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A closed-form solution for defaultable bonds 
with log-normal spread 

E. Cortina* 

Abstract. In this paper we describe a two factor model for a defaultable discount bond, 
assuming a log-normal dynamics for the instantaneous short rate sprea<l. Under sorne 
simplified hipothesis, ,ve obtain an ex_plicit barrier-type solution for zero recovery and 
constant recovery. 

1 Introd uction 

The approaches to model credit risk can be broadly classified in two classes. The earlier 
includes the so called structural models, based on the firm's value approach introduced 
by Merton in [14] and extended by Black and Cox [2], Longstaff and Schwartz [1:3] and 
others. A review of the literature on these models can be seen in [20]. 

More recent is the class of the generally termed as reduced form models, in which the 
- assumptions on a firm 's value are dropped, and the default is modelled as an exogenous 

stochastic process. This class of models has been studied in [4], [5], [6], [7], [1 2], [11] and 
others. For a review we refer the reader to [7] and [20]. 

The goal in this paper is to describe a two factor model, in the context of the Black&Scholes 
option prising techique, that could be applied sovereign defaultable bonds. The price of a 
risky l:md price is derived as a function of the risk-free short rate and the instantaneous 
short spread, and the requirement is that the short spread must be positive. The dynamic 
of the spread is assumed to satisfy a log-normal diffusion with bounded volatility. 

Our approach is connected with a remark in [20], saying that an alternative to the modeling 
of the term structure of defaultable bonds, based on the Heat-Jarrow-Morton (HJM) 
approach ( cf. [9]) , would be a two factor model using an arbitrage free model for the 
risk-free rate, and a model for the forward spread that generates a positive short rate 
spread. 

The model in [3], applied to Brady bonds, was developed in the same context that ours, 
in the sense that they use the Black&Scholes pricing technique, but they took expectation 
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on the risk of default insteacl of hedging it, so our pricing equation and its solution are 
different from theirs. 

This paper is organized as follows. The bond pricing equation is derived in section 2. 
In Section 3 we obtain the solution for a lognormal dynamics of the short spread with­
out recovery, and in Section 4 we consider a constant recovery. Section 5 contains the 
conclusions and sorne comments on possible future work. 

2 The pricing equation 

vVe work in a continuous time framework, in which rd(t) is the defaultable short rate if a 
default event has not ocurred until t, r(t) is the risk-free short rate, and the spread h(t) 
is defined as 

Our assumptions are 

l. at any time t risk-free discount bonds and defaultable discount bonds of all maturities 
are available, 

2. the dynamic of r(t) and h(t) are governed by diffusion equations 

(1) 

(2) 

where W1 and W2 are uncorrelated standard Bro,vnian motions, 

3. the spread h(t) > O is positive. 

To derive a general equation for the defaultable bond, we set a portfolio I1 containing a 
defaultable bond P(r, h, t, T), of maturity T, a number .6 of risk free bonds B(r, t, T1), of 
maturity T1, anda number .61 of defaultable bonds C(r, h, t, T2 ) of maturity T2 , 

I1 = P(r, h, t, T) - .6B(r, t, Ti) - .6 1C(r, h, t, T2 ) . 

From Itó's lemma it follows that 
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and we look for values of .6. and .6.1 that eliminate the randomness in dII. 

aP 1 [ºP aP 8C] .6. _ ah .6. _ ah 
1 - óC , - a B Or - fJC or : 

oh fJr oh 

Using non arbitrage arguments it follows that 

where 

8 1 82 8 1 2 f}2 1 .., 82 

.l() = 8t + 2°-; 8r2 - r ªnd .li () = ot + 20-r 8r2 + 20-¡; 8h2 - r. 

Replacing .6. y .6.1 in ( 4) we obtain 

where, as we know, the right hand side is 

and Ar(r, t) is the market price of rate risk. 

Then 

Rewriting this equation as 

(3) 

(4) 

it can be seen that the ratio must be independent of the maturity, and hence equal to a 
quantity dependent of h and t , and possibly of r.For a given µh(h, t) and o-h(h, t) =f. O, it 
is always possible to write 

3 



where >.h(r, h, t) is the market price of the risk associated with the spread. We shall assume 
in what follows that >.h <loes not depend on r . To shorten the notation we set 

for the adjusted drifts of interest rate a'nd spread, respectively. 

