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Abstract 
This paper is the first attempt of applying the Easley Rustichini 

(Econometrica, 1999, 5) replicator dynamics framework to security 
markets. With just the simplest one-period asset, traders choose port
folio with rules given by preferences over actions. Those preferences 
usually depend on prices but are subject to evolution through time. 
This preference transitions depend on past cosumption streams. I 
present sorne characterization of asset prices in the two action cases. 
I also discusss the problems of two action economies in the long run. 
Two examples are presented. Two lessons can be gotten. First, even 
with very simple (objective) state spaces, and with straightforward 
replicator dynamics governing preference evolution, prices can have 
very complex dynamics. In particular sorne type of chaotic behav
ior can be obtained. Second, even with a very simple definition of 
long run competitive equilibrium, the economy may not converge to 
it. This shows that this dynamics does not necessarily converge (in 
distribution) to any familiar competitive equilibrium concept. Pref
erence evolution as well as date O preference on actions affect mainly 
this result. 

Introduction 

Bounded rationality has been the object of intense study during the las t two 
decades. Severa} different lines have been taken by the literature. Traditiou
ally in dynamic contexts the learning problem has been the focus of severa} 

*Very Preliminary. Please Do Not Quote. 
t Address: Vito Dumas 284, Victoria (1644), Buenos Aires, Argentina. Phone: 541-í~ 

4725-7077. E-mail: kawa@udesa.edu.ar 
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studies, both at the rnicroeconornic level 1 and to attack rnacroeconornic 
issues2

. The traditional approach has been based on the standard Savage 
theory of uncertainty. Rational or Bayesian learning has been well devel
oped. An irnportant point is that it is the only type of learning consistent 
with the Savage axiorns. However, rnany experimental and ernpirical stud
ies ha.ve ernphasized the failure of rnany of the predictions of models based 
on Savage states3 • In complex environrnents foreseeing all states in the fu
ture may be completely non-sensible. For exarnple, asset rnarkets irnply too 
many possible contingencies in the future to be taken into account ( even to 
be imagined!). Sorne of them may be relevant enough to change portfolio 
decisions if considered in advance. However this is often not possible. 

Modica and Rustichini ([8] and [9]) developed episternic conditions for 
modelling unawareness in static frameworks. A second recent line of re
search, related to the unforeseen contingencies story, is the paper by Easley 
and Rustichini. In their work an individual agent chooses sequentially ac
tions according to sorne rule, given by preferences over those actions. In each 
period, after payoffs are observed, those preferences evolve acco'rding to sorne 
transition that depends on realized payoffs. They show that under suitable 
conditions imposed on transitions actions converge to expected rnaxirnizing 
utility ones. This is really a decision theoretic foundation of adaptive learn
ing, not based on Savage axiorns. It is an irnportant piece of work, filling a 
gap in the foundations of rnany ad-hoc adaptive learning devices used rnainly 
in rnacroeconomics. 

The point of the present paper is to give a first atternpt of application 
of the Easley-Rustichini frarnework to an asset rnarket. It seerns rea.sonable 
to apply this rnodel on security rnarkets because it is in these where this 
type of adaptive learning could be observed. As stated above, contingencies 
present in asset rnarkets are hard to be considered ex-ante in its totality. In 
fact casual observations of how trading is done resembles what happens in 
[5] . Hence in my paper agents will choose asset holdings according to sorne 
rules (given again by preferences over lotteries on actions). However those 
preferences will now depend on prices. This rneans that the rule by which a 
trader chooses the lottery depends on the price of the security. The intuition 
is as follows. If the security is very cheap, all traders would like to buy as 
rnuch as possible. This is what usually happens when market considers a 
security undervalued. On the contrary, when the price is too high, traders 
would like to sell short the asset, resembling situations when the market tends 

1 See [6] for different aspects of learning in games 
2See [11] for a survey of work in adaptive learning and macroeconomics. 
3See [10] for a brief survey on t his evidence as well as alternative ways of modelling 

bounded rationality. 
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to consider it overvalued. This is the idea behind the fact that preferences 
on actions depend on prices. It is also a convenient way to ensure market 
clearing. 

