in a positive and significant coefficient, indicating that those with a severe
drought shock are likelier to increase school attendance. Notably, this finding holds
across different model specifications, demonstrating the robustness and consistency
of our results.

Keywords: Drought, SPI, School Attendance, Tanzania, Education, Agricul-
ture, Rainfall, Grid Cell, Severe Drought Shock.
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1 Introduction

The increased frequency of severe weather events, such as drought shocks, has pro-
found implications worldwide, especially for those regions facing socioeconomic adver-
sity. Sub-Saharan Africa (SSA) continues to face significant challenges as the world’s
most food-insecure region, marked by elevated child mortality and poverty rates, limited
human and physical capital, and inadequate infrastructure (Arslan et al., 2016). Ex-
treme weather events exacerbate the socioeconomic challenges in the region, particularly
affecting countries heavily reliant on smallholder agriculture. This dependency renders
them more susceptible to the adverse impacts of climate change. (Barrios et al., 2008;
Arslan et al., 2016; Ziervogel et al., 2008). Our study primarily centers on Tanzania, a
representative nation within the Sub- Saharan Africa (SSA) region, renowned for its sig-
nificant reliance on smallholder farmers and the agricultural sector as the primary source
of employment and livelihood (Rowhani et al., 2011).

Drought is an insidious natural hazard that results from lower levels of precipita-
tions than what is considered normal (Svoboda et al., 2012). It has affected more people
worldwide in the last 40 years than any other natural hazard (FAO, 2020). A growing
literature exploits the variability of climate shocks to examine their impact on various
economic factors. Some studies have found that severe drought shocks negatively af-
fect children’s nutritional status inducing height stunting and malnutrition (Hyland and
Russ, 2019; Nsabimana and Mensah, 2020). Additional research has found that exposure
to drought shocks during pregnancy at later stages of the first trimester negatively affects
children’s cognitive and non-cognitive skills in adolescence (Chang et al., 2022). In addi-
tion, some findings resulted in women’s power reduction and increased transactional sex
and sexually transmitted infections (STI) from severe drought exposure. Among women
engaged in agriculture, the economic shocks caused by drought compel some to resort
to transactional sex as a coping mechanism. Specifically, these women seek relationships
with unaffected men, particularly those employed outside the agriculture sector, thereby
exposing themselves to the risk of contracting STIs (Treibich et al., 2022; Hyland and
Russ, 2019).

A modest focus within this growing literature is establishing associations between
drought shocks and school attendance, child labor, and learning stagnation. A study
in Uganda, has found that negative rainfall shocks (drought shocks) significantly reduce
school attendance, with a particularly pronounced effect observed among children in rural
areas and primary schools. Furthermore, exposure to negative rainfall shocks increase
children’s participation in wage work by approximately 1% (Agamile and Lawson, 2021).
Another study in Uganda resulted in a negative enrollment effects in females attending
primary schools after a negative deviation in rainfall. This effect grows stronger in older
girls, with no effect on boys (Björkman-Nyqvist, 2013). Another research in the Kagera
region in Tanzania, has indicated that crop shocks lead to a significant increase in child
labor levels, increasing 6.1 hours of work (Beegle et al., 2006). In contrast to these results,
another study in rural India found that, during drought years, children reported higher
school attendance and achieved higher scores on simple math tests. Whereas, during
years of high rainfall, which may result in flooding episodes, children exhibited poorer
performance in both math and reading tests and were more likely to report dropout
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instances (Shah and Steinberg, 2017). The findings from this study provide further
evidence of the complex relationship between drought shocks, educational outcomes, and
dropout rates.

This study investigates the impact of drought shocks on school attendance in Tan-
zania. Within this growing literature, there is a notable gap in understanding drought
shocks’ effects on school attendance in the Tanzanian context. This study contributes to
the first estimates of a drought shock’s impact on school attendance across all regions in
Tanzania. It helps the understanding of a drought shock in the short term and provide
insight into how Tanzanian schools and families are affected by drought. In addition,
this study differs in two ways from the existing literature that investigates the impact of
drought shocks on educational outcomes. First, it uses a georeferenced rainfall dataset
that relies on historical weather observations instead of weather models, enhancing accu-
racy. And second, it exploits drought variability during a crucial time frame within the
agricultural rainfall season, focusing on Tanzania’s primary crops. This is accomplished
by computing the Standardized Precipitation Index (SPI), a reliable measure of drought
as per climatology studies. Therefore, we exploit exogenous rainfall variability to explore
its effect on the proportion of school attendance after they have experienced a drought
shock. The treatment is determined by the spatial area exposed to a drought shock.

