

UNIVERSIDAD DE SAN ANDRÉS

Seminario del Departamento de Economía

"The Effects of Permanent Inflation Stabilization on Firms Debt Maturity: a Case Study of Argentina."

> Federico Guerrero (University of Maryland at College Park

> > Martes 4 de julio de 2000 11 hs.

Aula Chica de Planta Baja

Sem. Eco. 00/12

THE EFFECTS OF PERMANENT INFLATION STABILIZATION ON FIRMS' DEBT MATURITY: A CASE STUDY OF ARGENTINA

Federico Guerrero

University of Maryland at College Park

1. INTRODUCTION AND MOTIVATION

UNIVERSIDAD DE SAM ANDRES BIBLIOTECA

The idea that the maturity of financial contracts tends to be shorter in high inflation environments than it is in stable ones, is not new in the economics profession. Among academics, the idea can be found in advanced, or even elementary textbooks¹. Among practicioners, the phenomenon is well known as well². In particular, the developments that took place in the Argentine financial system have attracted the attention of both academicians and policymakers. Consider, first, the following passage taken from Cavallo (PhD dissertation, Harvard University, 1977):

"Before persistent inflation get started, Argentina had a reasonably well developed financial system. A very active market for public bonds and private securities did exist, as well as a well-developed capital market, and commercial banks issued long-term certificates of deposits that permitted them to finance long-term loans to farmers and entrepreneurs"

Consider, next, the following passage taken from the <u>Recent Economic Developments</u> IMF document for Argentina in 1984 (p.36):

"The persistence of high inflation in Argentina has made financial markets extremely volatile as the bulk of transactions has tended to be at very short-term positions -typically between 7 and 30 days for free operations and for regulated-rate deposits- and at various times the authorities have

^{*} Comments received from Roger Betancourt and Francisco Rodríguez were extremely helpful. I bear sole responsibility for the contents of this paper, however.

¹ Heymann and Leijonhufvud (1995), especially chapters 3 and 5, and Krugman and Obstfeld (1996, page 388), respectively, provide illustrative examples.

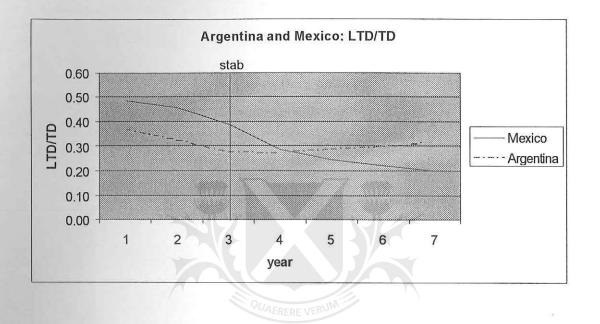
² See, for instance, E. Rojas and P. Rodríguez (1997, especially pages 42-43) for the case of Venezuela, or the IMF Recent Economic Developments (year 1983, page 31; year 1989, pages 42-43) for the case of Peru.

established instruments (including indexed deposits and loans) with a view to lengthening the term of operations".

Some recent studies have analyzed the effects of high inflation on the financial system³, but, somewhat surprisingly, no systematic study of the behavior of long-term debt has been done so far *at the level of the firm*, to the best of my knowledge⁴.

In this paper, I test the hypothesis that the ratio **long-term debt/ total debt** tends to be lower for firms operating in high inflation environments, than for firms operating in low inflation environments. The idea that underlies this hypothesis is very simple: the higher degree of uncertainty that prevails in a high inflation economy leads firms to shorten the maturity of debt, in equilibrium⁵.

2. DATA AND METHODOLOGY


Using firm-level data from the International Financial Corporation (IFC) and the Worldscope databases, I apply the *treatment-control methodology* to get a *difference-in-difference estimate* of the increase in long-term corporate debt after a permanent stabilization of inflation takes place. The control group consists of Mexican firms operating in a high inflation regime (2 digit inflation on an annual basis) for seven consecutive years during the mid 1980s and the early 1990s. The treatment group consists of Argentine firms operating in a high inflation regime during the first three years of the proposed experiment, and in a low inflation regime during the last four years of the experiment. It is probably worth recalling that a major stabilization program took place during 1991 in Argentina, that permanently brought the inflation rate down to zero. No such a development took place in Mexico.

³ A recent paper on the effects of inflation *on the financial system* is the one by Boyd, Levine, and Smith (2000).

⁴ Demirgue-Kunt and Maksimovic (1999) present some very preliminary cross-country evidence that longterm corporate debt tends to be negatively related to inflation, but the focus of their study is not on the effects of inflation.

⁵ Neumeyer (1998) constructs a general equilibrium model that rationalizes this fact. A simpler, partial equilibrium, framework that also accounts for this fact is provided by Guerrero (2000).