The type of asset considered here is the simplest one. It is a short lived 
security that is traded at the beginning of each period and pays off a cer
tain amount of the consumption good depending on the state. After this 
the trader consumes whatever is left. In the subsequent period the new en
dowment is again used to trade in the new asset rnarket. In sorne sense the 
markets are repeated through time, avoiding wealth links among periods. 
The issue of wealth dynamics is not considered in this paper dueto its addi
tional complexity. One of the main problerns with wealth dynamics in this 
context is the possible permanent bankruptcy of the agent. Since this is a 
first attempt to apply this type replicator dynamics to asset rnarkets, I leave 
this problern for future research. 

The rnain lesson that can be obtained is the following. Even though the 
nurnber of actions can be small (far exarnple, even if the trader can only sell 
short one unit, buy one unit or do nothing with the asset in each period), two 
states, and even if the replicator dynarnics follow all the assumptions in [5] , 
the dynarnics of prices can be very cornplex. The reason is that prices can 
follow sorne type of combined dynarnics that includes e.g. chaos. The first 
example in section 4 shows that. Another point of the paper is that although 
the dynamical system is usually ergodic, the long run behavior of the economy 
rnay not be rationalized as a stationary more standard type of cornpetitive 
equilibriurn definition. This depends on the date O preferences as well as 
the replicator dynamics. The definition of stationary long run equilibrium 
in section 4 resernbles in sorne way sorne sort of s11,nspot equilibrium (in the 
sense of Cass and Shell) . This is because in this equilibrium all the agents 
coordinate ( exogenously given by the ergodic measure) to a certain long run 
security price. This is not necessarily linked directly to the realization of the 
states of nature. 

Section 2 gives the basics of the model. Section 3 presents results of 
two action econornies and discusses the problerns of long run equilibria in 
this context. Section 4 presents two exarnples of three action econornies, 
as well as the definition of the stationary long run equilibriurn. It also dis
cusses convergence (in distribution) of the economy to the stationary long 
run equilibriurn. Section 5 gives concluding rernarks and gives d irections for 
extensions and future research. 
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2 The Model 

The economy is populated by a continuum of ex-ante identical agents. These 
can be interpreted as investors. Time is discrete and goes to infinity. At each 
date a state of the economy is realized. To make this simple, assume that the 
state space is S = { 1, 2} . There is one perishable consumption goodi called 
money. Each investor receives an endowment W of money at the beginning 
of each period. 

Each period there is a one-date asset. This is traded at the beginning of 
period tata certain price qt and its value is public information. The security 
pays off (st - 1) units of money per unit of asset at the end of date t. The 
realization of St occurs after the date t market is closed. Once realized it is 
publicly observed. The asset is in zero net supply. There is no other security 
between periods. 

lnvestors choose actions. Each action represents units sold short or 
bought of the asset. Assume that the action space is finite. Let A denote 
the action space with A _ { a0, al, ... , aN} . Following [5] investors are not 
fully rational. They do not have preferences on a stream of money through 
time. Instead, agents are born at date O with a certain period O preferences 
on (lotteries over) A. The preference relation depends upan the market price 
of the asset. Let to lq be the preference relation at date O given that the 
observed price of the asset is q. We make the following assumption borrowed 
from [5] in arder to have a VonNeumann representation of to lq• 

Assumption 1 For each q ~ O the preference arder to lq is a weak order; 
that is: 

l.i For all ,, ó in 6 (A) either, (to lq) ó or ó (to lq) 1 

l.ii For all rió, r¡ in 6 (A), if, (to lq) ó and ó (to lq) r¡ then 1 (to lq) r¡. 

It also satisfies the independence and the continuity axioms far every 
q (see assumption WIC in [5] far the formal definition of these) . 

It satisfies continuity on q in the closed convergence topology. This 
means that if qn ----t q then (to lqn) ----t (to lq) and this satisfies the 
three axioms above. 

Assume finally that, far all n 2". 1, an (>--o \q) a0 (action n dominates 
action O strictly). 

