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Abstract 

This paper revisits the well-known result of Radner and Stiglitz {1984) which shows that, 

under certain conditions, the value of information exhibits increasing marginal returns over sorne 

range. Their result assumes that both tbe number of states and thc number of signa! rcalizations 

are finite, assumptions which preclude most analyses of optima! information acquisition. We 

provide sufficient conditions that yield this 'nonconcavity' in the value of information in a general 

framework; the role that these conditions play is clarified and illustrated with severa! examples. 

We also discuss the robustness of the nonconcavity result, and the difficulties involved in getting 

the value of information to be globally concave. 
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Machina, an associate editor and two anonymous referees for their helpful comments, and seminar participants 
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1 Introduction 

Is there an intrinsic nonconcavity to the value of information? A widcly cited theorcm of R.adncr and 

Stiglitz (1984) suggests that there is. The theorem gives conditions uncler which the rrrn.rginal value 

of a small amount of information is zero. Since the marginal value of costless information is always 

nonnegative, this finding implies that, unless information is useless and hencc nlways valuclcss. 

it must exhibit increasing marginal returns over sorne range. R.adner and Stiglitz (henceforth 

RS) do present examples in which information exhibits decreasing marginal returns, so the value 

of information is clearly not always nonconcave. Yet, the conclitions of their t heorem scem at 

first glance to be fairly innocuous smoothness and continuity assumptions. Thcy assumc thnt. t.hc 

number both of statcs ancl signa! realizations are finite. T hey index the information structure, 

represented by a Markov matrix of state-conditional signa! distribuiions, by a para.meter taking on 

values in the unit interval, with a zero value corresponding to nnll information. Thcy then impose 

two assumptions: the Markov matrix is a differentiable function of the index parametcr at the zero 

value; and a particular selection from the correspondence of maximizers is continuous. Although 

these conditions may not always hold, their result is not easily dii::missed as depending on exotic 

assumptions. 

As RS note, this nonconcavity has severa! important implications: the demand for information 

will be a discontinuous function of its price (under linear pricing); agents will not buy 'small' 

quantities of information; and agents will tend to specialize in informat.ion product.ion. As with 

any nonconcavity, it will tend to complicate any analysis of information acquisition, ancl it can 

also have substantive consequences in applications. For example, it may preclude the existcnce of 

a competitive equilibrium (Wilson (1975), Radner (1989)) , or thc existence of a li11ear Rational 

Expectations Equilibrium (Laffont (1985)) if information can be acquired by agcnts; or it may have 

substantial effects on the organization of production when moral hazard is present and therc is a 

demand for monitoring (Singh (1985)). 1 

The nonconcavity has been cspecially vexing to the literature on active learning or experimen

tation.2 In this litcrature, an agent takes an action in each pcriod in the fa.ce of uncertainty about 

a payoff-releva.nt parameter. The agent observes a random signa] that, depends both on her action 

and the unknown parameter; after observing the signa!, she updat.cs beliefs and then chooscs again. 

Since the signa! clistribution depends on the action, the a.gent can affect how much she learns by 

varying her actions, sacrificing utility today to incrcase information available tomorrow. Thus the 

present action in these models acts as ,1.n index of the informativcness of the 'experimcnt' that the 

agent observes. If the value of information is not concavc in t,hc action. thcn the analysis of optima! 

experimcntation is made much more complex. Moreo_;er, Harringt.on ·(1995) Íl.ncl Minnan, Samuel

son and Schlee (1994) have considered strategic experimcntation models in which an industry of 

1Sce also Arrow (1985), Drndíor<l and I<elcjian (1977), and Lewis n.ncl Snppington (1991\) for .ldditional renrnrks 

on thc cffccts of the nonconcavity in t.he valuc of information. 
2 Among others, scc Mirman, Samuclson and Urbano (1993), Tonki; ( 1983). í{ihlstrom, Mirman ami Postlcwaite 

(1984), Harrington (1995), Ea.~lcy a.ne! l<icfr:r (1988), ::i.nd Minnnn. Snm11cll'<o11 and Schlcc (l!J!J.1). 
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firms learns about demand while competing with one another. In these models, the nonconcavity 

means that the first period best reply mappings of firms may not be convex-valued, so that pure 

strategy perfect equilibria may not exist. 

Besides complicating models of information acquisition, a more fundamental question remains: 

why should information exhibit increasing marginal returns over sorne range? vVhile information 

a:; a cornmodity is admittedly special, it seems that there ought to exist a rich class of problems 

for which the value of infoi-m~tion is concave. 

All of the aforementioned applications assumed either an infinite number of signa! realizations 

or an infinite number of states, unlike the original RS finite model. The purpose of this paper 

is to re-examine the RS nonconcavity- the property that a small amount of information has zero 

marginal value- in a general Bayesian decision problem. (Of course, even if the marginal value of a 

small amount of information is positive, the value of information can still exhibit a nonconcavity; 

we shall refer to the RS nonconcavity as that which arises frorn a· zero marginal value at null 

information). Although sorne of our assumptions are purely technical, most are substantive: we 

present examples showing that their failure leads to a failure of the nonconcavity. 

Besides extending their theorem, we also clarify the role that these conditions play. Of partic

ular interest is the assumption by RS of the existence of a selection from the correspondence of 

maximizers that is both continuous and constant in the signa! realization at null information ( our 

assumption AO below). We give sufficient conditions separately on the information structure and 

the decision maker's utility function and prior beliefs to ensure the existence of such a selection, 

and illustrate the role of these conditions with severa! examples. 

We also use our general frarnework to evaluate the robustness of the nonconcavity. Severa! 

important papers on information acquisition avoid the nonconcavity (e.g., Kihlstrom (1974), and 

Moscarini and Smith (1999, 2000)). Most of these use (the continuum 'analog of) the number of 

conditionally independent observations from an experiment to measure the amount of information. 

These models suggest that the value of information might generally be a concave function of the 

sample size. We use a simple quadratic payoff function, however, to show that the value of infor

mation can be globally convex in the sample size (Example 8). The conclusion we draw from our 

results and exarnples is that, although our sufficient conditions for the RS nonconcavity are strong, 

and one can construct examples that yield a concave·value of information, a nonconcavity _in the 

value of information is difficult to rule out in a model of much generality.3 Whether the reader 

agrees with this interpretation of our results, our hope is to stirnulate thinking on the appropriate 

'functional form restrictions' to impose on information acquisition problems. 

The paper is organized as follows. Section 2 sets out the general decision problem we consider. 

In Section 3, we state the RS theorem and provide an intuitive explanation of its assumptions as 
3 Moscarini and Srnith (2000) show that, if we mea.sure the quantity of information by the number of independent 

observations from an experiment, then the marginal value of information eventual/y falls as the number of observations 

increases. Hence, if the price of observations is low enough, the demand for information will be well-behaved. vVe 

return to this important paper after presenting our main results. 
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a prelude to our extension. The main results are derived in Sectio~ 4, where we prove a general 

theorem and illustrate the role of the assumptions with examples and · corollaries covering sorne 

specíal cases that are often assumed in the literat ure. In Section 5 we use the main results to discuss 

sorne important contributions on the demand for information that do not. exhibit the nonconcavity, 

and we also evaluate the robustness of the nonconcavity result. Section 6 concludes. 

2 The Model 

A Bayesian agent is uncertain about the state of the worlcl and must choose an action after observing 

the realization of a rn.ndom variable. We index the set of information strucLures by a real para.meter 

0 E 8. The formal description of the model is the following: 

• The set of states of the worlcl Sis a complete, separable mctric space, endowe<l with tbe Borel 

cr-algebra !3s; the measure µ: !3s -► [O, l] represents tbe prior beliefs of the decision rnaker. 

· • The set of signals the decision maker can observe is Y, a complete, separable ruetric space 

with Borel cr-algebra l3y. 

• e = [O, 0] is the index set. 

• For each 0, Q(· 1 ·, 0) is a stochastic kernel on Y given S that represents an information 

structure available to the agent; i.e., for each s E S, Q(- 1 s, 0) : l3y -> [O, l] is a probability 

measure, and for each C E l3y, Q(C 1 ·, 0) : S -► [O, l] is a measurable funct,ion. 4 Different 

values of O correspond to different information structures. An uuinfonnative information 

structure is represented by 0 = O; formally, foral! s, s' ES, Q(· 1 s, O)= Q(· 1 s', O). 

• The action space A is a complete, separable metric space with Borel cr-algebra BA. 