The paper is organized as follows. Section 2 provides an insightful overview of the
Tanzanian context, incorporating key aspects such as education, rainfall seasons, and
agriculture. Section 3 introduces the study’s data, descriptive statistics, and the empirical
framework for analysis. The estimation results are presented in Section 4, followed by
a falsification test exploration in Section 5 and robustness checks in Section 6. Finally,
Section 7 encapsulates the findings and conclusions drawn from the study.

2 Tanzania

The United Republic of Tanzania is situated in East Africa, sharing its borders with
the Indian Ocean to the east, and surrounded by Uganda and Kenya to the north, Zam-
bia, Malawi, and Mozambique to the south, and Burundi, Rwanda, and the Democratic
Republic of the Congo to the west. (Figure 1) (Commonwealth, 2023). With a population
of 59.7 million (2022), administratively, Tanzania is divided into 26 regions. The country
achieved its independence from the United Kingdom in 1962 and was ruled until the
mid-1980s under a communist, one-party dictatorship. Since 1985, liberalization efforts
and democratic reforms helped increase the nation’s GDP and food production (Rowhani
et al., 2011). Today, Tanzania relies strongly on its agricultural production, representing
around 27% of its GDP (2022), the backbone of its economy (Mushi et al., 2022). Ac-
cording to the World Bank (2022), Tanzania has a GDP per cápita (usd) of 1,192.4; it is
below average to the SSA region (1,690.4), similar to Uganda (964.2), higher than Malawi
(645.2), Democratic Republic of the Congo (586.5) and Mozambique (541.5), and lower
than Kenya (2,099.3). Around 12 million of Tanzanian people are below the poverty line,
being particularly persuasive in the rural areas, where around 80% of the population lives
(WorldBank, 2019).
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Figure 1. Tanzania (in brown). Source: Own elaboration using QGIS.

2.1 Education

Tanzanian education is structured as follows. It is based on a "2-7-4-2-3+" schooling
structure: two years of pre-primary school, seven years of primary school, four years of
Ordinary level secondary school (O-level), two years of Advanced level secondary school
(A-level), and at least three years of higher education (Kyaruzi et al., 2019). Regarding
primary school, the Tanzanian Universal Primary Education (UPE) program from the
government, implemented between 1974 and 1978, granted universal access to primary
education. A study resulted in reduced inequalities of access to schooling from this pro-
gram, with positive returns to education mainly from the agricultural sector. From 1974
to 1978, the proportion of children aged 7 to 13 years enrolled in schools saw a remark-
able surge, rising from 43 to 90 percent. Notably, this positive trend in school enrollment
significantly reduced regional disparities in educational access (Delesalle, 2019).

Secondary education in Tanzania encompasses both private and government schools.
Over the past two decades, there has been a substantial rise in student enrollment in
both government and non-government secondary schools. Nonetheless, the high number
of dropouts in secondary schools can be attributed primarily to truancy, accounting for
89% of cases. Pregnancy is the second leading cause at 7%, indiscipline ranks third at
3%, and the least common cause is death, accounting for 1% of the dropouts (Mashala,
2019).
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2.2 Rainfall and Agriculture

Tanzania is located within the Sub-Saharan Africa (SSA) region. As most of the
countries of the region, it is renowned for its significant reliance on smallholder farmers
and the agricultural sector as the primary source of employment and livelihood (Rowhani
et al., 2011). The susceptibility of African agriculture to climate change stems from its
heavy dependence on rain-fed agricultural practices and a lack of advanced technological
interventions. Most farmers in the region operate on small-scale or subsistence levels,
facing multiple constraints, including limited financial resources, inadequate infrastruc-
ture, and unequal access to crucial information. These challenges collectively impede
their ability to adapt effectively to the impacts of climate change, accentuating the over-
all vulnerability of the agricultural sector in Africa (Pereira, 2017). In most of Africa,
agriculture exists without access to irrigation so over 95% of the crop-land is devoted to
rain-fed agriculture (Patt and Winkler, 2007). Today in Tanzania, the agricultural sector
accounts for more than 25% of the country’s GDP, 65% of export earnings, and em-
ploys about 80% of the workforce, with over 80% of economically active women employed
(Martin and Kahamba, 2017; Jones et al., 2023). The main linkages between weather and
incomes go directly through agriculture, having substantial implications for food security
and welfare (Arslan et al., 2016).