In our case, action a0 can be interpreted as a very large short sale amount, 
or very large pmchase amounti so that investors never find optimal to take 
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that action . With this assumption, the relation to lq can be represented by 
the following formula. Let ,, cp be on 6. (A). Then 

N N 

,(to lq)<P {:=> ¿u~(q),n ~ ¿u~(q)cpn 
n=O n=O 

where (u0 (q)):=o are continuous functions of q. Since action O is always 
dominated then we can define 

n Uo(q)-u8(q) 
Vo ( q) = ""N ( n ( ) _ o ( ) ) 

Lm=l Uo q Uo q 

Recall that v0 (q) can be interpreted as the relative weight of action n that 
each agent chooses. In fact, in the equilibrium (to be defined below) it is 
the proportion of agents who actually takes action n. We see that Vo (q) 
E int6. (A). 

Without loss of generality, we can label all actions a1, a2 , ... , aN such that 
a1 < a2 < ... < aN. Let us define A* - {a1, ... ,aN}. Therefore, in arder to 
ensure existence of equilibrium I impose the following assumption. 

Assumption 2 The vector-valued function Vo (q) = [va (q), ... , vt (q)f is 

such that limq_,0 v0 (q) = [O, O, ... O, 1f E~~ and limq_,oo Vo (q) = [1, O, ... 0, of 
E ~r 

The idea behind this is simple. If the asset were free, then everybody 
would try to purchase as much as possible. If the asset is infinitely costly, 
then everybody would intend to sell short the asset as much as possible. 
Although I do not give a foundation far this, it is still quite intuitive. 

The timing within date O is as follows. First the agent chooses an action 
an using its period O preference relation. This is a portfolio choice problem. 
In principie we demand that the following budget constraint holds: 

N 

Lªnª~ w 
n=l 

Th.is in general will not be binding. Then the state s0 is realized. After 
delivery of goods is observed according to the payoff of the asset and the 
position of the agent (whether she is long or short in the security) . The final 
amount of money is consumed by the agent at the end of period O. 

The equilibrium concept far the first period is the following. 
Note that this equilibrium definition is independent of what is the realiza

tion of so. The reason is that decisions taken by the investors only depend on 
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the market price. Since preference only depend on prices and actions, they 
do not take into account the possible values of s0 . In this sense the choice is 
done without any belief (probability distribution) defined on S. 

After the observation of s0 , preferences evolve through a transition, de
noted by T. This maps elements in the set R x S onto R. This is the 
same as in [5]. The only difference again is that the new preference arder is 
function of q. Given the VN representation of preferences we can state that 
T [(~o lq), s] - F (vo (q), s) - v1 (q). I impose the same restrictions on v1 (q) • 
as on vo (q). Then q; is obtained through date 1 market clearing: 

N 

L anvr' (q;) = o 
n=l 

This is the date 1 boundedly rational date 1 equilibrium. After s 1 is realized, 
the same T map gives v2 (q) and the process is replicated to infinity. Then 
it is possible to define a boundedly rational equilibrium. 

Definition 1 A boundedly rational equilibrium date-0-price is a price q; such 
that at that given price the asset market clears, i. e., 

N 

L anv~ (q~) = O 
n=l 

I need to ensure that this equilibrium concept is not vacuous. This is 
confirmed using the assumptions 1 and 2 above together with a suitable law 
of motion far preferences. Easley and Rustchini [5] have shown that the 
transition that ensures convergence to objective maximizing utility actions 
(in the one agent problem case) takes the fallowing farm. 

(1) 

where n = 2, ... , N, far sorne strictly increasing, strictly positive function f. 
Here I define 

where q; is the beginning-of-period t price of the security. Note then that 
I do not attempt to obtain evolution of preferences out of equilibrium path. 
In other words, the evolution will depend entirely on the equilibrium price. 
The main reason far this is to avoid preference dynamics depending on the 
whole history of prices. Given this the fallowing results is easy to show. 