• u : A x S - ni is thc decision maker's vonNeumann-Morgeustern ut.ility funct.ion; it is 

assumed to be jointly continuous and bounded. 

• 1) is the set of all measurable functions d : Y _, A. Thc set 7J contains the decision fu11ctions 

or strategies available to the decision maker.5 

Since the agent can condition a decision on the signa! observed, the decision problem is 

V(0) = sup { { u(d(y), s)Q(dy Is, 0)¡1.(ci~), 
dED ./ S ./y 

where V(0) is the value function of the problem, which we interpretas the value of the inforrnation 

structure 0. Let D+(0) be the correspondence of maximizer~; t lrn.t is , 

D~(0) = {d E 7J: { { u(d(y),s)Q(dy I s,0)µ.(ds) =.V(0)} . . Is ./y 
4 Throughout this papcr, measurability is with respect to the appropriate 13ore1 a-algebra. 
5In the finitc case, RS considerc<l thc slightly more general set up whcrc 7J dcpends on O, s¡i.y 'D(O), nnd 7J(01) ~ 

'D(02 ) whenever 01 > 02 • At the cost of more notntion, most our rcsults cxtcnd to this cn.~e as w(']l. 
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A selection from this correspondence will be denoted by d* (y, 0), in ordei· to emphasize the depen

dence on 0. 

Although we derive most of the main results using the normal form of the problem described 

above, an alternative and common way to analyze this decision problem is in its extensive form, 

which exploits the sequential structure of the model more explicitly. 

Fix 0 E 0; given Q(· 1 -, 0) and µ(·), then one can show using standard arguments (Corollary 

7.27.2 in Bertsekas ancl" Shreve (1978)) that there exists a stochastic kernel P( · 1 y, 0) that can be 

interpreted as a version of the posterior beliefs of the decision maker after observing y, when the 

information structure is 0; for each y, the problem is then 

U(y, 0) = sup { u(a, s)P(ds I y, 0). 
aEAjS 

Let A· (y , 0) be the correspondence of maximizers. We have 

V(0) = [ U(y, 0)v(dy 1 0). (1) 

The extensive form representation affords a simple proof of existence of a solution and satisfac

tion of the measurability requirements implicit in (1). 

Proposition 1 If A is a compact metric space then, for each 0 E 0, 
{i) U(y, 0) is measurable and bounded; 

{ii) A" (y, 0) is nonempty and admits a meas·urable select'ion d* (y, 0). 

Proof: Fix 0 and set g(a, y, 0) = fs u(a, s)P(ds I y , 0); continuity and boundedness of u: AxS-. IR 

and measurability of the stochastic kernel imply that g(•, y, 0) : A -, IR is continuous and bounded, 

and g(a, ·, 0) : Y -. IR is measurable. Since A is compact, (i) and (ii) follow from the Measurable 

Maximum Theorem (Aliprantis and Border (1999), Theorem 17.18). - ■ 

We will assume henceforth that the max.imum is attained. Until section 4.2, we will follow RS 

in imposing the following assumption: 

AO: There exists a measurable selection d"(y, 0) with the following properties: (i) limo-o+ d•(y, 0) = 
d*(y,O) for every y, (ii) d*(y,O) = a0 for every y. 

In words, AO says that there exists an optima! decision that is 'continuous in 0 and flat in y' at 

0 = O. Since this imposes conditions jointly on the information structure and the decision maker's 

utility function and prior beliefs, it is not entirely satisfactory. One of our goals will be to justify 

AO from conditions imposed separately on those elements, and explain their roles in yielding the 

conclusion. 

3 The Question 

We are now ready to formulate our main question: when is the marginal value of a small amount 

of information equal to zero? More precisely, what are conditions on the information structure 
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which, under AO, imply that V'(O+) exists and is zero? Note that the value function V excludes 

any cost of information acquisition. Since, in the abstract, there may be no obvious natural units 

to measure the amount of information, we should stress that this question has mea.ning only in the 

context of a broader decision problem that involves choosing an information structure. A simple, 

but very useful, formulation is 

ma.,~ V(0) - C(0). 
OE[0,0] 

(2) 

Here C : 0 --> IR represents the cost of different information structures. As a.n cxa.mple, the 

decision maker could be a firm that is uncertain about its market dema.nd. The parametcr 0 
could rcprcsent t.he number of hours spent on marketing research, ·with zcro hours yiclding no 

information; V(0) t.hen is the maximum cxpected profit from opera(,ing in a markcl. whcn the firm 

spends 0 hours doing market research at a cost of C(0) dollari:-. More generally, most standard 

two-period experimentation modcls can be written in form (2). [n such modcl:,;, an agcnL ta.kes 

sorne action in the first period; a noisy signa! of the state is then revealed; (.he a.gent upclates 

beliefs and then chooses an action in the second period. In our noLation, the utility function u(n, s) 

gives the second period utility from taking action a (an element of [O, 0] say) under state s. The 

number 0 represents a first period action that affects the distribut ion of the signa!, and hence how 

much information the agent has in the second period; V(0) then gives the maximum second period 

expected utility as a function of the first period action 0. Finally, the cost function equals the 

first period expectcd utili ty loss from choosing 0 rather than the pcriod 1 optima! choice; formally 

(assuming that u is the utility function in both periocl 1 ancl period 2), 

C(0) = V - is u(O, s)µ(ds), 

where 

V= max_ { u(0', s)¡t(ds). 
O'E[O.O] is 

The prototypical problem stuclicd in the optima! ·expcrimcnt.n.t ion litcrat.urc is that of a firm 

learning about clemand. 6 

Example 1: A firm's demand function is f(p , s, é) = (a - p)s + é, where 71 is thc market price, 

s the state of demand, and é the rcalization of a (i.i.d.) ranclom noise variable. Thc firm chooses 

price at date 1, observes the sales realization (but ncither s nor é), updates beliefs about s, and 

then chooses a date 2 price. In terms of our notation u(o., s) = ((o: - a)s + E [é]) (a - k), where k 

is a constant marginal cost, a is thc second period price, and E[é] is the expc'ctcd volumc of noise 

demand; u(·) gives the date 2 profit as a function of t,he date 2 price and thc dcmand parameter 

s. A first pcriod price of o: is uninformative about s (since only 'noise traclen;' buy at. this price). 

Define 0 = o: - p, so that 0 = O rnrresponds to null informat.ion. The firm choose.s O at. date 1 and 

observes sales of 0s + é before choosing a. date 2 pricc. In this case the cost fnnction C( ·) cquals the 

6 Sec, among othcrs, McLennan (1981\), Mirman, Samuelson and Urbano (93), TrefAer (1993), and Creanc (1994). 
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expected profit loss of deviating from the myopically optima! price, and V(0) gives the maximum 

second period profit from charging a price of a - 0 at date l. 

Now, if V'(O+) = O and the cost function C(-) is increasing with C' (O+) > O, then the objective 

function in (2) cannot be concave if and information has positive value for sorne 0 > O. From 

the perspective of these applications, we can rephrase our question as determining whether the 

objective function in (2) can be concave for a cost function with positive marginal cost at 0 = 0.7 

RS considered the special case in which the set of signal realizations Y and the set of states S 

are both finite; that is, Q(C I s,0) = LyECq(y I s,0) for each C ~ Y, where q(y I s,0) is the 

probability of observing y if the state is s and the inforrnation structure is 0. They showed the 

following result: 

P roposition 2 Assume that 

a) AD holds; 

b) q(y I s, 0) is d·ifj'erentiable with respect to 0 at 0 = O. 
Then D+V(O) = lim supo-o+ V(O)-V(O) ::; O. 

In words, if V'(O+) exists, it must be nonpositive. To motivate our extension of this result, 

consider the two assumptions more closely. Condition b) ensures that the information structure 

varies smoothly with 0 around O; intuitively, it ensures that information doesn't increase too rapidly 

around null information. Regarding AO, one assumption that helps ensure the desired continuous 

selection is that the optima! choice is single-valued in the posterior (which follows if A is convex 

and u(·, s) : A -+ lR is strictly concave). Intuitively, it is easy to see how the conclusion can foil 

if the optimal choice is not single-valued. At 0 = O, the posterior belief of course equals the prior 

belief for all signa! realizations; for 0 > O, the posterior will differ from the prior for sorne values of 

y if the experiment is informative. If there is more than one optimal action at the prior, then even 

'small' changes in the posterior can result in 'large' changes in the set of optima! actions, so that 

even a small increase in information can have a positive marginal value.8 As it turns out, however, 

strict concavity of u and condition b) are not sufficient to yield AO in the finite case. Recall that 

the posterior belief that the state is s after observing y for information structure indexed by 0 is 

given by: P( { s} 1 y, 0) = µ.q Y s/1. 0 , where µs = µ( { s}) for al! s E S. Assumption b) does not ,es µ,q Y~. .. 

ensure even the continuity of P( { s} 1 y, 0) in 0 at 0 = O, as the following example illustrates: 

Example 2: Let S = {sL,sn}, µsL = µsH =½,Y= {y1,Y2} and, for all 0 E [0,1], q(yz 1 

sn,0) = 1 and q(y1 i SL,0) = 0. Then P({sH} \ Y1,0) = O for all 0 > 0, so that P({sH} \ Y1,0) 

doesn't converge to the prior of ½ as 0 tends to O. 