Tanzania’s rainfall areas fall under two broad categories based on: the bi-modal and
the uni-modal rainfall areas, as mentioned by Mollet and Barelli (2016) from the Food
and Agriculture Organization of the United Nations (FAO). The bi-modal rainfall area is
characterized by short rains known as "Vuli" from mid-September to January, followed by
the long rainy season, called "Masika" from March to June. The bi-modal areas extend
over the northern and northeastern regions. In the central and southern highland regions,
rainfalls are uni-modal, known as "Msimu", which starts in November and finishes around
May. Figure 2 shows the crop calendar with the rainy seasons in uni-modal and bimodal
rainfall areas.

Figure 2. Generic agricultural production calendar for Unimodal and Bimodal areas in
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Tanzania1.

In Tanzania, out of a total of 7.1 million hectares of high and medium potential
land for agriculture, a mere 6% is currently under cultivation, largely due to forest and
pasture extensions. The majority of agricultural activities are carried out by smallholder
farmers, operating on plots ranging from 0.9 to 3.0 hectares. These smallholders account
for approximately 80-90 percent of the agricultural land use in the country (Mollet and
Barelli, 2016). Cereal production from the "Masika" and "Msimu" seasons accounts for
almost 80% of food production. Maize production holds a central position in Tanzania’s
agricultural activities as it is recognized as the primary driver of the country’s economy.
Other major cereals are millet, rice, and sorghum (Rowhani et al., 2011). These cereal
crops have comparable time-frames for planting, flowering, and harvesting. They are
typically planted during the initial rains in November and December, with flowering
occurring approximately three months after planting. Harvesting takes place between
the end of March to the beginning of June. The first three months after planting are
known for their importance for the plant’s water demand. During this critical period,
abundant and timely rainfall is crucial to achieving optimal crop production, accounting
for approximately 70% of the total yield. Conversely, drought conditions during this
phase significantly increase the risk of crop failure and yield reduction 2. This time frame
is taken into account when calculating the optimal timescale for the drought index in the
following sections.

3 Methodology

This study uses two georeferenced data sets: Tanzania National Panel Survey to obtain
educational outcomes and the UDEL precipitation dataset to obtain gridded weather
data. These datasets are further described, along with the presentation of descriptive
statistics and the empirical framework.

3.1 Tanzania National Panel Survey

The Tanzania National Panel Survey3 (TNPS) is a nationally representative panel
data of household, community, and agriculture surveys collected by Tanzania’s National
Bureau of Statistics (NBS). It collects data about health, education, labor, crop produc-
tion, land use, and food consumption, among others. The survey conducts interviews
with individuals over a period spanning from October of the initial year to October of
the subsequent year, encompassing three waves occurring biennially.

1Retrieved from Tanzania’s Ministry of Agriculture: https://www.kilimo.go.tz
2Stated by two Agronomic Engineers in an interview.
3The data is accessible through the World Bank - Living Standards Measurement Study at the

following link: https://microdata.worldbank.org/index.php/catalog/lsms/?page=1&ps=15&repo=lsms
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In this study, we use the 2008/2009, 2010/2011, and 2012/2013 waves to obtain the
proportion of children aged 5-23 currently enrolled at school. This approach aligns with
previous studies in developing countries encompassing individuals up to 23 to account for
potential delays or dropouts in educational attainment. By including this age range, we
aimed to comprehensively and accurately represent Tanzania’s school attendance in our
analysis.

In 2008/2009, the survey interviewed 3,280 households (a total of 15,987 household
members) spanning all regions and all districts of Tanzania, both mainland and Zanzibar.
In the second wave, 2010/2011, 93.2% of households were interviewed and tracked in
the exact location (attrition of 6.8%). And in the third wave, 2012/2013, 93.4% of
household members from the second wave were interviewed and tracked in the exact
location (attrition of 6.6%). We erased from the dataset those household members who
migrated and moved away from the original household during the waves. The panel is
based on a stratified, multi-stage cluster sample design4. Figure 3 shows the location of
the Enumeration Areas/villages’ locations spanning throughout Tanzania’s regions.

Figure 3. Map of Tanzania with its 26 regions & the EA/Village locations. Source: Own
elaboration using QGIS.

4The survey was stratified into two main regions: Mainland Tanzania and Zanzibar. Each of these
regions was further divided into rural and urban areas, with a specific stratum designated for Dar es
Salaam. Within each stratum, clusters were selected randomly, with the probability of selection based
on their population size. In this context, a cluster refers to a census Enumeration Area (EA) or a village.
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3.2 Weather Data and Drought Index