6 



Proposition 1 If a 1 < O and aN > O then the set of boundedly rational 
equilibrium date O prices is non empty. Moreover if N = 2, and ij vJ (q) is 
strictly increasing the equilibrium price at date O is unique. 

P roof. Existence is ensured in period O due to assumption 2. For any 
other period t, I claim that assumption 2 can be also extended to any date 
t, given the law of motion in equation (1). The proof of this claim is by 
induction. In period t + 1 weights are given by the following equation. 

(2) 

Then, for t = O we see that 

Since f > O, by assumption 2, we know that 

and of course for any other n, 

Similarly: 

and for any other t, limq_.00 vf (q) = O. Using the inductive principle the 
same holds for any other period t ~ 2. Hence existence is also confirmed for 
any other period t . 
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Suppose that N = 2. In period O, uniqueness follows from the standard 
intermediate value theorem dueto monotonicity of Vó (q). Then 

v1 (q) f (el (sº)) 
Vl (q) _ O O 

1 
- vJ (q) [f (e5 (s0)) - f (e5 (s0))] + f (e5 (s0)) 

It should be clear that vf ( q) is strictly increasing in q. For if qA < q8 then 
vJ (qA) < vJ (q8 ). But the fraction 

ax 

bx + e 

with a > O and e > O is strictly increasing in x. Hence the right hand side 
evaluated at qA is strictly less than when evaluated at q8 . Using inductive 
arguments it can be shown that v¡ (q) is strictly increasing in q. Then the 
equilibrium price process q; is unique. This completes the proof. ■ 

I next study the two action case. This is a simple way to visualize the 
dynamics of the equilibrium price, as well as of the individual wealth. 

3 Two action economies. Preliminary results. 

In this section it is assumed that N = 2. One of the reasons of concentrating 
the analysis in this case is the uniqueness result. In order to characterize dy
namics of equilibria, it is simpler if we only have a unique process. Otherwise 
sorne kind of equilibrium selection should be provided. Since this is beyond 
the scope of this paper, I focus on the case where unique equilibrium price 
process is ensured to exist. 

The first result concerns the dynamics of weight through time. This is a 
straightforward extension of [5]. 

Proposition 2 Assume equation (1) Then equilibrium weights in the two 
action case have the following form: 

1 ( t) vJ(q) 
vt+l q; 

8 = vJ (q) [l - At (st)] + At (st) 

where 
t 

At (i) = II <P-r (s-r) 
-r=O 

and where 

1 _ ( f ( et( st)) ) 
<Pt (st) - J (et (st)) 

Moreover, in equilibrium, q;+1 (st) is an inereasing function of At (st). 
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P roof. The first part follows frorn the fact that equation ( 1) for t he 
N = 2 case implies that 

v;+l (q; st) 
1 - Vf+l (q; st) 

where 1/</J was defined in the statement. Solving for v¡+1 (q; i) equation (2) 
follows. The second part follows from the fact that market clearing implies: 

Given that a 1 < O then the right hand side is a strictly increasing func
tion of At (i). Since the weight Vf+i is strictly increasing from the proof of 
proposition 1 then q;+1 is a strictly increasing function of At ( st) . ■ 

Note that the consumption at the end of period t is defined as follows. 

where 

Assume that 

q; (st- l), St = 1, at = -1 
-q; (st-1), St = 1, at = + l 

q; (i-1
) -1, St = 2, ªt = -l 

q; (i-1
) + 1, St = 2, ªt = +l 

Hence, the next result is just a trivial consequence of this process. 

Proposition 3 Suppose that 

is a bounded Junction o J At- l Jor every t. Then { q;} : 0 is a bounded process 
and so is { c;}:0 . 

P roof. By definition of At, we have that 

g 
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Therefore
1 

At ~ A
1 

for sorne A > O and all t. Since qt+l is a strictly increasing 
function of At then qt+ 1 ~ B, for some B > O. Finally note that e1 ( st) ~ 
W + 1 + lqd . Therefore et (i) is also bounded. ■ 

The idea is to study the long run behavior. Given the results in [5] one 
hopes to find a suitable definition of long run equilibriurn consistent in sorne 
way to the standard one. This is because Easley and Rustichini [5] show the 
convergence of weights to expected utility maximizing preferences given the 
law of motion in equation (1). Therefore one expects that in this context the · 
long run situation includes not only optimality of actions but also market 
clearing condition. The following definition has all these features. Let u be 
an increasing function of en. 

