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1 The Model

A seller with N different objects faces a single buyer. The seller does not observe the buyer’s
valuation for each object; valuations are the buyer’s private information.

Tlhe buyer’s preferences over consumption and money trausfers are given by
U('T‘:(J:t) =T-q-= Ly

where z is the vector of buyer’s valuations, ¢ is the quantity consumed of each good, and ¢ is the
monetary transfer made to the seller. Since the buyer has demand for at most one unit of each
good, the vector ¢ is an element of {0, 1}5; for case of notation we assume that z is an element of
I where I = [0,1], and ¢ is in IR.

The prior beliefs about the buyer’s valuation z is given by a strictly-positive, density function
f(z), which is common knowledge and represents the seller’s believes about the buyer’s private
mformation.

In searching for an optimal mechanism, one may restrict attention to direct revelation mech-
anisms where buyers report their types truthfully. A direct revelation mechanism is a pair of

functions

201" -4 1~

t: IV — IR,

where p;(z), the i** component of p(z), is the probability that the buyer will obtain good 4 when
her valuation is x, and ¢(z) is the transfer made by the buyer to the seller when valuations are z.!
In addition, the buyer must have adequate incentives to reveal its information truthfully—incentive
compatibility (IC)-—and to participate in the mechanism voluntarily—individual rationality (IR).
The buyer’s expected payofl w(z'|z) under the mechanism (p,%) when the buyer has valuation x
and reports z’ is

u(z'|z) = p(z’) - z - t(z").

For ease of notation, u(z|z) is denoted w(z). Then, (p, t) must satisfy

(IC) Va, u(z) > u(z’
(IR) YV, u(z) > 0.

z) Va'

(As stated, the constraints hold everywhere; it suffices that they hold almost everywhere.)
We summarize in a lemma some readily available properties of 1C and IR mechanisms that have

. . D)
been noted and used in the literature.®

Lemma 1 77

n order to compute expected payolls, the functions p and £ must be integrable.
*Sec Rochet (1984), Armstrong (1998), and Jehiel, Moldovanu, and Stacchetti (1998), Krishna and Maenner
(2000}.
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1. If (p,t) is a mechanism that satisfies IC, then the buyer’s expected payoff u(x) is convex, and
its differentiol Vu(z) = {m} belongs to IN for most x € I . Indeed Vu(x) = p(zx) almost

1,
r;

everywhere.”
}_ 2. If w(x) is a conver function, and its differential V(z) = [Q}?i_fl] € IN for most z € IV,
i then there cxist o mechanism (p,1) satisfying IC. The mechanism, is defined by p(x) = V(z)
|

almost cverywhere, and t(x) = p(x) - 2 — @(x). Under these definitions, u(x) = @(z).

- Intuitively, a mechanism is IC if and only if the corresponding buyer’s payoffs are convex, with
' partial derivatives between zero and one.
| The preceding properties completely characterize IC mechanisms in terms of the buyer's expected-
o payoll funetion u(x). Individual rationality requires that u be non-negative. Since the objective is
| to find an optimal policy for the buyer, and since the buyer’s expected payoff is non-decreasing,
there is no loss of generality in restricting attention to payoff function where w(0) = 0. **This
requires explanation. ***
The sel of IC. IR mechanisms is

W = {ue C'(I") | u(x) is convex, Vu(z) € IV a.c., and u(0) = 0}.
For later reference, we summarize in Lemma 2 below several simple properties of IC, IR mechanisms.
Lemma 2 If u belongs to W, then
1. w(x) is non-negative for all x.
# | 2. u 1s non-decreasing: ¥’ > x => u(z’) > vu(x).
3. wu is conlinuous.
4. w1s a.e. differentiable.

5. u is monotone: (Vu(z') — Vu(z)) - (' —2) >0, for all z', z.

Given any IC, IR mechanism w(-), a buyer with type x receives a payoff u(z) = Vu(zr) -z — t(x).

The seller’s expected revenue when using the mechanism u(+) is
| Elt(z)] = E[Vu(z) -z — u(z)].
The scller’s problem is to select a mechanism u € W to maximize expected revenue,

max E[Vu(z) - & — u(z)]. (1)

uc v

*Since u(z) is convex, it is a continuons function, and almost everywhere differentiable,



2 Optimal Mechanisms

An optimal mechanism is a solution to the maximization problem (1) described in the previous
section. We consider in turn the structure of the feasible set W and the nature of the objective
function.