The following graph shows the time pattern that the ratio long-term debt/total debt followed in both the treatment and control groups. The chart clearly shows that before stabilization took place in Argentina, the ratio (LTD/TD) followed a very similar pattern for both the Mexican and the Argentine firms. However, as long as stabilization takes place in Argentina, the patterns start to diverge, as expected.

The purpose of the exercise is to get an unbiased estimate of the increase in (LTD/TD) for the Argentine firms after stabilization takes place. The control group is included to construct a counterfactual scenario for the Argentine firms (i.e., what would have happened in the absence of intervention), detrending the ratio corresponding to the Argentine firms from its secular component. In this way, I avoid attributing to stabilization the part of the change in (LTD/TD) that is due to the secular trend that the data for the Argentine firms exhibits before stabilization takes place.

The following table presents the numbers used to construct the graph depicted above.

3

TABLE 1

	TREATM	IENT	CONTROL	
	GROUP		GROUP	
	LTD/TD		LTD/TC)
year 1		0.37	A.	0.48
year 2		0.33		0.46
year 3		0.27		0.39
year 4		0.27		0.29
year 5		0.29		0.25
year 6		0.30		0.22
year 7		0.32		0.20

The diff in diff estimate of the effect of stabilization on firms' (LTD/TD) is a Two Ways Fixed Effect procedure that utilizes the variation in the data in both the control and the treatment groups⁶. Table 2 summarizes the idea.

TABLE 2

	BEFORE	AFTER	DIF.
TREATMENT	0.32	0.29	-8.85%
CONTROL	0.44	0.24	-46.31%
		IF.in DIF. STIMATE	37.46%

Following Schmukler and Vesperoni (2000), (LTD/TD) is explained with a vector of standard corporate finance determinants⁷. Descriptive statistics are provided below.

⁶ The One Way Fixed Effect estimates for all the regression exercises presented in this paper are available upon request from the author. ⁷ See the appendix for the definition of variables.

TABLE 3: SUMMARY STATISTICS

ARGENTIN	IA	Mean	Std. Dev.	Min	Max	Observations
ltdtd	overall	.2912317	.2359751	0	.8905493	N = 298
	between		.1983816	0	.6585236	n = 68
	within		.1304376	2280973	.7779006	T-bar = 4.38235
lnfa	overall	.4962022	.0523659	.3332202	.6325203	N = 299
	between		.0488594	.3375015	.6209346	n = 69
	within		.0184595	.3722738	.5604819	T-bar = 4.33333
nfata	overall	.4426295	.2237052	.0007951	.9196892	N = 299
	between		.2190459	.0029679	.9085047	n = 69
	within		.0692075	.0753652	.8218163	T-bar = 4.33333
nsnfa	overall	3.670549	15,52981	.0142829	243.5481	N = 295
	between		12.2906	.0142829	102.7537	n = 69
	within		10.06509	-85.25375	144.465	T-bar = 4.27536
pta	overall	.0181822	.1098222	5328916	.374442	N = 299
	between		.0800025	2040374	.1831369	n = 69
	within		.0778335	3899895	.2765546	T-bar = 4.33333
MEXICO		Mean	Std. Dev.	Min	Max	Observations
ltdtd	overall	.324481	.2770735	0019735	.9563043	N = 666
	between		.2097266	dad do	.8644658	n = 115
	within		.1828848	2854342	.8404174	T-bar = 5.7913
lnfa	overall	.7582097	.1215169	.4188006		N = 221
	between		.1170502	.5313228	.9845624	n = 45
	within		.0639027	.6003441	.8910508	T-bar = 4.91111
nfata	overall	.5691991	.161089	.072475	.9615187	N = 401
	between		.148159	.2377594	.9467828	n = 76
	within		.0674794	.066301	.755356	T-bar = 5.27632
nsnfa	overall	1.518667	1.253637	.0455612	11.18144	I N = 401
	between		1.004271	.0712596	4.522621	n = 76
	within		.7035486	5194618	10.04662	T-bar = 5.27632
pta	 overall	.0536619	.0666138	3377416	.3752403	 N = 665
	between		.0451472	0692658	.1957784	n = 115
	within		.0501224	2832627	.3655238	T-bar = 5.78261

3. RESULTS

Table 4 below presents the Two Ways Fixed Effect estimate of the impact of permanent stabilization on (LTD/TD). The ratio (LTD/TD) is regressed against a standard vector of corporate finance determinants and a dummy variable (stab) that takes value equal to one for the Argentine firms after stabilization and zero elsewhere.