Definition 2 Given u ( en ( s)) a lattery long run equilibrium far this eeanamy 
is a priee q in [0 1 oo) far the asset anda lattery µ in D. (A*) sueh that: 

1. Given q, then the lattery µ salves 

s.t. 

and 

max 
µE6(A') 

2 

L µn [O'u (en (1)) + (1 - O') u (en (2))] 
n=l 

cn(s) W-qan+(s-l)an 

a1 
- -1; a2 =+1 

2. The priee iJ. clears the asset market: 

Note then that in this equilibrium P,1 (if.) = 0.5. But then the in this 
lottery long run equilibrium the budget constraint is not binding. The re
maining task is to find a utility function such that (½; ½) is the solution of the 
optimization problem. If this is so we would obtain the equilibrium. However 
the only family of utility functions that matches this definition is u (e) = U 
for all c. For the first arder condition of the maximization problem stated in 
the definition is 

O'U (e1 (1)) + (1- O') u (c1 (2)) = O"U (c2 (1)) + (1 - O') u (c2 (2)) 

10 
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Note that e1 (2) = e2 (2). Since CJ' > O then u (e1 (1)) = u (e2 (1)). Because 
c1 (1) = W + l > W - l = e2 (1), then the only solution to this functional 
equation is the constant function. 

This shows that with two actions the limit fails to capture the monotonic
ity properties of standard utility functions. In other words, the la.st economy 
is sta.tionary but the beha.vior of a.gents is not really consistent with the stan
dard monotone preferences. This is a.n undesira.ble property since in [5] the 
utility functions are indeed strictly increasing. Hence two a.ction economies 
do not seem to be interesting enough to a.na.lyze long run dynamics. 

The following section presents exa.mples of three a.ction economies. Al
though uniqueness is not ensured in this ca.se, unique solutions of the market 
clearing condition a.re obtained. Then I also analyze the dynamics of prices 
and consumption in this ca.ses. 

4 Examples of three-action economies. 

Let a1 = -1, a2 = O and a3 = l. This mea.ns tha.t the investor can buy or sell 
short exactly one unit of the security, or do nothing. I present two different 
ca.ses together with the analysis of the dynamics. 

4.1 A Continuous Weight example. 

Suppose that the date O weight on action a1 is given by: 

so that 

It is obvious tha.t these weights satisfy assumption 2. Then date O market 
clearing implies 

Then in period O the equilibrium weights are vg* = 1/3. 

11 

• 



Consider the following transition function. Assume that f ( c;1 
( i)) = 

exp [w (cr (st))], with w > l. This satisfies all assumptions stated in section 
2. Recall that 

1 _ .f (ct(st)) 
c/>1. (st) = f (e¡ (st)) 

In our case this implies 

This is easily shown by induction. Then the equilibrium weights are 

q 

q + At (st) fa+ At (st) 
At (st) fa 

q + At (st) fa+ At (st) 
At (st) 

and then the equilibrium price is 

This gives the equilibrium values for weights: 

for all t. Then: 

* (t-1) *(t-l),1..*(t-l) qt+l S , St = qt S V't S , St 

The next result establish an upper bound for At (st) (the obvious lower 
bound is O). 

Proposition 4 Suppose f (cr (st)) =exp[w (cf (st))]. The process At (st) is 
uniformly bounded by e2w-l /2w. 