Writing L1 (P) explicitly, we arrive to the pricing equation of the defaultable bond 

8P l ') 82 p l ') 82 p aP aP 
8t + 2CT;(r, t ) ar2 + 2CT¡;(h, t) Bh2 + </>(r, t ) ar + 'lf;(h, t) Bh - rP = O. (5) 

As long as r and h were not correlated, the problem is separable; i.e. we considera solution 

P (r, h, t , T ) = Z(r, t, T )S(h, t), 

where Z(r, t, T) is the solution of a risk free bond 1
. Replacing this solution in (5) gives 

Then S(h, t) satisfies 

as 1 •) a2s )as 
at + 2CT¡;(h , t) 8h2 + 'lf;(h, t 8h = O. (6) 

If default has not occurred before the maturity T , the final condition is 

P (r, h, T , T) = Z (r, T, T)S(h, T ) = l , 

which leads to the following final conditions for Z and S 

Z (r, T, T ) = l , S(h, T ) = l. 

,3 Modeling the spread without recovery 

The log-normal assumption for the dynamics of h(t) is the natural and simplest ''"ªY to 
assure its positivity. In [10] and [16] has been shown that this assumption is not suitable 
for continuously compounded interest rates, since it implies that the rates explode with 
positive probabilities, therefore expected accumulation factors over any finite time interval 

1 For a ful! description of interest rate mo<lels sec [17]. 
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are infinite. This problem has bcen addressed e.g. , in [8], [18], and [15], vvhere alternativc 
log-normal type term structures that preclude explosion of rates are proposed. 

However, for a log-normal term structure model, the spread is positive and remains finite. 
The spread increases as it becomes (or it is perceived to become) more likely that the 
bond may default. But it <loes not rise unboundedly; in the practice there is a finite upper 
barrier, even if it is not known in advance. 

For a log normal diffusion, imposing an upper bound to the short spread, O s; h s; Hd < oo, 
is equivalent to define a bounded volatility process, i.e. 

(7) 

with 

(8) 

where O"h (t) is a deterministic function, and it is shown in [9] that this volatility process 
gives finite posit ive rates (spread in this case). 

For this first version of the model we shall make sorne simplified assumptions that allow 
us to easily obtain a closed-form solution: 

l. >..h = >..o and O"h ( t) = O"o are a positive constants. 

2. µh(h , t) = µ0h(t), where µ0 is a positive constant. 

With the above choices, equation (6) reduces to 

85 1 .., ?825 [ ] 8S 8t + 2CT0h- oh2 + µo - AoCTo h oh = O, 

with the final condition 

5 (h, T ) = l. 
if default has not ocurred until maturity T . 

Os; t < T, (9) 

(10) 

Requiring that, for spread tending to zero, P(t, h, t, T) should approximate to the solution 
of a risk-free discount bond, gives us the first boundary condition, namely 

lim 5 (h, t) = l. 
h➔O 

( 11) 

The second boundary condition, to be applied at Hd, arises from t he assumption that a 
default occurs if ever h reaches Hd- Therefore, for zero recovery we must have 

P(r, Hd, t, T) = O, (12) 

which implies 5(Hd, t) = O. 
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With the usual c.:hange of variables 

and for 

the problem (9) becomes 

with initial condition 

and boundary conditions 

1 
a = - -(k -1) 

2 ' 

8u 
OT T.> o, -oo < x < InHd, 

u(In Hd, T) = O, 

lim u(x, T) = e½(k-l)x+½(k-1)2. 
x➔-oo 

(13) 

(14) 

(15) 

I\otice that the upper bound to the spread makes this problem mathematically similar to 
an up-and-out barrier option. 
The solution to (14), obtained by the method of images, is (see Apendix A) 

where 

and 

N(x) = - e-"'~-
l ¡x ., 

,/2ii -00 

is the cumulative probability distribution function for a normally distributed variable ,,·ith 
mean zero and variance l. 

Going back to (13), we can write the solution in financia! variables 

( 16) 
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where 

ln ( & ) 1 
d1(h, t) = ✓ h - -(k - l)J2(T- t), 

2(T - t) 2 

It is easy to see that the final condition and the boundary condition at Hd are verified by 
construction. 
For t = T, N(d1) = l and N(d2) = O. Hence S(h, T) = l. 

At h = Hd, d1 = d2 = -½ (k - l)J2(T - t ), ,vich yields S(Hd, t) = O. 

It remains to check the boundary condition for h --+ O, 

Since for h--+ O, d1 --+ oo, then lim1i__,o N(d1) = l. 

To calculate the limit of the second term in the bracket we use the assymptotic expression 
for the cumulative normal probability distribution function (see [l]). For x < O 

N( ) Z(x) [ l 1.3 1.3.5 (-lt.1.3 · · · (2n - l)] D 
X = -- l - - + - + -- + · · · ..:..._--'-----'-----'- + Hn 

x x2 x4 x4 x2n ' 

where 

and Rn is less in absolute value then the first neglected term. It results (see Appendix B) 

lim N(d->) = O. 
h-tO -

Therefore, limh-,O S ( h, t) = l. 