7 The result i$ a little stronger than failure of V - C to be concave. If V' (O) = O, C' (O) > O and V(0) - C(O) > 
V (O) - C(O) for some O E (O, 0], then the decision maker's pref erences over different O' s (represented by V - C) cannot 

be convex. In that sense our result is an ordinal one, a point to which we return in Section 4. 
8 The Maximum Theorem merely ensures upper hemicontinuity of the correspondence of maximizers. Example 7 

$hows that the nonconcavity can fail if the optima! choice in the extensive form is not single-valued. 
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Intuitively, without continuity of the posterior in 0 at 0 = O, small changes in 0 yield large 

changes in the distribution of posterior beliefs, which may have a positive marginal value. One way 

to rule out this discontinuity in the finite case is to assume that the null information struct.ure has 

ful! support on the signals for each state. (In Section 5 we extenc.l this insight to rationalize AO in 

the general model, without requiring full support on the signals). 

In sum, the conclusion of Proposition 2 holds if u is strictly concave, and if both b) holds and 

q(y I s, O) > O for a.11 (y, s) E Y x S. Intuitively, the former helps cnsure that even small increases 

in information aren't too valuable; and the latter ensures that information doef-n 't increase too 

quickly as 0 increases from O. We now turn to the task of extending Proposition 2 to t.hc more 

general set up dcscribecl in Section 2, aud to identify sorne imporLc.uit. specificatio11s for which thc 

nonconcavity fails . 

4 Main Results 

Before plunging into the details of our extension, let us give an informal overview of our argument . 

Suppose for a moment that there is a selection d*(y,0) such that both u(d'(y,0),s) and Q(· 1 s,0) 

are different,iable in 0, an<l assumc that we can 'pass' the dcriva tivc t.hrough thc integral. Then t he 

Envelope Theorem implies that 

V'(0) = { { u(d•(y, 0), s)Qo(dy Is, O)¡;.(ds) . ./s./y 
Evaluating this at 0 = O and 11sing AO yields 

V'(O) = .l l. u(ao, s)Qo(dy Is, O)¡.L(ds) 

.l u(ao, s)(_[ Qo(cly Is, O))¡l(rls) 

o, (3) 

where the last step follows from thc fact that fy Q(dy Is, O)= 1, and thcreforc .J~, Qo(<ly Is, O) = O. 

In words, the marginal value of iuformation is zero if we starL from null infonnation (which implies 

that V cannot be globally concave if V(0) > V(O) for sorne 0 E (O, 0]). ·We derive<l this result, of 

course, under the strong assumpLion of differentiability of t.he sclection ancl without. justifying the 

interchange of thc derivative and thc inLcgral; moreovcr, we die! not explain thc mc<1.ning of the 

'derivative' of the stochastic kernel, and whether integration with respect to Qo wns well-defined. 

We now rigorously derive the conclusion of (3), eschewing thc differentiabiliLy assumption on the 

selection. 

4.1 Generalization of the Radner-Stiglitz Thcorem 

Let ca(Ey) be the space of finitc signcd mea.sures on (Y, [3y ), and cnclow it ,viLh tbc total varin.Lion 

norm li>-11 =I >- 1 (Y) (Halmos (1950), pp. 122-123). We will irnpose the following 'smoothness' 

assumption, an cxtension of thc clifferentiability conclition b) o[ Proposition 2. 
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Al: For each s ES and CE !3y, 

exists in IR.. 

lim Q(C\s,0);Q(C\s,O) =Qo(C\s,O) 
0-0+ 

By Corollary 4 in Dunford and Schwartz (1957, p. 160) Qe(- 1 s, O) is an element of ca(l3y ). It 

turns out that Al is not sufficient for our purposes (see Example 4 below); we shall also require 

that the convergence condition in Al hold in the total· variation norm. ( which · follows automatically 

if Y is finite). 

A2: For each s E S, 

lim l\Q(· \ s, 0); Q(- \ s,O) - Qo(· \ s,0)\1 = O. 
0-0+ 

The proof of the Theorem uses the following result: 

Lemma 1 Let (X, F) be a measurable space, ca(F) the space of finite signed measures on F 

endowed with the total variat-ion norm, {vn} a seq·uence in ca(F) that converges in the total variation 

norm to 1.1, and {fn} a sequence of uniformly bounded measurable Junctions that converge pointwise 

to f. Then 

lim jfndvn = jfdv. 
n-oo 

Proof: Appendix. ■ 

Theorem 1 Assume that 

a) AO, Al, and A2 hold; 

b) There exists a µ-integrable function M : S-> 1R such that, for eveT"lJ 0 > O and s E S, 

!\ Q(· \ s, 0); Q(· \ s, O) 1\ :S M(s). 

Then V'(O+) exists and 'it is equal to zero. 

Proof: We first show that lim sup0_ O+ V(OJ0V(O) :S O. As in RS, write V(O)oV(O) = ~ + T2J0l, 

where 

T1(0) is i u(d*(y, 0), s)Q(dy \ s, 0)µ(ds) 

-is¡ u(d*(y , 0), s)Q(dy \ s, O)µ(ds), 

T2(0) is 1,-u(d*(y, 0), s)Q(dy \ s, O)µ(ds) 

-{ 1 u(a0,s)Q(dy \ s,O)µ(ds). 
Js Y 
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Since aó is optimal at 0. = O, it follows that T2(0) ~ O .and limsup0_ 0+ T
2iº) :=; O. 

Consider 

T1~0) = fsl u(d.(y, 0),s)(Q(dy I s,0); Q(dy I s,O))µ(ds). 

Assumption Al ensures that this integral is well-defined for every 0.9 Moreover, sincc 

l. Q(C I s, O) - Q(C I s, O) _ Q (C I O) 
IITI 

0 
- O -~ , 

0-0+ · 

for ea.ch mcasurablc set C, Qo(· 1 s, O) E ca(By ) and, bcing thc pointwise limit of mcasurable 

funct ions, it is measurn.ble. 

We now prove that 

lim Ti
0
(B) = { { u(a0, s)Qo(dy I s, O)µ.(ds). 

o-o+ ./ s ./y 
(4) 

Take any sequence 0n converging to O, and let 

hn(s) { u(d"(y, 0n),s)(Q(dy I s,0n)
0
-Q(dy I s , O)), 

./y n 

h(s) ¡ u(o.0, s)Qo(dy Is, O). 

Given AO, Al, ami A2, it follows from Lemma 1 that hn(s) converges pointwise to h(s); moreover, 

condition b) ensures that the convergence is dominated . For 

1 hn(s) 1 1 .[ u(d*(y,0n),s)(Q(dy I s,On)0: Q(dy I s,O)) 1 

< BIJ Q(· 1 S, 0n) - Q(· J S, O) IJ 
0n 

< BM(s), 

where B < oo is such that I u(a, s) 1~ B (Royden (1988), p. 275). It follows by the Lebesgue 

Dominated Convcrgence Thcorem (LDCT) tbat 

lim { h,,(s)p.(ds) = { h(s)¡i,(ds), 
n -oo .Is .Is 

and, since {0n} was an arbitrary scquence converging to zero, (4) holds. 

If we could show that J), Qo(dy I s , O) = O, it would then follow by (3) that 

lim Ti(B) = O 
o-o+ 0 

But 

f Q(dy 1 ~,0) -Q(dy J s,O) = fy Q(dy j s,0) - fy Q(dy I s,O) ·= O . 
./y O 0 

9 This follows from Stokcy, Lucns, and Prc~cott (1989), Theorcm 8.4 and il$ Corollnry. which nl~o hold for signcd 

kcrncls likc thc oncs considcrcd hcrc (just c.lccompose the signed kernel into its positivc and negnt.ivc varint.ion) . 
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Therefore, another application of Lemma 1 yields10 

O_ ¡· ¡ Q(dy [ s, 0) - Q(dy [ s, O) _ ¡ Q (d [ O) 
- lffi 

0 
- - 0 y S, . 