12 
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P roof. Since f (cf (st)) = expw (cf (sl)), thento 
<Pt (i-1, 1) = exp [-2wAt- 1 (sl-1)] 

<Pt (st-l, 2) = exp [2w (1 - At-l (sl- 1))]withto <Po (1) = exp [-2w] 
<Po (2) = 1 Thereforeto At (st) = rt=o <PT (sT) = At-1 (st-l) <Pt (sl-1 , St) 
< At-l (i- 1) exp [2w (1 - At-l (i- 1

) )]N ow, therighthandside, asafunctionof At-l (sl-1) 

is bounded above. Indeed the function exp [2w (1 - x)] has a global maxi-
mum on [O, oo) at x* = 0.5, attaining the value e2w-l /2w. ThereforeSince t 
is arbitrary At(st) is bounded. ■ 

The main implication is that E (qt)'S: e2w-l /2w.On the other hand note 
that from the proof of the last proposition: 

Et-1 (qt+i) = At- 1 [O"exp (- 2wAt-l (i-1)) 

+ (1 - O") exp (2w [1 - At-1 (i-1
)])] 

Note that this cannot be characterized as a submartingale or a super
mantingale. This is not surprising given the assumption of bounded ratio
nality. Because agents just choose according to the preference and evolution 
rules given above (maybe due to sorne type of unawareness in the sense of 
[9]). Then it is clear that the martingale property is not present here. This 
is still empirically plausible, as recent empirical contributions emphasized4 . 

Note that the dynamical equation At = At- l exp (- 2wAt-'i) converges to O 
for any initial condition. The difference equation At = At- l exp (2w [1 - At_1]) 
instead has two fixed points. The origin is not locally stable (it can be shown 
that the linear Taylor approximation around O has a coefficient larger than 
one). The other fixed point is l. At this point the eigenvalue is greater than 
l. For several w > 1 this dynamics satisfies the conditions for chaos prop
erties to hold (see theorems 7.2 and 7.3 in [3]). It can be shown from the 
bifurcation diagram that for values of w between 1.9 and 2 for example, the 
behavior of this equation is clearly chaotic. 

BIFURCATION DIAGRAM TO BE ADDED. 

For values of w > 1 such th?'t this chaotic behavior holds, then the 
price equilibrium process is ergodic. The obvious ergodic set is given by 
[O,e2w- 1/2w]. In fact one can note that each realized history· {st}~0 deter
mines the realized value of the process { At} ~o . In other words, there is an 
bijection between histories { st} : 0 and realizations { At} ~o . Then this should 
imply that the property 

T 

T 
1 

1 
¿ Pr [0kA n B] = Pr (A) Pr (B) 

+ k=O 

4 See for example the literature on the rejection of the Random Walk Hypothesis in [7]. 
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for A and B in the sigma field generated by realizations of { At} ~o . By 
Theorem 13.13 in [2] the process is ergodic. 

The consumption process is: 

where 

At- 1 (i-1), 
-At-1 (st-i), 

At-1 ( sl-1) - 1, 
-At-1 (i-1) + 1, 

with probability ~ 
with probability !Z. 

wi~h probabi~i~y tla 
w1th probab1hty -;_a 

and where W->0.Clearly Ct, (st)depends entirely on the dynamics of At. Since 

At is ergodic, so is Ct,. In fact the vector { {c~(st,qt(st- 1))}:=1 }:t=
1
defined 

as 

is ergodic and then the vector converges weakly. The main point now is 
to see whether the limit can be interpreted as an equilibrium in the sense 
of definition 2. To do this, note first that the equilibrium weights also are 
ergodic. On average those weights should converge by the Birkhoff Ergodic 
Theorem to the mean weight with respect to the invariant ergodic measure 
(see [4], chapter 6). In fact this same result implies that the process At 
converges in distribution to an invariant ergodic measure. 

Suppose >.. is the ergodic measure. This is defined on the sigma field of 
subsets in n - [O, e2

w-
1 /2w]. The question is whether we can interpret this 

as a long run equilibrium. The problem is that the definition of lottery long 
run equilibrium includes as states of nature only the asset shocks. What we 
do is to enlarge the state space to the whole ergodic set in order to have a 
sensible long run stationary equilibrium. 