Any function obtained as a convex combination of elements of W is convex, non-negative, and
satisfies the bounds on partial derivatives (its gradient takes values in [ Ny, Thus, W is itself a
convex set. It is also simple to verify that W is compact with respect to the sup-norm (Lemma 4
in the Appendix). Therefore, W has extreme points (Krein-Milman Theorem).

The objective function of the seller’s problem is linear on the mechanism wu(-). Thus, a solu-
tion can always be found on an extreme point of W (Bauer Maximum Principle, see for instance
Aliprantis and Border (1999), page 230).

Information about the extreme points of the set W of IC, IR mechanisms can be very useful in
identifying propertics of the optimal mechanism. A zero-one mechanism u(-) € W is a mechanism
in which each object is always either assigned for certain or not at all; i.e. the probability of trade
Vu(z) € {0,1} for all z € IV, Zero-one mechanisms do not “randomize” the assignment of objects.

The following simple fact illustrates the potential usefulness of the previous discussion.

Theorem 1 If the seller has a single good, i.e., N =1, an IC, IR mechanism is an extreme point

if and only if it is a zero-one mechanism.

Proof Zero-one mechanisms are clearly extreme points: for any continuous g with Vg(z) # 0,
either u + g or u— g is not in W. Thus, Vg must be a.c. zero. To establish the converse select any
uw € W that is not a zero-one mechanism. Then, there is a set of positive measure B C [0, 1] such
that € < Vu(z) <1 - e Let

Vglz) = 1 - Vu(z) if Vu(z) > 0.5
e Vu(z) if Vu(z) < 0.5

Let g(z) = [ Vg(z)dz; then g(z) is a continuous function. We now verify that both u + ¢ and
u — g are in W. First, the gradient of u + ¢ is in [0, 1]:

1 if Vu(x

V(u(z) + g(x)) = { 2Vu(z)  if Vu(z

Second, V(u(z) + g(z)) is increasing in z, u + ¢ is convex. Third, g(0) = 0 by construction. Thus
uw+gisin W.

A similar argument applies to w — g.

Q.E.D.

The characterization of the set of extreme points of W readily provide alternative proofs of
various well known results in one-dimensional environments. For instance, optimal bargaining

mechanism for an uninformed seller is a take-it-or-leave-it offer (Samuelson 1981), randomization



(i.c. no “huggling”) need not be part of an optimal sclling strategy (Maskin and Rile 1984), cte.
These well known results do not extend to higher dimensions.
In one-dimensional environments, the set of extreme points of W is relatively small, the set

of zero-one mechanisms. In higher dimensions (l.e., N > 2), the set of extreme points of W is

considerably richer; it may involve randomization.

2.1 Examples

Example 1: An extreme point that involves randomization.

Consider the sot W of IC, IR mechanisms in two dimensions. Let u € W he defined by
w(z) = max{0, (0.5z; — 0.2), (z; 4+ z2 — 1)}.

The graph of « is depicted in Figure 1.
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Figure 1: u(z) = max{0, (0.5z; = 0.2), (21 + z» — 1)}

The mechanism w is composed of three linear pieces. The effective domain of each lincar piece
is depicted in Figure 2. The symbol A; ; represents the st of types 2 where Vulz) = (4, 7).

A general argument, presented Jater on this section, demonstrates that the mechanism u is an
extreme point of W. For the moment, the following intuition may suflice the curious reader. If u is
not an extreme point, then there is a function g # 0 such that w+g € W. Since u-kg is 1s continuous,
and a.c. differentiable (Lemma 2(4) and (5)); g must be continous, and a.c. differentiable. Notice
that for 2 € Ago U Ay 1, Vg must be identically zero; otherwise either V(4 g) or V(u— g) is not,
in IV, It follows by continuity that g(x) = 0 for all 2 € Ago U A ;. If g(x) > 0 for some 2 € Agp,
then since u + g is non-decreasing (Lemma 2(2)) g(z) > 0 for any z € Ay ;. N Asy. Thisis a
contradiction.

[ ]
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Figure 2: Defining Partition

Example 2: An extreme point that is not piece-wise linear.

Suppose there are two objects. Let w € W be defined by
u(z) = max{0, (0:2562% + z3 = 0.5)}.

The graph of w is depicted in Figure 3.
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Figure 3: w(z) = max{0, (0.25z7 + 22 — 0.5)}

Suppose w is not an extreme point. Then there is a function g(z) such that uw+ g € W. Using
a similar argument to that employed in Example 1, it follows that Vg(z) = 0 for z € Ay, and

that Vag(z) = 0 for all z. By continuity, g(z) = 0 for all x in the boundary of Agg. ** needs some
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Figure 4: z9 = 0.5 — 0.252%

work *** If ¢ is different from zero, however, it must have Vig(z) # 0 for some x. In I?\ Agp,
|Vg(z)| < max{.5z,(1 — .5z)}.