0-0+ y y 

Hence, 
V(0) - V(O) T1 (0) %(0) 

lim sup 
0 

:S lim sup -
0
- + lim sup --=---

0 
:S O. 

0-0+ 0-0+ 0-0+ 

Finally, since V(0) - V(O) ~ O, we have that liminfo:-o+ V(Ol1/<0
) ~ O. T~erefore V'(O+) exists 

and it is equal to zero. ■ 

Remark: Notice that condition b) can be slightly rela..~ed and assumed to hold only for 0 ' suffi

ciently close to O'; one simply needs to add this qualification in each step of the proof that uses b) 
(e.g., when the LDCT is applied). This also applies to all the results in the seque!. 

Theorem 1 raises severa! questions, namely, 

(i) How can one verify conditions Al and A2 in applications? 

(ii) To what extent is the nonconcavity an artifact of the units with which we measure 

information? Can't we undo the nonconcavity by changing the units? 

(iii) Can AO be derived_ from assumptions imposed separately on the primitives of the 
model? 

We next address each of these important issues in turn. 

4.2 Verification of Conditions Al and A2 

Checking that assumptions Al and A2 hold may be· a non trivial ta.sk. We ·now turn to consider 

sorne special cases commonly found in applications, and show that they satisfy Al and A2. 

Consider first the case in which there is a o--finite measure v : By -► [O, oo] such that, for each 

(s, 0) E S x 8, Q(- 1 s, 0) has a density q(y I s, 0) with respect to v, that is also µ-integrable. That 
is, for every C E [3y and (s, 0) E S x 8, 

Q(C [ s, 0) = fc q(y [ s, 0)v(dy). 

In particular, this includes the important case in applications where Y is a (Borel) subset of lRn 

(endowed with the Euclidean metric), v is the n-dimensional Lebesgue measure, and q(· [ s, 0) is 

one of the familiar density functions defined on lRn. It also covers the case where, for every 0 E 8, 

the stochastic kernels are mutually absolutely continuous, and then v is just Q(· [ s, O). Finally, 

it includes the countable case if v is the counting measure defined on the o--field of ali subsets of 

Y (endowed with the discrete metric); it is straightforward to check that Q(· [ s, 0) is absolutely 
10set J,. = 1 for every n. 
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continuous with respect to v for each (s, 0). Obviously, this subsumes the finite case considered by 

RS. 

The value of information structure 0 in this case becomcs 

V(O) = is i u(d.(y, 0), s)q(y J s, 0)1/(dy)¡.L(ds). 

Corollary 1 (Absolutely Continuous Stochastic Kernel) !1ss11.me t.hat 

a) AO holds; 

b) q(y Is, O) is diffcrcnliablc wilh rcspccl to O al O= O. and lhcrc is a v x ¡t-inl.cgrable fnnction 
z(y,s) sv.ch that I q(yls,O);q(yls,O) l:S z(y,s) far every (y,s) and 0 > O. 

Then V'(O+) cxists ancl it. is equal lo zero. 

Proof: Appendix. ■ 

Condit ion b) may be difficult to verify in practice, espccially in problerns where thc densities 

have unbounded support. The next result can be useful in these situations. 

Corollary 2 A ssnme that 

a) AO holds; 

b ') q(y I s, O) is differcntiable in 0, and either qo(Y I s, O) is v x ¡t-integrablc, or lhere i.s a 

v x µ -integrable z(y,s) such lhat I qo(y I s,O) l:S z(y,s) for cvcry (y , s) a.nd O in ci nr.ighborhood of 

o. 
Thcn V' (O+) cxists and it is eqnal f:o zero. 

Proof: A strn.ighlforward applicat.ion of the Mean Valuc Thcorem shows that 1/) implics b). Then 

the result follows from Corollary l. ■ 

The following examplc illustrates the usefulness of condit.ion ú'), and that t.hc dominat.ing func

tion could also depend on 0: 

Example 3: Consiclcr t lic information structures of thc linear precliction cxamplc in RS. Sup

pose that Y = S = JR, q(· 1 s, 0) is N(s0, l - 02
), 0 E [O, l], 1/ is the Lebcsgnc u1c,1s11re on JR, ancl 

µ,(B) =.fa p(s)ds, whcr_e p(·) is N(O, 1). /1. little manipul::i.tion rcvc::i.ls_ that . 

s(y - 0s) (y - 0s)2O 0 
<Jo(y Is, O) = q(y I s, 0)( (l _ 02) - (l _ e2)2 + (l _ 02) ). 

and 

· lslJy-0s1 (y -Os)20 O 
1 qo(Y I s, 0) I= q(y I s, O)( (1 - 02) + (1 - 02)2 + (1 - 02)) = z(y, s, O). 

Also, 

f +
00 ¡+00 2 1 20 

z(y, s, O)p(s)dyds = - 1 + ( 02) 
- -oo -co 7r(l-02):i 1-

< 00, 
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for 0 close to zero, and 

J
+oo J+oo ? J+oo J+oo b~ z(y, s, 0)p(s)dyds = =- = . z(y, ~' O)p(s)_dyds. 

o - oo -oo 1í -oo -oo 

Using Theorem 17 on p. 91 in Royden (1988), it can be shown that qo is integrable and thus 

condition b') is satisfied. 

Another important case commonly found in applications is the one where signals take values 

on IR and the information structure is represented by the cumulative distribution function (c.d.f.) 

associated with the stochastic kernel.11 For t ractability, we focus on the case where S is any 

complete separable metric space but Y = [y_, y]. 
For each (s, 0) E S x 8, let F(· 1 s, 0) : IR--, [O, lj be the distribution function associated with 

Q(· 1 s, 0); i.e., F(t I s, O) = Q( {y 5 t} 1 s, 0) for every t E R The derivative of F with respect to 0 

will be denoted by Fo. 

Let BVr([y_, y)) be the space of right-continuous functions of boundE:d variation f : [y_, y] --, IR 

with J(y_) = O, endowed with the total variation norm 11!11 = v:_u). Given any f E BVT([y_, y]), 
there exists a unique signed measure v¡ E ca[y, y] (the space of signed measures defined on the 

Borel sets of [y_, y)) such that v¡([a, b]) = f(b) - f(a); moreover, the spaces BVr([y_, y]) and ca[y_, y] 
are isometric.12 

Corollary 3 (C.D.F. Case) Assume thal 

a) AD holds; 

b) There exists a µ-integrable funct-ion M : S --, IR s·uch that, for every 0 > O and s, 

II F(- 1 s, 0); F(- 1 s, O) II 5 M(s); 

e) The following two conditions hold. For each s E S and y E Y, F has a ,ight-hand derivative 

at 0 = O; ·i.e., 

l. F(y I s, 0) - F(y I s, O) F, ( I O) 
llll 

0 
= O y S, ; 

o-o+ 
and, f or each s E S, 

lim 1((· I s, 0); F(· I s, O) - Fo( · I s,O)II = O. 
o-o+ 

Then V'(O+) exists and it is equal to zero. 

Proof: Appendix. ■ 

In arder to illustrate the role played by condition A2 (F2), we present an example where all of 

the conditions in Theorem 1 and Corollary 3 are met except fer the convergence in total variation 

assumption, and the nonconcavity result fails: 

11 This ca:;e is useful for two rea:;ons. F irst, Lh~ stochastic kernel may not be absolutely continuous with respect to 

any u-finite measure 11, even· if the c.d.f. is differeutiable. Second; even if such a u-ffnite measure exists, the condit ions 

of Corollary l may be hard to verify if that measure is not Lebesgue. 
12See Aliprantis and Border (1999), p. 3G4. 
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Example 4 (Uniform Signals): Consider the following version of the linear predictor prob

lem: u(a, s) = -(a - s)2, S = {sL, SH}, q(y I sL, 0) = I¡o.lj , q(y I SH, 0) = I¡o.o+q (see Figure 1), 
and O < µsi{ < l. lt is straightforward to show that AO, and conditions b) and Fl in Corollary 

3 hold in this case; a bit of work also reveals that Al holds. However, condition A2 (or F2) fails 

since the total variation is cqual to 2 for every 0. Thc right derivative of thc value function at 0 = O 

is V'(O+) = (s1-1 - sL)2µ 9 11 (1 - /ls 11 ) > O. Indeed, V(•) is globally concavc in t.his case. 