Weather data was obtained from the University of Delaware’s Global Land Tempera-
ture and Precipitation Data (UDEL)5. It provides climate data on monthly precipitation
estimates from 1900 to 2017 at a 0.5-degree grid cell level (approximately 50km x 50km
at the equator). Gridded weather datasets use interpolation across space and time to
combine available weather station data into a balanced panel of observations on a fixed
spatial scale or grid (Auffhammer et al., 2013). This dataset has been used in numerous
papers that work with climate variability (Hyland and Russ, 2019; Chang et al., 2022;
Dell et al., 2012; Jones and Olken, 2010). This dataset was used for several reasons: (1)
The data on precipitation is accessible at a fine spatial resolution (0.5-degree grid cell) for
the entirety of the 20th century, crucial for calculating the Drought Index (SPI), (2) Data
is accurate as the gridded weather data is derived from historical weather observations
rather than weather models (Data Assimilation), and (3) uses a highly dense network of
weather stations during the years of our study. Tanzania is well covered by weather sta-
tions throughout the period of the study, specifically when obtaining historical weather
data. Gridded weather data based on historical weather observations address the chal-
lenge of missing observations at specific weather stations, making data more accurate in
observation-rich regions. However, gridded weather data based on data assimilation com-
bines observational data with physics-based models creating a model prediction, likely to
be less accurate in regions abundant with observations but more accurate where obser-
vations are more scarce(Auffhammer et al., 2013).

The UDEL dataset has gained prominence as a widely used weather dataset in both
regional and global economic studies. It has become a popular choice due to its extensive
usage across various studies in the literature, mainly for Africa. Another dataset widely
used in the economics literature is the Climatic Research Unit (CRU) at the University
of East Anglia, which is used to assess the robustness of our results in Section 5.1.

A refined grid was constructed using the grid cell coordinate points from the UDEL
dataset, with each grid cell point positioned at the center of its new corresponding indi-
vidual grid cell. This tailored grid was explicitly designed to align with the coordinates
of Tanzania. Furthermore, a distinct identification number was assigned to each grid
cell. Based on the GPS coordinates, each Enumeration Area (EA) or village from the
Tanzania National Panel Survey (TNPS) was allocated to its respective grid cell district
using the constructed grid. This clustering approach ensured that each EA/village was
accurately associated with the corresponding grid cell district based on its georeferenced
location.

Figure 4 depicts a map of Tanzania illustrating the spatial distribution of Enumeration
Areas (EA) and villages, each assigned to their respective grid cell. The map visually
demonstrates the alignment between the EA/villages and their corresponding grid cells,
clearly representing the spatial relationship between the two. A total of 149 out of 366
grid cells in Tanzania contain at least one EA/Village.

5The data can be accessed at the following link from the University of Delaware, which data
was interpolated and documented by Kenji Matsuura (2017) : http://climate.geog.udel.edu/ cli-
mate/html_pages/download.html#P2017
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Figure 4. Map of Tanzania with the gridcells & EA/Village locations. Source: Own
elaboration using QGIS.

The UDEL precipitation dataset is used to calculate the Standardized Precipitation
Index (SPI), developed by McKee et al. (1993), for each grid cell. Following the SPI
User Guide from the World Meteorological Organization (Svoboda et al., 2012), the SPI
serves as a robust and versatile drought index, relying on the probability of precipitation
over various time scales. The SPI computation at any location is based on the chosen
period’s historical precipitation data. It needs at least 50-60 years of monthly historical
precipitation data to be calculated accurately. With the long-term precipitation record,
the rainfall data is fitted into a gamma distribution to transform it into a normal distri-
bution. Raw precipitation data is not normally distributed; the SPI z-scores allow us to
normalize precipitation data making drier and wetter regions to be equally represented.
McKee et al. (1993) introduced a classification system to categorize drought and flood
intensities based on the Standardized Precipitation Index (SPI) (Table 1). A drought
shock occurs when the SPI reaches a value of -1.00 or less.

Table 1. SPI Values.
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The Standardized Precipitation Index (SPI) offers a range of timescales that capture
the effects of drought on various water resources. These timescales include 3-, 6-, 12-,
24-, and 48-month intervals. Selecting a specific time scale depends on assessing drought
impacts on different water resources. For example, meteorological drought requires a 1- or
2-month SPI, while agricultural drought analysis utilizes SPI ranging from 1 to 6 months.
For hydrological drought investigations and applications, longer timescales, such as six
months up to 24 months or more, are typically employed (McKee et al., 1993; Svoboda
et al., 2012). For this study, a 3-month SPI is calculated for each grid cell to exploit
the drought variability during the first three months of planting during the "Masika"
season (December-February). Households interviewed for the survey before February are
categorized under the preceding year’s potential drought period (December to February).
Conversely, households interviewed after February are assigned to the potential drought
period of the current year. Table 2 provides an overview of this categorization.

Table 2. Categorization of the Potential Drought Period according to the month the household
was interviewed.