2.2 Higher Dimensions

The set C is a convex cone with vertez 77 if it is convex and for alln € C, 7+ kn e Cforall k € IR,.

Theorem 2 Let C be a conver cone with vertex 1 in a locally convez. topological veclor space X.
Suppose that

neCnt0 = —n&C. (2)

Then there exists a continuous linear functional f # 0 such that (f,7) > {(f,n), YVne C.n#0

Proof By translating C if necessary, we may assume without loss of generality that 7 = 0. We
must therefore show that there is a continuous linear functional f such that 0 > (f,n) for all 9 € ¢,
n # 0.

If C is either empty or a singleton, the theorem is trivial. If C has more than one element, C is
not dense by hypothesis. It follows that C is the intersection of all topologically closed half spaces
containing it (see for instance, Aliprantis and Border (1999), Corollary 5.62, page 194).

A half space is any set of the form [f < 7] = {n € X : (f.n) < r} where f is any non-zcro
continuous lincar functional and » € IR. Note that if [f < r] contains C, then » > 0, and [f < 0]
also contains C.

Thus, C' = Naealfa £ 0]. Define

C=co{C\ [ [fa < —€]}.

aeAN
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We now show that 0 ¢ &, Suppose to the contrary that 0 is an element of C. Then there is a
sequence 7" such that " — 0, and n* = Zkeh’“ Bime, where g > 0 for all n and k, K" is a
finite set of indecis, 37 cjeu B = 1, and 5} € (C'\ Nacalfa < —€]) for all n and &.

For any o € A,

VA WM\ ny oo 1t
(fch’." ) = <.f(n E bk "f.k:) = § 'Bk <er’.’A-) < E /.jk{_e) o
kER ™ RE K™ keKn
Since fq is continuous, however, {f,, ") must converge to zero as n approaches infinity, a contra-
diction.

Since 0 ¢ C, there is a continuous linear functional S such that
0 > sup{{f,n) : n € C}

(for instance, Aliprantis and Border (1999), Corollary 5.59, page 194).

We complete the proof by showing that 0 > (f,7)¥n € C,n # 0. The argument shows that if
the inequality is not satisfied for some n' € C, then there is a k7’ in C that also violates it.

Suppose there is a non-zero ' € C with (f,/) > 0. For any & € IRy, the element kn
belongs to C and —k7' is not in C. Then, there is a continuous linear functional g such that
(g,—n") > sup{{g,n) : » € C} = 0. (We used the fact that 0 € C.) Note that the half space
[9 < {g,—n")] contains C, and [g < 0] must also contain C. Tt follows that {g,7) < 0 and that for a
sufficiently large k > 0, {9, kn') < e. In turn this implies that k7 € C. Since ([, ky') = k{f,q') >0,
we have a contradiction. Q.E.D.

We first show that it is possible to restrict attention to the set of piece-wise linear mechanisms
in W.

A mechanism u is piccewise linear if there exist a partition of I”V such that w is linear in each
element of the partition. Thus, u is piecewise linear if and only if w is the pointwise maximum of

finitely many linear functions.
Theorem 3 The set of piccewise linear mechanisms in W is dense in W.

Given any IC and IR mechanism u € W, the seller’s revenue from transacting with a buyer of
type z is v, = Vu(z) - 2 — u(z).

A mechanism v € W is dorminated if there is an alternative mechanism «' € W such that
vy (x) > vy (z) for all z € IV with strict inequality in set of positive Lebesgue measure. Dominated
mechanisms are trivially suboptimal. Even extreme points of W can be dominated. To see this
consider, the mechanism in which no buyer ever gets an object (i.e., u(z) = 0) and the mechanism
in which buyers always get the object (i.e., @(z) = 1). These two mechanisms are extreme points
of W the probabiltiy of trade Vu(z) equals zero and one respectively. Both mechanisms, however,
yield zero revenue to the seller independent of the buyer’s type. They are casily dominated by
o'(z) = max {0, (1 -z — §)}.

In the following discussion we show that any undominated, extreme point of W is an optimal

mechanism for an appropriate distribution of types.



Theorem 4 Let 4 be an undominated, exireme point of W. Then there is a density [ such thatl
is the optimal selling mechanism.

Proof Let

V = {v, : vu(z) = Vu(z) - ¢ — u(z) for someu e W}.