4 Modeling the spread with constant recovery 

Introducing a recovery is equivalent to specify a boundary condition 

S(Hd, t) = R(t) , 
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and, due to this contribution, there ,vill be an extra term Sn(h, t) added to the solution 
(16). 

For the particular case of a recovery paid in cash, or when the rccovery is a fraction of the 
face value , R(t) = R is constant; this makes the problem mathematically equivalent to 
the modeling of a constant rebate for and up-and-out barrier. The additional term takes 
the form (see Appendix C) 

SR(h, t) = e-½U:-l) Inh.-¼(k- l)2{T-t) R [1 - erf(d3)], 

where 

d _ lnHd - lnh 
3 

- 2JT- t ' 

5 Conclusions 

l 1t 2 and erf(t) = r,;; e-P dp 
VII O 

ünder sorne simplified assumptions we have obtained a barrier type closed-form solution 
for a two factor model of a defaultable bond, modeling the_ spread as a log-normal random 
walk with bounded volatility. 

This log-normal type model for the spread is the simplest one, and by relaxing the hy­
pothesis it may be improved to better agree with sorne phenomenological facts. In [6] is 
pointed out that the behaviour of instantaneous risk of default was observed to be mean 
reverting under the real measure. Therefore, out next step shall be to consider a mean­
reverting lognormal type random walk, and preliminary calculations show that, in this 
case, a quasi-closed solution may be obtained in terms of the Hermite polynomials. 

A jump diffusion model should also be considered for the spread. Allowing jumps would 
be a more realistic assumption, especially for certain sovereign issuers, where it is likely 
that political events may produce jumps in the spread. 

6 Appendix A 

Consider the problem (9), (10), (11), and (12). 
Setting 

2r 
t =T- --:j", 

Cíi5 
S(h, t) = v(x, r), 

and replacing this change of variables in (9) one obtains 

ov fJ2v ov ~= ,:-i •)+(k -1)~ , r>O, -oo<x<lnHd. 
vr vx- vx 

with initial and boundary conditions 

8 

(17) 



v(x, O) = 1, v(ln Hd, T) = O, lim v(x, T) = l. 
X--+-00 

J\"ow we set 

and ( 17) beco mes 

The choice 

8u éPu 8u [ ? ] - = - + [2a + (k - 1)] - + a-+ a(k - 1) - (] u . 
OT 8x2 . ax 

1 .., (] = --(k - 1)-T 
4 

(18) 

(19) 

(20) 

eliminates the terms in i~ and u, thus reducing (19) to the heat equation in a semi-infinite 
domain 

= OT ax2 ' 
T > Ü, - oo < x < lnHd, 

with initial condition 

u(x, O)= e½(k- l)x, 

and boundary conditions 

u(ln Hd, T) = O 

lim u(x, T) = e½(k-I)x+¼(k-I)2 
x--+-oo 

The well known general solution this problem, using the method of images, is 

¡Inl-fd 
u(x,T) = }_

00 
uo(y) [G(x-y ,T)- G(x - (2lnHd - y)T)]dy, 

where 

is the fundamental solution for the heath equation. 
Replacing (23) in (22) we have 

1 [/In Hd (.r-!f)~ ¡In Hd 
u(x, T) = . r::;:;; u0(y)e- - ,r-dy - uo(y)e 

2 V íf"T -oo -oo 

where ·u0 is given by (15) . 

(21) 

(22) 

(23) 



Here 

l !lnH¿ (x-v)2 

11 = . r,;;:;; uo(y)e--"'-dy. 
2y 7rT - oo 

(24) 

Substituting 

y-x 
z= --

ffr 
in Ii yields 

.!.(k-l)x In *z = ea ! 2..- e-½[z2-(k-l)v'2Tz)]dz 

.j2ir -00 

Calling 

we obtain 

(25) 

where 

and 

N(x) = - 1-fx e-½x2 dx, 
v'27r -00 

is the cumulative probability distribution function for a normally distributed variable with 
mean zero and variance l. 
The calculation of 12 is similar to that of 11. 

(26) 
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Putting 

x - 2 InHd + y 
z= 

./2i 
we obtain 

where we substitute 

to obtain 

The change of variables 

1 
p = z - 2(k - 1)./2-r, dp = dz, 

gives 

(27) 

where 

x - InHd 1 ~ 
d,, = --- - -(k - l)v 2r. - 0= ? V L.T -

Finally, from (25) y (27) we have 

Going back to (18) we can write 
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7 Appendix B 