3.3 Descriptive Statistics

To gain insights into the data sets presented, Table 3 shows the frequency of grid
cells that had and had not experienced a drought shock at the potential drought period.
Drought shocks are categorized as moderate, severe, and extreme, including a no-shock
column. At first, we can see that December 2010 - February 2011 period experienced more
moderate and severe drought shocks than any other potential drought period listed. This
period is followed by the December 2008 - February 2009 period. A number of 68 grid
cells experienced more than one moderate drought shock, 31 severe drought shocks, and
only two grid cells experienced an extreme drought shock.

Complementing to Table 3, Table A (Appendix) provides supplementary insights into
the distribution of drought shocks among the affected grid cells. Specifically, it highlights
that 63 grid cells exposed to moderate drought shocks predominantly experienced a single
episode, with only a 5 grid cells experiencing two episodes throughout the study period.
In contrast, grid cells exposed to severe and extreme drought shocks faced these adverse
conditions only once throughout the entire study period, indicating the severity and
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infrequency of such extreme events. Out of the 149 grid cells, 57 never experienced a
drought shock in our study.

Table 3. Number of gridcells that had and had not a drought shock during the time categorized
to the potential drought period.

Building upon the insights gained from the distribution of drought shocks among
the affected grid cells, Figure 5 presents six distinct maps, each capturing the 3-month
Standardized Precipitation Index (SPI) across the potential drought periods in Tanzania.
These maps help comprehend the spatial dynamics and intensity of drought shocks on
the grid cells.
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Figure 5: 3-month SPI in the potential drought periods in Tanzania. Grid cells in square black
correspond to the 149 grid cells from this study. Source: Own elaboration using R-studio.

Table 4 shows the proportion of school attendance during the TNPS period of those
individuals that were categorized to their potential drought period. The proportion is
based over the potential exposure of the grid cell to a drought shock. Those grid cells
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where the individuals are categorized to the potential drought period December 2008 -
February 2009, December 2009 - February 2010, and December 2012 - February 2013,
the school attendance was higher on those exposed to a drought shock than those who
were not. However, on the other periods, school attendance was lower on those grid cells
exposed to a drought shock than on those who were not.

Table 4. Proportion of school attendance during the TNPS period of those individuals that
were categorized to their potential drought period. The proportion is based on the grid cell

exposure to drought.

Table 5 examines whether individuals’ pre-treatment characteristics are balanced
across those who are never exposed to a drought shock (control) and those who are
eventually exposed in the following periods (eventually treated). For 13 out of 15 pre-
treatment characteristics available there are no statistical significant differences across
those never exposed and those eventually exposed to a drought shock.
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Table 5. Pre-treatment characteristics.

3.4 Empirical Model

In this study, we exploit drought variability of the first three months after the main
crops are planted to explore its effect on the proportion of school attendance at the grid
cell level of treatment. The effect drought shocks have on school attendance is specified
as follows:

SchoolAttendancejt = β1ModerateDShock jt + β2SevereDShock jt+

β3ExtremeDShock jt + γj + αt + εjt
(1)

where SchoolAttendance is the proportion of current enrollment to school in the gridcell
j at time categorized to the potential drought period t. The variables ModerateDShock ,
SevereDShock , and ExtremeDShock , are binary variables that takes the value of one when
grid cell j, at time categorized to the potential drought period t, experiences moderate,
severe and extreme drought shock, respectively. Otherwise, it takes the value of zero,
being β the parameters of interest. γ is a grid cell fixed effect, α is a time fixed effect,
and ε is the error term.
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The model’s identification assumption relies on the variability of exogenous drought
shocks. Meaning that, conditional to our fixed effects, the drought shocks are uncorrelated
to other variables that may be determinants of school attendance. The control group are
those grid cells that were not exposed to a drought shock at the time categorized to
the potential drought period. Therefore, our identification assumption sheds light that
in the absence of the drought shock, the treated grid cells would have exhibited similar
enrollment patterns to the control group. Drought shocks occurring across the grid cells as
a result of natural weather variability can be considered exogenous. Concerning inference,
the standard errors are clustered at the grid cell level. It is essential to consider the
possibility of error within the grid cells to correlate over time. By clustering the standard
errors at the level of drought (grid cell level), it considers that the observations within
the grid cells are correlated and does not take them as independent. Following the work
of (Bertrand et al., 2004), estimations are precise if cluster numbers are equal to or larger
than 50. With 149 clusters, we can estimate standard errors following this procedure.

By working with panel data, we can identify the parameter of interest, β, in the pres-
ence of unobservable variables that do not change over time (time invariable). Including
fixed effects in our model, we control for the omitted variable bias from the unobservable
heterogeneity when the heterogeneity is constant over time.