In the exa111plc, the signa! distribut.ions have diffcrcnt support for each :;tate, thc pm;t.crior bclief 

has prcciscly t.hrcc point support (O, 1 or the prior) for any O < O < O and t.hc prohahility that 

the stat,e is lcarncd is a linear function of O. Intuitively, small increascs in O cvcn from O provi<le 

lots of information. A2-or somcthing like it-must be imposcd to rule out t.his cxample. The next 

example shows that A2 and the nonconcavity are consistent with signa! distrihutions with moving 

supports. 

Example 5 (The Nonconcavity with Moving Supports): Let. v.(a , s) = -(a - sf!, S = 
{sL, s¡.¡ }, q(y I SI.,, O) = ma.-..::{0, Gy(l - y)}, q(y I SH, 0) = max{O, G(y - 0)(1 - y+ 0)} (sce figure 

2), and O < /l~ 11 < l. Tedious algcbrn shows that the conditiorn; of Corollary 3 ::irc ::;a,t islicd , and 

V'(O+) = O. 

4.3 Changes in the Units of Information 

One conccrn thc reader might have about the nonconcavity is that, it is simply a maUcr of the 

units with which we mcasurc the quantity of information: can't we dispose of thc nonconcavity 

by redefining thc units? Theorem 1, after ali, simply deals wit.h the gros:;; valuc of informa.tion, 

V, ignoring any costs. lf, howevcr, wc cmbed V in a problcm of costly in formation acquisition 

(as in (2)), then thc economically important question is whet.hcr the objcctive fur.ct.ion V - C is 

quasiconcave (i.e. whether preferences over 0 are convex). Thc propci:ty that. V'(O+) = O is simply 

a convcnient. way to prove that V - C cannot be quasiconcavc if C'(O+) > O. Thc following rcsult 

helps clarify that the failurc of quasiconcavity is immunc to (monotonc) trnn::;forn1<1,t.ions of the 

units of information. 

Proposition 3 Lel 1/; : [O, 0] _. R, lct T : [O, 0] - [O, 0] be striclly increasing n,nd 011lo nnrl define 

;f: [O, O] - R by ;f (x) = 'tj;(T- 1 (x)) for all x E [O, 0]. IJ 1J is qv,asiconcave, then ?./; is quosiconcave. 

Proof: Suppose that 'tj; is not quasiconcave. Then therc is a k E R a.nd numbcrs X¡, x2, >- in [O, l] 

such t.hat if; (xi) ~ k for i = 1, 2 but 'tf;(>-x1 + (1 - >-)x2) < k. Define Xi= T(x;) for i. = l, 2. Then 

;f(xi) = 1/;(T-1 (T(xi))) = '!f;(x;) ~ k for i = 1, 2. Define¡¿ E [O, 1] by 

T(>-x1 + (1 - >-)x2) - T(x2) 
µ = T(x1) - T(x2) · 
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which is possible since x 1 -:f x2 , T is strictly increasing, and >- E (O, 1). We have 

;j(µx1 + (1 - µ)x2) ;j(µT(xi) + (1 - µ)T(x2)) 

= ·J(T(>..x1 + (1 - >..)x2)) 

= '1jJ(T-1(T(>..x1 + (1 - >..)x2))) 

'lj;(>..x1 + (1 - >..)x2). 

Hence, ;j(µxI + (1 - µ)x2) = ·t/;(>..x1 + (1 - >..)x2) < k, so that ;¡ is not quasiconcave. ■ 

Corollary 4 If 0 i--; V(0) - C(0) is not quasiconcave on [0,0], then 0 i---; V(T- 1 (0)) - C(T- 1(0)) 

will not be quas·iconca·ue on [O, 0] for any strictly increasing, onto funct'ion T: [O, 0] -+ [O, 0]. 

The interpretation of the corollary is that if V'(O+) = O and C'(O+). > O, then no (monotone) 

redefining of the units of informat ion can do away with the non-quasiconcavity. In that sense, our 

result is an ordinal property, not merely an artifact of the units in which information is measured. 

4.4 The Single Valued Case: AO from ~rimitives 

We now give conditions on the primitives of the problem that imply condition AO. We will find it 

convenient to work with the extensive form representation of the problem; i.e.,.given an information 

structure Q(- 1 • , 0) and prior beliefs µ, t.hen, after observing y, the agent salves 

ma.,"< { u(a,s)P(ds I y,0), 
aEA 1s (5) 

where P(· 1 y, 0) is a version of the posterior beliefs of the decision maker. To prove the result, 

we will assume that S is a compact metric space. Let P(S) be the set of probability measures on 

(S, Es) endowed with the topology of weak convergence. 

Proposition 4 Let A be a compact and convex metric space, S a compact metric space, Y a 

complete and separable metric space and u(·, s) a strictly concave function on A for each s E S. 

IJ there is a version of the posterior kernel such that P(· 1 y, 0n) ~ µ(-) for each y and for any 

sequence { 0n} that converges to zero, then there ·is a unique decision ftmction d" (y, 0) that solves 

(5); this function is measurable and continuous in 0 at 0 = O; moreover, d"(y,O) = a0 for every y. 

Hence, AO is satisfied. 

Proof: Appendix. ■ 

The proposition provides conditions under which 'continuity and flatness' of the optima! policy 

at 0 = O are satisfied. Among them, weak convergence-of the posterio1~ to the prior as 0 goes to zero 

plays a prominent role. For sorne special cases commonly found in applications, it is straightforwa.rd 

to impose assumptions on the information structure and the decision maker's prior beliefs such that 

the weak convergence condition is satisfied. 
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For each (s, 0) E S x 0, Jet Y(s, 0) = {y : q(y I s, 0) > O} E l3y be the support of q(· 1 s, 0); 

obviously, at 0 = O we have that Y(s , O) = Y(s', O) = Yo ~ Y for ali s , s' E S. 

Corollary 5 Let A, S, Y and u salisfy the conditions of Proposition 4. Suppose that Q(· 1 s, 0) 

has a density q(· 1 s, 0) with respect to a Cl-fi,nite measure 1/: 13), -t [O, oo] for every (s, 0) ES x 8 , 
such /,hat 

(i) q(y 1 ·, O) is Bs-mcasnrablc anrl bounded for evcry (y, 0) E Y x 0; 

(ii) For 1/-almost every y E Y, lhere exists a 0y s11,ch thal eilher ( a) J or all O < 011 and Jor every 

s E S. y E Y(s, 0) n Yo; or (b) for all 0 < 011 and Jor every s E S, y(/:. Y(s, O) n Y0 . 

(iii) q(y Is, ·) is conlinv.ous in O at O= O for evcry (y , s) E Y x S. 

Then Pruposition 4 h.olds. 

Proof: Appendix. ■ • 

This rcsult includes as spccial case the 'common support assumpt ion' which is oftcn used in 

applications; i.e., Y = {y : r¡(y I s, 0) > O} for every (s , 0) E S x 8. It also incluclcs t.hc 'moving 

support' cases in Examplcs 4 and 5. 

Using Corollary 5, it is cé'\sy to const.ruct examplcs whcre thc assumpl.iom; undcrlying Proposi

tion 4 hold cxccpt for the wcak convcrgcnce condition , and thc valuc of a sma.11 amount of infor

mation is posilive. 

Example 6 (Failure of Weak Convergence): Lct u(a , .5) = -(a. - s)2, S = {sL, Sl-f } , 

Y= {Y1,Y2}, q(y¡ 1 SL,O) = l, r¡(y2 1 SH,0) = g(0), OS g(O) S l for cvcry 0 E [0, l], g(O) = 0, 

g(l) = 1, g'(0) > O, ancl O < µ-'L < l. It is easy to show that the right dcriva.t ive of thc valuc 

function at O= O is V'(O+) = /L;,,(l - ¡1,"L)g'(O)(sL - Sff)2 > O. 

In this example, d'" (y2, O) = s H for every 0 > O, so a small amount of inform:üion rcvcals the 

true state with certainty when y2 is observed. Although it is possiblc to find a continuous selcction 

(in 0) from the correspondence of maximizers, one cannot find one that will also be 'flat' in y at 

0 = O. In tcrms of Proposition 4, nolice that the posterior bclicf thn.t thc st·.alc is s 11 a.fter obscrving 

y2 is equal to one for evcry 0 > O, so weak convergence to the prior a.5 O goc~ to ;1,cro foils in this 

case; a small amount oí information starting from 0 ~ O has a substantial cffcct on bclicfs. 