Definition 3 The stationary long run equílibrium far a given (measurable) 
functíon u (e) far the economy in subsectíon 3.1 is a random vector q de
fined on [O, e2

w-l /2w] wíth distríbution >.., a random vector e and a vector of 
lotteríes ¡1, in 6. (A*) that satisfies 

1. Gíven q, far each w then µ salves 

3 

max ¿ µn [<Ju (en (1, q)) + (1 - <1) 1l (en (2, q))] 
• n=l 

14 
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,. 

subjeet to 

W+anq+(s-l)an 

1 · a2 = O· a3 = - 1 , ) 

2. The lottery satisfies market clearing. 

µl (q) = µ3 (q) 

>.-a.s. 

This definition includes the fact that q is itself a random variable whose 
realization is first known to the agent. This is realized according to the 
ergodic measure A defined on the domain of q. Note that in the long run the 
limit of weights should also be dependent on q. What we would like is to have 
that 

µn = lim v~* 
t-->(X) 

for sorne utility function u (e). Then we would like to have 

µl (q) 

µ2 (q) 

1 
µ3 (q) = 2 + .jq > o 

.jq 
2 + .jq 

where q is in the ergodic set. Since A (O) = O (that is, the probability under 
the ergodic measure that in the long run q = O is also zero) then µ2 ( q) > O 
A - a.s. But then from the first order conditions of the optimization problem 
given in the last definition we need to have that 

[cru (e1 (1, q)) + (1 - a) u (e1 (2, q))] [ au ( e3 
( 1, q)) + ( 1 - a) u ( c3 

( 2, q)) ] 
[au (e2 (1,q)) + (1-a)u (e2 (2,q))] 

• 

Now, clearly we know that e2 (s, q) = W, and then [au (c2 (1, q)) + (1 - a) u (e2 (2, q))] = 
u (W) . On the other hand, clearly e1 (1, q) > W > e3 (1, q). Therefore, to 
get the equality above it is necessary to have 

e1 (2,q) < W < e3 (2,q) 

which implies 

q < 1 
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However >. [O, 1] < l. Hence we can say that the economy <loes not converge 
almost surely to a stationary long run equilibrium ( even if u are state depen
dent). In sorne sense, this economy will in the long run be in the stationary 
equilibrium with probability >. [O, 1] . Still this is somehow better than the 
two adion case, in which it was never possible to get a long run equilibrium 
with strictly increasing u functions. 

4.2 Piecewise Linear Weights 

Suppose that: 

and 

aq, 
1, 

{ 

aq, O~ q ~ 2~ 

v 2 = 1 - aq _!_ < q < l O > 2a- -a 
1 q > l ) O'. 

with O < a < l. Then vJ = 1 - Vó - v5. The date O equilibrium is given by 

* 1 
qo = 3a 

which is clearly less than 1/2a. The date O equilibrium weights are again 
véj* = 1/3 for n = l, 2, 3. Given the law of motion defined before, we get that 
for O ~ q ~ 1/2a 

and 

The proof is again by induction. In a similar way, for prices 1/2a < q ~ l/cx, 
the transitions are given by the following. 

16 
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where v¡+l (q) = O for this domain. This gives the following weights at period 
t. 

ª O< <.l... aq(l+At(s'))+Ai(s1)(1-2a.q)' - q - 2a. 
a.g .l... < < l 

a.q+(l-a.q)Ai(s1·)' 2a. q - a 

1 q > l , a 

a.qAi(s'·) Ü < < .l... 
a.q(l+Ai(s1))+Ai(s1)(1-2a.q)' - q - 2a. 

(l-a.q)Ai(s
1

) .l... < < l 
a.q+(l-a.q)Ai(s1)' 2a. q - a 

O q > l 
' a 

and then the equilibrium asset price is 

* J\t(st) 
qt+l = a (1 + 2At (st)) 

which is always in [O, 1/2a). The equilibrium weights are 

The consumption allocation in the BR equilibrium is as follows. 

with probability % 

with probability % 

with probability 1;ª 
with probability 1;ª 

where Bis to be determined. The evolution of the equilibrium price depends 
again entirely on A. This process follows the following law of motion: 

In this case, using the same function f : 

17 

• 



• 

( t - t ) [ ( ( At- t ( st- t) ) ) ] 
</Jt s ; 2 = exp 2w 1- o: (1 + 2At-l (st-1)) 