We adopt various specifications to define the treatment in our analysis. In each
specification, a grid cell is considered treated if it experiences a drought shock. The
first specification entails that a treated grid cell may switch to the control group in the
subsequent time period if it remains unexposed to a drought shock during that period. In
the second specification, we include only the initial treated observation, excluding the rest
of the post-treatment periods. Lastly, the third specification considers grid cells treated
in period t and in its subsequent periods, as a difference-in-difference specification.

4 Results

We estimate equation (1) using Ordinary Least Square (OLS). To draw general con-
clusions, Table 6 reports the results from estimating equation (1) under each drought
shock classification from McKee et al. (1993), adopting the specifications mentioned in
Section 3.4. This study focus only on the impact of severe drought shocks due of its
significant association with school attendance.
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Table 6. Estimations.

As shown in Column (1) and Column (2), the coefficient of Severe Drought Shock is
positive and statistically significant over theirs specifications, indicating that those grid
cells that experience a severe drought shock are more likely to increase school attendance
in the short term. Moreover, school attendance increases by 3.7 percentage points on
average when the grid cell is exposed to a severe drought shock under the specification
that a treated grid cell may switch to the control group in the subsequent time period
if it remains unexposed to a drought shock. And, school attendance increases by 4.2
percentage points on average when the grid cell is exposed to a severe drought shock
under the specification of including only the initial treated observation, excluding all
post-treatment periods.

Column (3) estimated coefficient validates the drought shock’s short-term effect on
school attendance. To further assess this association, a falsification test is done in Section
5 to see if the drought shock effect persists in the following periods.

5 Falsification Test

To validate our identification strategy, we conduct a falsification test that looks at the
impact of lead and lag periods. Our identification assumption relies on the variability
of exogenous drought shocks, so that in the absence of this shock, the treated grid cells
would have experienced similar enrollment patterns to the control group. The falsification
test allow us to show whether the drought shock drags its effect in the following periods.
This approach enable us to ascertain the specificity of the relationship and assess whether
the observed association between the drought shock and school attendance is unique to
the initial period and does not persist in the following periods.
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In our study, we encounter a specific scenario where the grid cells that experience a
drought shock are only exposed once throughout the entire duration of the study period.
Notably, the grid cells initially classified as treated may transition to the control group in
subsequent periods if they are not exposed to a drought shock. To conduct the falsification
tests, we consider the grid cells treated in one time period as treated in the following
periods. This approach allows us to examine the effects of the treatment persisting over
multiple periods.

We follow the ATT (Average Treatment Effect on the Treated) estimator proposed by
Callaway and Sant’Anna (2021). This estimator allows us to compare the outcomes of
observations that receive the treatment in a specific period with those that do not receive
the treatment in that period but become treated in the future. Furthermore, it enables
a comparison between the treated observations and a group that is never exposed to the
treatment. The ATT estimator uses a group-time base as a counterfactual instead of the
pre-treatment tendency 6. This approach allows us to group the ATTs so that we can do
a comparison between treatment group, calendar time, or as an aggregated single form,
allowing a much clearer notion of the treatment impact.

Graph 1. Event study ATT. Confidence intervals at 95%.

Graph 1 depicts the event study analysis based on the previously mentioned model
estimation. The graph illustrates the trends observed before and after the treatment pe-
riod, visually representing the treatment effect. Before the treatment, we follow minimal
or no impact on the outcome variable. However, as indicated by the drought shock, the
effects become positive and statistically significant once the treatment occurs, as corrob-
orated by the results presented in Table C (appendix). In the subsequent post-periods,

6The two-way fixed effect(TWFE) estimator is potentially bias with this staggered adoption of treat-
ment if there are any heterogeneous effects of the treatment over time (if the effect of the treatment
differs in the moment it becomes treated).
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the treatment effect diminishes in statistical significance. The Average Treatment Effect
on the Treated (ATT) begins to fluctuate, exhibiting positive and negative values.

To gain further insights into the behavior of Graph 1, we conducted a group-time
study, as presented in Table 7, to identify if there is a specific time period group in which
the treated observations predominantly drive the treatment effect. "Group" is defined by
the time period when units are first treated. Our findings reveal that the grid cells treated
in the last time period (December 2012 - February 2013) carry the primary impact of the
treatment.

Table 7. Group study ATT.

To delve deeper into the analysis, we eliminated these treated grid cells from the
dataset and re-ran the event study analysis (Graph 2; Table D in appendix). The coeffi-
cient estimate remained similar to the previous analysis without the exclusion, indicating
a consistent treatment effect but with reduced statistical power.