In t.he next example, all the assumptions of Proposition 4 are met except for thc strict, concavity 

of u(·, s), and the nonconcavity result fails. 

Example 7 (Failure of Single-Valued Choice): Let u(a, s) = as, A= [O, l] , S = {-1, l} , 

Y = {Yi, Y2}, JL( 1) = ½, and the information structure is given by q(yi 1 -1, O) = ½ and q(y¡ 1 

1,0) = ½ - 0, with 0 E [O, ½J. In this case, it is easy to show that V(0) = ~ and thus V'(O+) = ½, 

Again, this is a case where AO fails; although any action is optima! whcn 0 = O, the optima! 

decision for any 0 > O is d*(yi , 0) = O and d•(y2,O) = 1, which reveals that 'continui ty and íla tness' 

are incompatible in this case. 
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If we combine Corollaries 1 and 5, then the following assumptions on the primitives define a 

class of problems where. there is a nonconcavity in the -value of information; a-class which obviously 

includes a host of informai;ion acquisition models: 

Corollary 6 Let A, S, Y and u sat-isfy the conditions of Propos'ition 4. Suppose that Q(· 1 s, 0) 
has a density q(· 1 s, 0) w'ith respect to a a-finite measure v: By -. ¡o, oo] for every (s, 0) ES x 0 , 

and s·uppo:;e that q(· 1 s, 0) satisfies condit·ion b) of Corollary 1 and (i)-{ii) of Corollary 5. Then 

V' (O+) e:ásts and 'it is eq·ual to zero. 

To :mm up, our extension imposes two sorts of conditions, those on the decision maker (i.e. 

the utility function) and those on how t he available information structures are parameterized. The 

intuition behind these conditions is clearly analogous to that given in the finite case in Section 3: 

the former ensure that the optima! action is continuous in beliefs, so that small changes in beliefs 

do not result in large jumps in the action (hence the decision maker doesn't value small changes 

in information too much); and the latter ensure that information doesn't increase too much in 0 

starting from O:· 

5 Remar ks on the Demand for Information 

As RS pointed out, th~ nonconcavity has important. effects on the _demanq._ for information; for 

example, it will not be a continuous function of its price, and first order conditions need not pin 

down the circumstances under which information demand arises. 

Given that there are prominent papers in the literature on information demand that do not suffer 

from these complications, we should explain which assumptions of ours these models violate. Since 

we will be considering the behavior of information value globally (and not just in a neighborhood 

of null information), increases in 0 in this section will always represent Blackwell improvements in 

the information structure (so that V is increasing in 0 for all decision problems). 

Kihlstrom (1974)13 analyzes a consumer's problem in which the quality of one of the goods is 

unknown, and she can purchase different amounts of information at a constant marginal cost before 

making her consumption decision. In his model the demand for information is well-behaved: the 

marginal value of a small amount of inforrnation is positive, the quantity of information demanded 

is a continuous function of its price, and it is straightforward to characterize with the first order 

conditions of the problem the pararneter·values under which infonnation demand arises. Two other 

papers on information dernand have found the value of information to be globally concave: Freixas 

and Kihlstrom (1984) analyzed a specific model of demand for information about the quality of 

medica! care; and Arrow (1985) examined the demand for information in a linear predictor model. 

Ali of these papers assume that the decision maker has a normal prior and observes a signa! that is 

normally distributed wi'th mean s and variance !, i.e. N(s, !), where é > O. (For 0 = O, choose any 

null information structure). Recalling that the sample mean of n i.i.d. normal random variables 

13See also Kihlstrom (1973). 
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with mean s and unit variance is N(s, ¼) (and that the sample mean is a sn fficient statistic for 

s) , the parameter 0 thus is the continuum analog of the sample size for conditionally independent 

normal signals with mean equal to thc true state s. That thc value of informal.ion is concavc in these 

models <loes not contradict our theorem: the state-contingent cumulative dist ribution functions for 

the signals arc _not d if!erentiablc at O_= O, so that our diífcrcnt.iahility ;u;sumpt.ion Al (or fl in 

Corollary 3) fai ls. 

An int,c-rcsting reccnt. papcr l.,y Mosca.rini and Smit.h (19DD) rrcsr-nts ,1 dy11amic Lltcory of infor

mation demand in which an individual can sample costly information about Lhc state of the world 

i11 contim1011 ::, t ime bcforc st.opping a11<l Laking an action. Thc informat.io 11 rle111;111d t.licy derive is 

wcll-bchavcd , ,rnd Lhc nP11conc,1.viLy prohlcm docs not. arisc-. 

Clcarly, t.licir modcl diffcr:; in more than one way from t.hc <:lass of dccisio11 problcm:-- wc con

sidcr, but it. is instrt1ctive to examine the information structurcs t.hey assumc. 13arrinp: notational 

differcnces, rvroscarini and Smith (1999) assumc tlrn.t. t.hc agcnt. control::; Lhc i11:--t.ant;i11co11s variance 

of an obscr\'aLion proccss givcn by Lhc following stochastic diífcrcntial ec¡uat.ion: 

(J 

dy(t) = sdt + vÍO(t)dW(t), 

whcrc {W(t)} is a standn.rd I3rownian motion. In each pcriod [l., t, + dt,) l;cíorc stopping, the 

agent chooscs the 'amount of information' 0(t) that she want.s to purchasc. Noticc that, ciy(t) ~ 
N(sdt, ;¡;,dl); this revea.Is t.hat, just as with I<ihlst.rom (1971), the stat,ic vcrsion of t.hc rnodcl 

violates Al , suggcsting thaL Lhe nonconcavity ncecl not a.risc in its dy11a111ic vcrsion citJier. 1~ 

The preceding papers show that we can sometimes avoicl thc nonconcavity by using the 'number 

of observations' to measnrc the amount:: of informat ion. This case therefore calls for closcr analysis. 

Observing a rn.ndom variable that is norma.lly distributecl wit.h mean s a.nd qriancc ~- i1, cqn ivalent 

to observing a signa! y givcn by 

(6) 

where e: is N(O, 1). IL is intuitively clear why the RS nonconca.vity might fail hcre: thc Tnada 

condition on thc conclitional density of the signa! y at O = O implies that an incrcasc in O from O 

spreads the signa! clistribut ions for different states apart very quickly; hcncc a snrnll increasc in 0 

from O is very informative. Contrast the information structure given in (6) Lo t he oft-analyzed1~ 

1~Anothcr cxample of a well-behaved dynamic model of information demand is the 'tcam problem' in I3olton and 

Harris (1999). In each period [t, t + dt), thc social planner chooses the proportion 0; of the current pcriod, i = 1, ... , I , 
that ea.ch agent devotes to play a 'risky' arm whose instantaneous mean depends on the unknown statc of thc world 

s E {l,h}. Thc s igna) process is given by dy;(l) = 0;sdt + JO;o-dW;(t) . The planncr maximizes t.he average payoff 

of the pla.yers, which depends on I:::=1 0;. Any solution has each player choosing the same proportion O; that is, 

¿{=
1 

0; = 10. They show that the continuation payoff from next period onward (the analoe;u-:: t~ ow V(O); see 

Section 3) is linear a nd nondecreasing in 0 (with V'(0) = O a possibility). Thus, the valnc oí inf<Jrm:ition is always 

(weakly) conc::we. As with the previous example, the informalion structures they use violatc Al. 
15 See Mirman, Samuelson and Urbano (1993), Harrington (1995), Grossman, Kihlstrom aa<l. Mirm¡ir: (i.!-li' 7) 11.nd 

Kiefer and Nyarko (1989). 

17 



linear regression model, 

y= s0 +t:. (7) 

If t: ~ N(O, 1), then the conditions of Theorern 1 are met, and the nonconcavity holds (under 

AO). Thus the choice of (6) vs. (7) as the observation process can have drarnatic consequences 

for inforrnation acquisition. Unfortunately, we know precious little about how to choose functional 

forrns for the production of information. Tentatively, however, (6) seems quite reasonable in a 

model of consumer learning about product quality; but less so in a model of a firm learning about 

demand. 

In light of these examples, one might conjecture that the information structure given by (6) 

could be used to show that the value of information is concave in the number of observations for 

a wide class of decision problems. The next example, however, uses a simple quadratic utility 

function to show that the value of information can be globally convex in 0 in this case. 