It is simple to establish (by verifying definitions) that V is convex and that for any extreme

point # € W, vy 1s an extreme point of V. (For ease of notation, we write v and % instead of v,
and vg.)

Let C be the pointed convex cone with vertex i generated by V:
C={o+k(v—9): kelR,, ve V}L

It follows as an application of the Hahn-Banach Extension Teorem (sce for instance, Lemma
5.72 (due to Klee) in Aliprantis and Border (1999), page 201) that in a locally convex space o

convex cone is supported (by a continuous linear funciional) at its verter if and only if the cone is
not dense.

We now show that the cone C is not dense as a subset. of L. Suppose to the contrary that C

is dense and let @(z) = 3N. Then, there is a sequence {o + & (v" — 4)} € C such that
Ve > 0, 30 such that n > f implies |0 = 8 + " (0" — 7)o < €.

For cach n, since @ is not dominated by »™, there is a set G € IV with v™(G) < #%(G). Then,

note that

5 =5 — k" (0™ = 5)]|oo

IV

5 -5 —=E"(»" —9))1c|lec
1% = #)1clle
> (BN—-N)>0,

v

where the inequality follows because G < IV, and the sccond one because both terms are positive
forz € G: 9(z) —v(x) 23N — N >0 (Vz € G) and —k"(v"(z) — 5(x) > 0 (Vx € G).

Let P denote the positive cone of Lao(I™). Note that the same argument above shows that the
cone C' — P is not dense.

We conclude that
dg#0, g€ L](IN), such that (#,9) > (v,g9) Vo € V.

Note that g(z) = 0 almost everywhere. This is so becanse the negative orthant — /7 is separated

by g. **This needs explanation ***. Thus, defining

9




we obtained the desired density f supporting ; 4 is an optimal mechanism with respect to f.
Q.E.D.
Given a mechanism uw € W and a set B C IV of type realizations, the average contribution to

seller’s revenue of transacting with agents in B is
tu(B) = ]B[Vu(L) cx — ulx)]de.
The expression above i,,(+) defines a finite measure on the Borel subsets of IV, Let
V™ = {uy| ue W}.

Thus the set V is a subset of ca(IV), the vector space of bounded, signed measures on IV,
It is simple to establish (by verifying definitions) that V™ is convex and that for any extreme
point @ € W, there is a corresponding extreme point iz € V. (For ecasc of notation, we sometimes

use o and ji instead of u, and fig.)

Theorem 5 Let ji € V™ be generated by u € W. Suppose there is B C IN such that i(B) > u(B)
Jor all p € V™. Then there is a continuous density function f such that @ is the optimal selling

mechanism.
Proof
Let C be the pointed convex cone with vertex ji generated by V™, i.c.,
C={p+klp—j): keR,, peVvl.

It follows as an application of the Hahn-Banach Extension Teorem (sce for instance, Lemma
5.72 (due to Klee) in Aliprantis and Border (1999), page 201) that in o locally conver space a
conver cone is supported (by a continuous linear functional) at its vertex if and only if the cone is
not dense.

We now show that the cone C is not dense with respect to the weak® topology. Let A be the
Lebesgue measure in 7. We will show that no sequence in C can approximate 3N . Suppose to -
the contrary that there is a sequence g + k™ (p" — 1), = 1, 2, ..., that converges (weak*) to 3N .

Then, as n — oo, we observe that
K (u” = 1) 25 BNX = ).

Note, however, that the sequence g™ has a norm converging subsequence (Lemma 6 in the Ap-

pendix). Thus, (p"* — ji) converges to (i — ji) in norm. Therefore,
A (" — ) R (BNA - [).
Then, for any open rectangle O € IV,
a(0) + k" (1" (O) = (O)) — 3INA(O).

10



(Note that the boundaries of open rectangles have A-measure zero.)
Note first that for any g € V and any subset O € IV, 1(0) < NA(O). (This follows hecause

11(0) [o[Vu(z) — u(z)]dX < [,(1-x)dX < [, NdX.) Note also that A(Q) > 0 for any open subsct.
O of IV, This implies that

E*(1"(0) = 1(0)) — [(N + 1)A(O) — #(0)] > 0.
Thus for any open set O € IV, there is 72 such that n > 7 implics
K (1" (0) - i(@)) > 0.

Setting O = By

Note also that since V' is compact, we may assume that, in a subsequence if necessary, p’ = .
Suppose j¢ # ji. Then,

Let P denote the positive cone of ca(I™V), i.c.. the sct of positive bounded measures.

It is simple to check that C — 7 is also a pointed cone with vertex fi.