Since At-1 (st-1) ~ O, w > O ando: E (O, 1) clearly At (i- 1;st) :s; At-l (st-1) 

[ ( ( 
At-1(st-l) ))] exp 2 1 - a(l+ZAi-i{st-J)) . Suppose now that o: < w/2. Then the 

function 

attains a global maximum at the value 

* (1-2(~))+ ✓1-2(~) 
X=-----~'----

4 (~) 

Define B - x* exp [ 2w ( 1 - ( a(l~~x•)))] . Then with o: < w/2 the price 
process is again bounded and so the consumption process is strictly pos
i tive with W > B. The process given by At(St-1 ;st) = At-i(st-l) exp 

[-2w ( n{l:i2-~t~:~s1J 1 )) ) ] has a unique stable steady state given by the origin. 

• 

On the other hand, the equation At ( st- l; se) = At-l ( st-l) exp [ 2w ( 1 - ( n(t:t2-~t(::~s
1L )) ) ) ] 

has an unstable trivial stationary point (the origin) and a stable positive 
steady state5 , given by 

for any (w, o:) that satisfies o: < w/2. Again by the same argumentas before 
the whole process At (st) is ergodic. The ergodic set is [O, B]. As before, due 
to the first order conditions of the optimization problem in the stationary 
long run equilibrium, it can be shown again that there is an equilibrium as 
long as q < l. However in this case there are several values for w ando: such 
that B is less than one. For example, if w = 3/2 and o: = 0.25, then B 
~ 0.6747. Then for (possible s-dependent) utility functions u the economy 
converges to a stationary long run equilibrium. For example, if u1 (e) = e 
is the state 1 utility function and u2 = u 1 - 1 is the state 2 utility function 
then the equilibrium conditions are automatically satisfied. 

5The derivative of the function y x exp [ 2w ( 1 - a(l~2,,¡)] is 

y' exp [2w ( 1 - a(t~2x))] ( 1 - a(l
2
~;,,¡2). At the positive steady state, 

exp [ 2w ( 1 - a(I ~ 2x})] = l. Then the value of this derivative is given by ( 1 - a(l
2_;;x)2 ) 

evaluated at x = A 2 . It can be shown that at this value the bracket is negatíve but greater 
than - l. Then the posítive steady state is stable . 
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5 Concluding remarks 

The last two examples show that, although the same type of replicator dy
namics as in [5] are used, the boundedly rational equilibrium process does not 
necessarily converge in distribution to the stationary long run equilibrium. 
An interesting interpretation of this equilibrium concept is its relation with 
the sunspot idea. What happens there is that nature chooses q according to 
the ergodic distribution A. After this traders choose the optima.l lottery that 
maximized expected utility. The relation comes from the fact that all agents 
coordinate in the same value q. This is not related to the realization of s, as 
the definition states. Then, this can be interpreted as sorne sort of extrinsic 
uncertainty that is realized before agents take decisions. However the sta
tionary long run equilibrium is not a special case of a sunspot equilibrium 
since the state s is not extrinsic. 

As a consequence of this, severa! directions can be taken. First it is 
necessary to refine the dynamics analysis to more actions and states, in order 
to generalize the examples. It is also convenient to see whether there are other 
types of dynamics with different transitions on preferences. A closer look at 
the stationary long run equilibrium needs to be done, in order to explore 
further it relationship with the traditional competitive equilibrium concept. 
This includes a better analysis of long run equilibrium in its connection with 
sunspot equilibria . 

Finally, as mentioned in the introduction, more complex assets need to 
be considered in this context. Specially important seem to be long term 
securities. This usually would imply more complex decisions at each date, 
that includes also consumption decisions (in my paper consumption is just 
the residual after portfolios are decided). The most problematic point is, to 
my view, the issue of how wealth would evolve through time. This should 
include bankruptcies issues, that make the period t equilibrium harder to 
define and compute. Still I find this the most exciting extension of this type 
of asset market application of the replicator dynamics framework. 
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