Example 8 (A Convex Value of Information with Norm.al Sampling) : Let u(a, s) = 
2a - sa2, S = {O, l}, Y= IR, A= lR+, O< µ(l) < 1 and, for s E {O, l}, let q(· 1 s, 0) be the normal 

density function with mean s,/0 and unit variance. Using the extensive form of our problem, the 

interim value function U : Y x e-; lR is given by U(y, 0) = P({l}ly,O). (the optima! decision is also 

given by d· (y, 0) = P({l}ly,o)). Straightforward calculations revea! that V(0) = 1+(1 - µ(l))(l+eº), 
which is globally convex. 

Note that V'(O)' = 1 - µ(l) > O, so that the RS form of the nonconcavity fails, even though 

V is strictly convex. This example, we should stress, <loes not contradict the results of another 

paper on the nonconcavity by Moscarini and Smith (2000): they prove that the marginal value of 

information is eventually decreasing for a sufficiently large number of observations (which allows 

them to show that a well-behaved demand for information emerges for 'large quantities' or ' low 

prices'). They assume that both the number of actions and states are finite. Those assumptions 

imply in our notation that u is bounded on A x S and hence V(·) is bounded (even if we take its 

domain to be ali of lR+)- A bounded, increasing function on IR+ cannot be globally convex. In 

Example 8, u is unbounded, which permits V(•) to be unbounded. 16 

Exarnple 8 shows that there is no hope for proving a theorem saying that, with normal sampling, 

the value of information will be concave for ali decision problems and priors. We conclude this 

section with an argument illustrating the difficulty more generally. Suppose that S = { s1, s2} and 

that ·u(·, s) is strictly concave for each s E S. The posterior beliefs can thus be described by a real 

number p giving the probability that s2 holds. By s~andard envelo~e argm_nents, U : [O, l ] -; lR 

(the interim value function from the extensive form of the problem viewed as a function of the 

ic AIU.01:gh wc rnust use an unboundcd utility function to gcL a strictly convcx valuc of information, wc can modify 

Lhc :;et 0f states ;n Example 8 so that utility is bounded, yct the valuc of infonnation is not concavc: Lct S,. = { 1/n, l} 

rcplace $ ;11 1.;·,e example, with ali else unchangcd, so tliat u is boundcd on A x S,. for ali n. It is strnightforward 

Lo show that ~he corresponding value function Vn converges poimwise to V(O) = l + (1 - µ(1))(1 + eº); hence for 11 

)ars" <:nu11g!\, . V,. is not concavc in the sample size, despite the a.ssumption of normal sampling. 
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posterior) is convex and diffcrentiable in p; moreover, for any such function U, there exists a 

decision problem that generates U as its value function. From an ex ante viewpoint, the posterior 

belief that s = s2 is a random variable whosc distribution depcnds on 0. Lctt.in~ G(·; O) denote the 

cumulative distribution function of t.hc posterior, Li we llave \í(0) = J
0
L U(p)dG(p; O). Integrating 

by parts twicc yields 

.. \/ (0) == U(J) - U'( l ) -(1 G(w;O)dw + ¡1 f rr G(w;O)d.(.) clU'(p) . 
.lo .lo .lo 

Since the mean of the posterior a lways cquals the prior, Jd G(w; 0)dw doc>.5 not clepcnd on 0. It 

follows that, V is concavc for all differcntiable, convex U i[ and only if .fri' G(w; O)dw is concave in 0 

for cvcry p in [O, .l ]: for thc 'ouly if' pnrt, observe that, if J;;; G(w: O)rl.w is not. c-onc;i\·c in() for sorne 

p in (0. 1), t,hen it will not be concave in O 011 an interval a.round p: now simply choosc U' t.o put 

most of tbc ma.-ss on·this intcrv<1.I to yield V is not concave. 

Under wbat co11ditions will f6 G(w; 0)dw fail to be ~oncave in 0 for _some JJ? One sufficicnt. condi

tion is that iucrenses in O enlarge thc support of the dist ribution of posteriors in thc following sense: 

for sorne 0', p' in (O, 1), G(p, 0') = O for all p :S p' but G(p', 0
11

) > O for sorne O" > O' .18 Such informa

tion structurcs are hardly pathological. If, for example, the likelihood ratio, f(ylsH , 0)/ J(y\si, 0) 

is uniformly bounded away from O for each 0, and the information strncture l.ends to perfcct, in

formation as 0 increases, then the expanding posterior support condition holds. Moreovcr, for a 

finite number of signa.Is, expanding support of the distribution of posteriors is clcarly the 'typical ' 

case (see Figure 3 for an illustration). While not definitive, the foregoing argument suggests that 

a nonconrnvity in the value of information is difficult to avoid in a mo<lcl of mnch gencrn.lity. 

6 Conclusíon 

We have reexamined the classic Radner-Stiglitz (1984) nonconcavity in tlie value of informat ion us

ing a general Bayesian decision framework. Broadly, our extension imposes two kinds of restrictions: 

those on the <lccision maker (the utility is continuous in the action and state a.nd strictly concave in 

the action) and those on how the available information structures are parameterizecl (A l, A2 and 

the weak convergence-condition of Proposition 4) . Intuitively, the former ensures that the optima! 

action is unique, hence continuous, in beliefs, so that small changes in beliefs result in only small 

changes in t he action (and hence the decision maker <loes not value stnall increases in information 

'too much'); and the latter ensure that information doesn't increase too rapidly in t.he information 

parameter aroun<l null information. 

17Formally, G(p; O) = ¿, f{ulP(y .O)~P) Q(dyls, , O)µ,, where P is a vcrsion of the posterior and ¡i; is the prior 

probabi lity that s = s;. 
18Since incrc;¡ses in O reprcscnt Dlackwcll information improvements, the distribution of the posterior 11ndcrgoes 

a mean-prcscrving increase in risk as O incrc<lSes. Lctting \Ji(p, O) = f~' G(w, O)di..J, wc 11111st li;wf' O = \ll(p' , O) = 
'll(p', O')< \fi(p', O"), so that \J1(p' , •) is not concave. 
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Our :;ufficient conditio11s are strong; yet, although they are not necessary, we have shown by 

examples that weakcning them will not be easy. One message of the paper is thus that the Radner

Stiglitz nonconcavity emerges only by severely constraining the set of information structures avail

able to decision makers. Nevertheless, our conditions are weaker than those often imposed in models 

of information acquisition. Moreover, as our last section suggests, even if the Radner-Stiglitz ver

sion of the nonconca.vity fails, a general theorem on a globally concave value of information is 

likely to prove elusive. As we continue to develop models of endogenous information acquisition, it 

seems that we will continue to confront nonconcavities in the value of inforrnation, and hence the 

complications reviewed in the Introduction. 

As a final note, we have restricted attention to single agent problems. "The nonconcavity issue of 

course also arises in games (e.g., strategic experimentation and principal-agent models). A cursory 

inspection reveals that our argument directly exploits our single agent assumption ( the envelope 

theorem explanation we give at the beginning of Section 4 is suggestive here). Hence the extension 

to games is not only natural but also apt to be nontrivial. 
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Appendix 

Proof of Lernma 1: Givcn E > O, we neccl to show that t,herc exists an N( such t,hat for every 

n ~ Ne 

1 / f,,clv,, - .! J d11 I< E. 

By aclcling ami s11htracting J f 11 d11 , thc left side can he wriUen <111d manip11lat,ccl :is follows 

1 / f,,d(v., ~ 11) +.!(f., - f)dv ) [ < 1 / fnd(v,, - 11) 1 ~ 1 / Ú,, - f)d11 1 

< I<llrin - 1111+ 1 / (J., - f)d11 1, (8) 

whcrc J( is a.11 uppcr bound of t,hc scqucnce I fn 1, and t he inequality follows sincc Llic nbsolut.c 

va.lue of Lhc integral of a bounded measurable function with respcct to a finit.c signc<l mc~urc is 

less Lhan or cqual to the product of an upper bound of the integrand an<l t.hc total vmiat.ion of thc 

signed measure (Royden (1988), p. 275). 

Consider thc first term of (8). Since vn converges to II in thc total vari,i.t,ion norm, it follows 

that there is a.n Ni such that for every n ~ Ni, llvn - 1111 < 2~<. 
Considcr now the second term. Since v = v+ - v- , where 11+ ancl 1F are t he positivc and 

ncgative variat.ion of v , it follows that 

i .f Un - J)dv I i .f Un -J)dv+ - .f (J., - f)dv- 1 

< 1 .f Un - f)d> 1 + 1 .fu,,_~ J)d11- ·I . 