Graph 2. Event study ATT without G6. Confidence intervals at 95%.
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6 Robustness Check

To ensure the robustness of our findings, we undertake several steps. Firstly, we per-
form a leave-one-out analysis by excluding each treated grid cell individually to evaluate
the sensitivity of our results. Secondly, we examine if there are any heterogeneous effects
from the older cohort of children included in our sample. Thirdly, we assess the impact
of drought using a different measurement of the drought index. Finally, we examine the
consistency of our results by utilizing an alternative source of rainfall data and compar-
ing the estimated coefficients. These comprehensive steps enhance the reliability and
credibility of our analysis.

6.1 Leave-one-out

To investigate whether a single treated grid cell primarily drives the treatment effect
on the outcome variable, we conducted additional analyses by excluding one treated grid
cell at a time and estimating equation (1) without that specific grid cell, following the
specification of retaining only the first treated observation excluding all post-treatment
periods. The results are presented in Graph 3. The coefficients obtained range from 0.02
to 0.06, consistent with the coefficient estimated in equation (1), where no treated grid
cell is excluded. Notably, most of these coefficients are statistically significant at the 10%
level, and their confidence intervals overlap, suggesting that our findings are not driven
by a single treated grid cell.

Graph 3. Coefficients excluding one gridcell treated at a time.
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As a result, we can say that the estimated model (1) is robust by excluding one treated
gridcell at a time, and is not driven by its effect.

6.2 Age Heterogeneity

To calculate the current proportion of children attending school, we considered indi-
viduals aged 5-23, as submitted in Section 3.1. By including individuals up to 23 in our
analysis, we acknowledge the potential influence of older individuals returning to school.
To assess the impact of this older cohort on our results, we conduct a sensitivity analysis
by excluding respondents aged 19 to 23 from the survey. This approach allow us to de-
termine the robustness of our findings and ensure that our results are not driven solely
by this specific age group.

Table 8 displays the estimation results obtained by excluding respondents aged 19 to
23 from the survey while employing the model specified in equation (1) through Ordinary
Least Squares (OLS). Column (1) presents the estimation after excluding the older cohort
of individuals (aged 19 to 23), while Column (2) presents the estimation without any
exclusion.

Table 8. Coefficients excluding and including the older cohort of individuals.

Remarkably, the coefficient obtained by excluding the older cohort remains nearly
identical to that obtained without any exclusion while maintaining its statistical signifi-
cance. These findings demonstrate that the presence of the older cohort does not signifi-
cantly influence our results. Consequently, we can confidently assert that our conclusions
are not driven by the inclusion of this specific age group.

6.3 SPEI & Log Deviation in Rainfall - Drought Indices

As an alternative approach to measuring drought, we consider two commonly used
indices in the literature that explores climate variability and drought: the Standardized
Precipitation Evapotranspiration Index (SPEI) and the Log Deviation in Rainfall. These
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indices provide valuable insights into the severity and occurrence of drought events, of-
fering different perspectives on assessing drought conditions.

The Standardized Precipitation Evapotranspiration Index (SPEI) is a widely used
index in the study of the impact of global warming on drought severity. It was intro-
duced by Vicente-Serrano et al. (2010) and has gained popularity due to its simplicity
and ability to capture drought conditions across different timescales. Like the Standard-
ized Precipitation Index (SPI), SPEI classifies drought based on precipitation data for
3-, 6-,12-, 24-, and 48-month timescales. However, what sets SPEI apart is its consider-
ation of reference evapotranspiration, which represents the amount of water that would
evaporate under reference conditions. SPEI considers climatic factors such as tempera-
ture, humidity, solar radiation, and wind, providing a more comprehensive measure of the
available water (climatic water balance). By incorporating reference evapotranspiration,
SPEI offers insights into the combined effects of precipitation and evapotranspiration on
drought severity in different locations and time periods (Beguería et al., 2014).

We also employed the Log Deviation in Rainfall as our third drought index, adopting
the approach outlined in Hyland and Russ (2019); Maccini and Yang (2009). This index
captures the logarithmic deviation of precipitation within each grid cell. Specifically,
using the UDEL precipitation database, we computed this deviation by comparing the
total rainfall during the three months (December to February) across the three waves
of the TNPS with the historical mean total precipitation of each respective grid cell.
By examining the logarithmic deviation, we gain insights into the relative variation of
rainfall from the long-term average, providing a valuable measure for assessing drought
conditions.