A separating hyperplane argument yields the desired result: the cone €' — P is supported at its
vertex if and only if the cone C = P2 is not, dense (Lemina 5.72 (due to Klee), Aliprantis and Border
(1999), page 201).

We now verify that the cone is not dense. We'll show that the positive measure 3A (where A is

Lebesgue measure) is not approximated by elements of C — P.

i Qutline

1. The set of picce-wise linear mechanisins is dense. Thus, to some extent, one can restrict
attention to picce-wise lincar mechanisms.

2. The set convex hull of the set of zero-one mechanisms is not. dense in W.

3. Undominated mechanisms can be solutions to optimization problems.

4. Mechanisms that are optimal in any subset can be supported by continuous densitics.
=

B, — = e T SRS S TN e

3 Appendix

Lemma 3 Let v € W forn = 1,2,.... If the sequence u™ converges poinlwise {o a funclion wu,
w: IN — IR, then u™ converges uniformly to v, and u € W.

Proof To be added.

Lemma 4 The set W of individually rational (IR) and incentive compatible (IC) mechanisms is

compact with respect to the sup norm.

11



Proof The family of functions W is equicontinuous and uniformly bounded. The Arzela-Ascoli
Theorem (see for instance, Royden (1968), page 179) implies the desired result.
Q.E.D.

Lemma 5 Let w",n = 1,2,... be a sequence in W that converges uniformly to w € W. Then the

sequence of gradients Vu' converges pointwise A-a.e. to Vu

Proof Forn =1,2,..., let D" be the set of z € IV where «"(z) is differentiable, and let D' be
similarly defined for u. The sets just defined are dense in IV and have A measure one (Rockafellar
(1970), Theorem 25.5, page 246); furthermore The set D = ((,5, D")ND’ has full measure. (Note
that we may also take the intersection of D with the interior of IV , and thus avoid the details
about the definition of the gradient on the boundary of IV.)
Pick any z € D. Since u™(z) is differentiable, Vu"(z) equals the unique subgradient at z
(Rockafellar (1970), Theoremn 25.1, page 242). Therefore for any v in IV, z € D,
u(z — dy) — u™(z)
]

<vurle) g < LT ),
for all small § > 0. (Note that for sufficiently small §, the points (z +dy) € IV and (z — 6y) € IV).

We now show that for any € > 0, there is 2 such that n > 7 implies

w(z — dy) — u(z u(z + dy) — u(z
u(x (_-'3) - u(z) | e (@) < u{J,—f-()y_) u(x) B (3)

E 0

To see this, note that given any two sequence of real numbers #*, s™, with " > s, V¥n, and s™ — s,
the following inequalities hold: #™ — s > s™ — s > —||s" — s||. Since for any € > 0, there is 72 such
that n > 7 implies —||s" — s|| > —¢, it follows that [n > 7 = ™ — s > —¢]. The same argument
can be used to obtain both inequalities in (3).

Finally letting d | 0, by the definition of gradient (3) yields
Vu(z) -y —e < Vu(z) -y < Vu(z) -y +e

Since y and e are arbitrary, this implies the desired result.

Q.E.D.
Lemma 6 The set V' of measures generated by functions of W is norm compact.

Proof Let p,n = 1,2,... be a sequence in V. Each p € V is defined by a function w" €
W. By Lemma 4, a subsequence of ' (which abusing notation we indicate with a subindex n)
converges uniformly to some w € W. By Lemma 5, in a further subsequence (also indicated with the
same subindex n), Vu™ converges pointwise A-a.e. to Vu. By Egoroff Theorem (sce for instance,
Aliprantis and Border (1999), page 349), for any ¢ > 0, there is a set G € IV with A(G) > 1 — ¢,
such that V™ converges uniformly to Vu in G.



Thus

| | {(Vu™(x) — Vu(r)) -z — (u"(x) — u(x))} dA|

sup [1"(B) — u(E)
£ 1o

€ [(Vu™(z) — Vu(z)) - z| dX + [ | (v (x) = u(x))| dA
i e

= / [(Vu" () — Vu(z)) - z| dX + f [(Vu" () = Vu(r)) - | dA
JENG ENGe

- fEHu (z) — u(z))| dA

As n tends to infinity, the first and third terms of the last line go to zero. The integrand in the
second term is bounded: since, 0 < Vu" -2 < 1.z < N and the same bounds apply to Vu -z, it
follows that |[(Vu™ — Vu) - z| < N. Thus,

/ |((Vu™(z) — Vu(z)) - 2| dX < NA(G®) < Ne.
ENGe

Since ¢ is arbitrary, the desired result obtains.

Q.E.D.

13
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