The integrand f n - J is bounded by 2[( and converges to zero pointwise. Thus, by the Lcbesgue 

Dominated Convergenc~ Theorem there exists an N2 such that for ev.ery n ~ N2 , 

1 .f un - f)dv+ I< ~-

Similarly, there is an N3 such that for evcry n ~ N3, 

1 .f Un - J)dv - I< ¾· 

If we set Ne= N1 V N2 V N3, then I J fndvn - J Jdv I< ½+¡+¡=E. 

This completes the proof of the lemma. ■ 

Proof of Corollary 1: It is enough to show that Al, A2, and the intcgrnbilit,y condit.ion b) of 

Theorem 1 are satisfice!. Given any set C E By, then for any s E S ancl O > O, 

Q(C I s,O) - Q(C I s,O) { q(y I s,O) - q(y I s,O) ( 1 ) O =Je 0 11cy. 

Since thc integrand is dominatcd, the LDCT implies 

·1. Q(C[s,0)-Q(Cls,O). ¡ ( I O).(/) 
1m 

O 
= qo y s, 11 ~ y . 

o-o+ e 
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Define 

Qo(C \ s, O)= fc qo(y \ s, O)v(dy) . 

Since qo(Y \ s, O) is integrable, Qo(· \ s, O) is a finite signed measure for each s E S. This shows that 

Al holds. 

Consider now A2. The difference between Q(-ls,O)oQ(·l~.oi and Qo(· \ s, O) is a finite signed 

measure for each s E S and 0 > O, and it can be written as 

>-(C \ s, 0) = j~ f(y \ s, 0)v(dy) 

for every C' E l3y, where 

.,\(- \ s,0) = Q(· \ s,0); Q(· \ s,O) - Qo(· \ s,O), 

and 

f( \ 0) = q(y \ s, 0) - q(y \ s, O) _ ( \ O) 
y s, 

0 
qo y s, . 

The total variation of .,\(- \ s,0) is given by the following measure (Halmos (1950), p. 123) 

\ .,\ 1 (C I s,0) = fc \ J(y \ s,0) 1 v(dy). 

Notice that \ f(y \ s, 0) \ vanishes as 0 goes to zero for each (y, s); since the convergence is dominated 

by 2z(y,s), by the LDCT \ .,\ 1 (C \ s,0) converges to zero for every CE l3y. In particular, 

lim \ .,\ 1 (Y I s,0) = lim IIQ(· I s,B); Q(· I s,O) - Qo( 1 s,0)11 = O. 
o-o+ o-o+ 

and therefore A2 holds. 

Finally, notice that 

IIQ(· \ s,0); Q(· I s,O) II = h I q(y I s,0); q(y I s,O) I v(dy) 

< [ z(y, s)v(dy). 

By Fubini's Theorem, M(s) = fy z(y, s)v(dy) is µ-integrable, and the proof is complete. ■ 

Proof of Corollary 3: vVe need to show that the conditions of Theorem 1 are satisfied. Conditions 

b) and Fl imply that Fo E BVr([U, y]); since BV,.([l!_, y]) and ca[u, y] .are isometric spaces, A2 

and the integrability condition of Theorem 1 are obviously satisfied in the present case (they are 

equivalent to b) and F2). That Al is also satisfied can be provenas follows. Let C be a Borel set 

-of [u, y], and let t: > O; given any { 0,.,} that converges to zero, we must find an N such that for all 

n ~ N, then 
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Thc left side is cqual to 

1 / Ic(y)d(F(y Is, 0n)0: F(y Is, O) - Fo(y Is, O)) 1, 

where Ic is the inclicator function of C. But this expression is less than or eq11;1l Lo 

11 F(· 1 s, 0n)0- F(- 1 s, O) - Fo(· 1 s, 0)11 
n 

and this converges to zero as n -) oo by F2. Since C was an arbitrary Borel set of [Ji., y], Al holds 

and the proof i:; complete. ■ 

Proof of Proposition 4 : for notational simplicity, let g(o., 0, y) = J~- 11,(a, s) P(ds 1 71, O). Since 

u(· , s) is strictly concave in a for each s, g( ·, 0, y) is strictly concave in a for cach ( 0, y) . Ivloreover. 

g(·, ·, y) is continuous on A x {O} : for given any sequence (a,., 0,.) --> (a, O), we havc 

1 g(a,.,011,Y) g(a,O,y) 1 

1 { u(an, s)P(ds I y, 0n) - { u(a, s)P(ds I y, O) 1 .Is .Is 
< 1 { u(an, s)P(ds I y, 0n) - { u(a, s)P(ds I y, 0,.) 1 

.Is .Is 
+ 1 { u(a, s)P(ds I y, 0n) - { u(a, s)P(ds I y, O) 1 ls 1s 
< is I u(an, s) - u(a, s) 1 P(ds I y, 0n) 

+ 1 { u(a,s)P(ds I y,0n) - { u(a,s)P(ds j y, O) 1 -./s .Is (9) 

Since S and A are compact metric spaces and u : A x S --> R is continuous, u(an, s) --> u(a, s) 

uniformly (Dixmier (1984), T heorem 6.1.13) and therefore, given any E> O, there is always an N e 

sufficiently large such that for all n 2: Ne 

{ 1 u(an, s) - u(a, s) 1 P(ds I y, 0n) < t { P(ds I y, 0n) = e 1s 1s 
Hence, the first term in the last inequality in (9) converges to zero, while t.he scconcl vanishes 

by weak convergence. This shows that g(-, ·, y) is continuous at every point in A x {O}. That 

g(a, 0, ·) is measurable for each (a, 0) follows directly from the continuity of u: A x S _, R ancl the 

measurability of P(B 1 · , 0) for each B E Bs. 

Now, since A is convex and compact and g(·, 0, y) is strictly concave, wc havc tbaL for eacb y there 

is a unique solution d"(y, 0) to problem (5) . To prove continuity at 0 = O, snppose to thc contrary 

that, for sorne y E Y, d*(y, 0) is not continuous at 0 = O. Let p denote the metric on thc space A. 

Then, for sorne sequence { On} tending to O, there is an e > O such that p( d• (y, O,,), d. (y, O)) > e for 

all n. Since A is compact, there is a subsequence of {d•(y, On.1.)} with limi1. J. E A and d. f- rt(y, O). 

F ix a E A. For evcry k, we must of course have g(d•(y, O11k), O"k' y) 2: g(a, 0,,k, y). J3y thc continuity 
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of g on .4 x {O}, we have g(d, O) 2: g(a, O). Since a E A was arbitrary, d must solve (5) for 0 = O, 

contradicting uniqueness. 

The measurability of d•(y, 0) follows from the fact that, for each 0, the conditions of the Mea

surable Maximum Theorem (Aliprantis and Border (1999), Theorem 17.18) are satisfied. 

Finally, since P(· 1 y,011 ) ~ µ(·) for any sequence 0,i---, O, we have that 

d~(y, 0) = argmaxaEA is u(a, s)P(ds 1 ·y, 0), 

converges to 

d•(y, O)= argmaxaEA fs ·u(a, s)µ(ds), 

and the last expression is independent of y. ■ 

Proof of Corollary 5: We only need show that the weak convergence condition holds. For any 

y that satisfies (ii)(a) and given any set BE l3s, the posterior kernel_after º?serving y E Y is, for 

0 < 0y, given by 
f 8 q(y I s, 0)µ(ds) 

P(B I y, 0) = f ( I 0) (d ) , s q y s, µ s 

where the integral is well-defined by (i). For any y satisfying (ii)(b), define P(B I y,0) = µ(B) for 

all 0 < 0y. (For 0 2: 0y, take any version of the posterior). Finally, for the v-measure zero set that 

violates (ii) set P(B I y, 0) = µ(B) for all 0 E 0. This defines a version of the posterior for every 

y E Y and 0 E 0. 

To complete the argument that this version weakly converges to µ, we need only consider a y 

that satisf-ies (ii)(a) . Take any 0n -► O. (i)-(iii) yield that 

P(B I y 011 ) = fa q(y Is, 0n)µ(ds) ___, J's q(y Is, O)µ(ds) = µ(B) 
' J5 q(y I s,0n)µ(ds) J5 q(y I s,O)µ(ds) ' 

where the application of the LDCT is justified by (i), and the last equality follows since q(y 1, s, O) 

<loes not depend on s. Since the posterior converges to the prior for each Borel set B when 0 goes 

to zero, it also converges weakly. This completes the proof. ■ 
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