We utilized the Climatic Research Unit (CRU) SPEI database to assess drought con-
ditions, which provides global-scale data at a spatial resolution of 0.5×0.5 degrees from
1901 to 2017. Following the methodology outlined in section 3.2, we extracted the 3-
month timescale SPEI from this database. Additionally, for the logarithmic deviation in
rainfall, we referred to the drought classification specified in Table 9 (Gupta et al., 2016).
In this classification, we considered the Large Deficient of Rainfall as indicative of the
severe drought shock classified in both SPI and SPEI indices.

Table 9. Classification of Drought using Log Deviation in rainfall.

Table 10 presents the estimation results of the two alternative approaches to mea-
suring drought using the model specified in equation (1) with Ordinary Least Squares
(OLS). In Column (1), we report the estimate derived from the Standardized Precipita-
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tion Evapotranspiration Index (SPEI) - severe drought shock, while Column (2) presents
the estimate derived from the Logarithmic Deviation - Large Deficient of Rainfall shock.

Both coefficients exhibit positive values and demonstrate a similar magnitude, aligning
with the coefficient estimated using the UDEL database (refer to Table 6). Notably, the
Log Deviation approach estimation is statistically significant, whereas the estimation
from SPEI does not reach statistical significance. However, the overlapping confidence
intervals between SPEI and SPI indicate that the estimated effect size remains relatively
stable across the two approaches, despite the lack of statistical significance in the SPEI
coefficient.

Table 10. Estimations using alternative drought indices: SPEI and Rainfall Log Deviation.

Although the statistical power of the SPEI coefficient may be limited due to the
exposure of only nine grid cells, the consistency between the different drought measures is
evident from the overlapping confidence intervals. Moreover, the Log Deviation approach
estimator offers stability and reliability in estimating the effect, bolstering our results’
credibility and enhancing our findings’ robustness.

6.4 CRU rainfall data

The alternative source of rainfall data we use is the CRU rainfall database devel-
oped by the Climatic Research Unit at the University of East Anglia, available at the
global scale at a 0.5×0.5 degree spatial resolution. As for the same as the UDEL rainfall
database, CRU uses observational data from historic weather stations and uses spatial
interpolation between these stations to create a global grid. The main difference is that
CRU uses a different dataset and extrapolation algorithm. Both are widely used by
climatologists and economists (Auffhammer et al., 2013; Hyland and Russ, 2019).

As Auffhammer et al. (2013) mentioned, conducting sensitivity checks using multiple
data sources can aid in assessing the robustness of the results. The correlation between

22



CRU and UDEL precipitation data in Tanzania is 0.8694. Following the Weather Data
and Drought Index section, we retrieved the SPI from the CRU rainfall dataset. Graph
1 shows the K-density distributions of both SPI functions.

Graph 4. K-density distributions of CRU-SPI versus UDEL-SPI.

Table 11 shows the results from estimating equation (1) using Ordinary Least Square
(OLS) on CRU and UDEL SPI’s severe drought shock.

Table 11. Estimations CRU vs UDEL.
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in Column (1) of Table 11, we observe a positive and statistically significant coefficient
for the variable "Severe Drought" obtained from the CRU database. This finding aligns
with the coefficient estimated from the UDEL database in Column (2). Both coefficients
exhibit similar magnitudes and statistical significance, as their overlapping confidence
intervals indicate. These consistent results across different databases support the robust-
ness of our findings, suggesting a consistent relationship between school attendance and
the severe drought shock.

7 Conclusion

Throughout this study, we have explained how Tanzania’s school attendance re-
sponded to a drought shock. By examining the impact of drought on school attendance,
we have provided valuable insights into the educational consequences of climate vari-
ability in the Tanzanian context. Be proposed a model that exploits exogenous drought
variability in each grid cell to explore its effect on the proportion of school attendance.
We resulted in a positive and significant coefficient, indicating that those grid cells that
experience a severe drought shock are more likely to increase school attendance.

Our result is robust to different specifications. We examine its consistency and validity
using alternative rainfall data, different drought index measuring, leave-one-out analysis,
and a falsification test. These ensured the robustness and reliability of our findings
and identification assumption, highlighting the consistency and validity of the observed
relationship between drought shocks and school attendance in Tanzania.

This study contributes with a first estimate of the effect a drought shock has on school
attendance across all regions in Tanzania, providing an insight into how Tanzanian schools
and families are affected by drought. It highlights the importance of integrating climate
resilience into educational planning, promoting sustainable and adaptive approaches to
tackle the challenges posed by climate change in the education sector.
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A Table A
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Table A. Amount of drought shocks received by the gridcells that where exposed to a shock.
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B Table B

Table B. Estimations CRU vs UDEL including all drought shocks classifications.
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C Table C

Table C. Estimations Event Study ATT.
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D Table D

Table D. Estimations Event Study ATT without G6.
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