To calculate 

lim e(k-l)(In Hrx) N(d2) 
X--+-00 

we use the assymptotic expression for the cumulative normal distribution. For x < O 

r-.r( ) Z(x) [ 1 1.3 1.3.5 (- lt.1.3 · · · (2n - l)] 
lv X=-- 1--+-+-- + · ·· - - ------ +Rn x x2 x4 x4 x2n , 

where 

and Rn is less in absolute value then the first neglected term. Then 

= lim 
X--+ - 00 

8 Appendix C 

d; 
= lim e{k- l)(In Hd - X) e- 2 = 

x--+-oo d2 

exp [-½ [T + ½(k - l)J2-r]2] 
x&c!¿ - ½(k - 1)$ =0 

The problem (14), with a specified boundary condition at x = In Hd 

(28) 

can be reduced to two simpler problems "vith solutions u1 and u2 such that u = ·u1 +u2 . The 
subproblem for u 1 is the already solved model with zero recovery. The second subproblem 
is 

8u2 82
u2 

8t 8x2 
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Taking the Laplace transform ,vith respect to T, we get the ordinary differential equation 

where 

is the Laplace transform of u(x, T). 
The solution to (29) is 

a2u2 . 
~ = PU2 ux~ (29) 

where R(p) is the Laplace transform of R(T). Therefore, u(x, T) can be written as the 
Laplace convolution of R( T) with the inverse La place transform of ev'P(x- In Hd) 

Setting y= r~u' and for R(T) = R = cte, we obtain 

( . ) _ R(x - lnHd) [ 00 
• [-y(x - lnHd)2

] _l d 
U2 X' T - ·) r,:; J 1 exp 4 ¡;,; y 

- v 11 ,: vY 

where 

1 11 ~ erf(t) = - e- P dp 
fi o 

is the error function. 



References 

[l] l'vI. Abramowitz and I Stegun Handbook of Mathematical Functions. Dover Publica­
tions, Inc., l\"ew York. 1970. 

[2] F . Black and J. Cox "Valuing corporate securities: Sorne effects of bond indenture 
provisions". Journal of Finance 35, 122:3-1234. 1976. 

[3] I. Blauer and P. Wilmott "risk of Defaul in Latin american Brady Bonds". Technical 
report, 1998. 

[4] Darrell Duffie and Rui Kan "A Yield-Factor Model of Interest Rates". Mathematical 
Finance, vol. 6(4), 379-406. 1995. 

[5] Darrell Duffie "Defaultable Term Structure Models with Fractional Recovery of Par". 
Working Paper. Graduate School of Business, Stanford l:niversity. 1998. 

[6] Darrell Duffie and Kenneth Singleton, "Modeling Tem Structures of Defaultable 
Bonds". Review of Financia! Studies, vol. 12, 687-729. 1999. 

[7] Darrell Duffie, Lasse Pedersen and Kenneth Singleton" Modeling Sovereing Yield 
Spreads: A Case of Study of Russian Debt". Graduate School of Business, Stanford 
Cniversity. 2000. 

[8] B. Goldys, M. Musiela and D. Sondermann, D. "Lognormality of rates and term struc­
ture models". vVorking paper No. B-394, üniversity of Bonn. 1996. 

[9] D. Heath, R. Jarrow and A Morton "Bond pricing and the Term structure of interest 
rates: a new methodology for contingent claims valuation". Econometrica, vol 60(1), 
77-105. 1992. 

[10] M. Hogan and Weintraub, "The log-normal interest rate models and Eurodollar Fu­
tures". Technical report, Citibank, l\"ew York, 1993. 

[11] R. Jarrow, D. Lando and S. Turnbull "A Markov modelo for the term structure of 
credit spreads" The Review of Financia! Studies 10, 481--523. 1997. 

[12] R. Jarrow and S. Turnbull "Pricing derivatives on financia! securities subject to credit 
risk" Journal of Finance 50, 53-86. 1997. 

[13] F. Longstaff and E. Schwartz, E. "A simple approach to value fixed and floating rate 
debt" . .Journal of Finance 50, 789-819. 1997 

[14] R. Merton "On the pricing of corporate debt: The risk structure of interes rates" . 
. Journal of Finance 29, 449-470. 1974. 

[15] Kristian Mil tersen, Klaus Sandmann and Dieter Sondermann "Closed form solutions 
for term structure derivatives with log-normal interest rates" . Working paper \'o. B-:308, 
l:niversity of Bonn. 1997. 

1-1 



,. 

[16] A. l'viorton "Arbitrage and Martingales". Technical report. 1988. 

[17] Riccardo Rebonatolnterest rate option models . .John Wiley. 1996. 

[18] Sandmann, Klaus and Sondermann, Dieter "On the stability of log-normal interest 
rate models". Working paper J\o. B-263, University of Bonn. 1994. 

[19] Philip Schonbucher "The term structure of defaultable bond prices". Discussion paper 
Ko. B-384, University of Bonn. August 1996. 

[20] Philip Schonbucher "The pricing of credit risk and credit risk derivatives" . Discussion 
paper, University of Bonn. February 2000. 

1.5 