TABLE 4

Fixed-effe	ects (within)	regression		Number o	fobs =	513
Group vari	able (i) : id	-		Number o		100-100-00
	hin = 0.1461			Obs per	group: min =	• 1
	ween = 0.0603				avg =	4.5
ove	erall = 0.0243				max =	- 7
	X() = = = = = =			F(11,389) =	6.05
corr(u_i,	Xb) = -0.729	6		Prob > F	1	0.0000
				<u>SVA</u>		
ltdtd	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
lnfa	-1.04787	.1581392	-6.626	0.000	-1.358784	7369556
nfata	.2415098	.1036729	2.330	0.020	.0376806	.445339
nsnfa	.0005287	.0024969	0.212	0.832	0043804	.0054378
pta	0263727	.1143557	-0.231	0.818	2512053	.1984599
stab	.0882467	.0350751	2.516	0.012	.0192861	.1572072
Iyear_2	.0045472	.0259352	0.175	0.861	0464436	.0555379
Iyear_3	.0990787	.0293674	3.374	0.001	.0413401	.1568173
Iyear_4	.0346901	.0300549	1.154	0.249	0244004	.0937805
Iyear_5	.0426247	.0298338	1.429	0.154	016031	.1012804
Iyear_6	.0619183	.0356302	1.738	0.083	0081336	.1319702
Iyear_7	.0431131	.0422373	1.021	0,308	0399289	.1261552
_cons	.7527131	.1023757	7.352	0.000	.5514341	.9539921
sigma_u	.32802423					

sigma_e	.14304079				
rho	.84022662	(fraction of va	riance due	to u_i)	
F test that	t all u i=0:	F(112, 389) =	8.73	Pro	b > F = 0.0000

6

As Table 4 shows, stabilization is a statistically significant variable that helps to explain the increase in (LTD/TD) for Argentine firms, after controlling for the effects of corporate finance determinants on firms' long-term debt.

For completeness, Table 5 below reports the Random Effect estimation results.

TABLE 5

	cts GLS regro ble (i) : id	ession		Number Number	of obs = of groups =	010
	in = 0.0626 een = 0.0130 all = 0.0397			Obs per	group: min = avg = max =	4.5
Random effe	cts u i ~ Ga	ussian		Wald ch	i2(11) =	24.92
corr(u i, X) = 0	(assumed)		Prob >	S	0.0094
ltdtd	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
+-						
lnfa	1690982	.1146404	-1.475	0.140	3937892	.0555928
nfata	.3244159	.0801436	4.048	0.000	.1673373	.4814946
nsnfa	.0018608	.0022222	0.837	0.402	0024946	.0062162
pta	.0550803	.1100942	0.500	0.617	1607005	.270861
stab	.0457739	.0352678	S1.298	0.194	-,0233498	.1148976
Iyear_2	0306504	.0269903	-1.136	0.256	0835505	.0222497
Iyear_3	.0321169	.0292532	1.098	0.272	0252182	.0894521
Iyear_4	0243033	.0305897	-0.794	0.427	0842579	.0356514
Iyear_5	0216302	.0302577	-0.715	0.475	0809342	.0376738
Iyear_6	0041724	.0366103	-0.114	0.909	0759272	.0675824
Iyear_7	0223345	.0435713	-0.513	0.608	1077326	.0630637
_cons	.2370262	.0769533	3.080	0.002	.0862004	.3878519
+-						
sigma_u	.18454874					
sigma_e	.14304079					
rho	.62470508	(fraction	of variance	due to u_	i)	

If this specification were the correct one, even when having the correct sign, stab would not be statistically significant anymore. To test which specification is correct, I asked STATA to perform a Hausman specification test. Results are shown in Table 6, below.

TABLE 6

Hausman specification test

	Coeff	icients		
1	Fixed	Random		
ltdtd	Effects	Effects	Difference	
+-				
lnfa	-1.04787	1690982	8787718	
nfata	.2415098	.3244159	0829062	
nsnfa	.0005287	.0018608	001332	
pta	0263727	.0550803	0814529	
stab	.0882467	.0457739	.0424728	
Iyear_2	.0045472	0306504	.0351976	
Iyear_3	.0990787	.0321169	.0669618	
Iyear_4	.0346901	0243033	.0589933	
Iyear_5	.0426247	0216302	.0642549	
Iyear_6	.0619183	0041724	.0660907	
Iyear_7	.0431131	0223345	.0654476	
Test: Ho:	difference	in coefficient	s not systematic	
	chi2(11)	= (b-B)'[S^(-1 = 96.42)](b-B), S = (S_fe - 3	S_re)
	Prob>chi2	= 0.0000		
			- PIIM	

Therefore, the Hausman test permits to reject the null hypothesis that both procedures are providing unbiased estimates of the effect of stabilization on firms' debt maturity (if the null were not rejected, I should have taken the Random Effects estimate, because it gives efficient estimates). Thus, the Two Ways Fixed Effect procedure is the one providing the unbiased estimate of the effect of stabilization on firms' debt maturity and I can conclude that there is a statistically significant effect of permanent inflation stabilization on firms' long-term debt.

4. SOME EXTENSIONS

The results presented in the previous section could be subject to criticism, because I did not intend to control for other macroconomic events that took place in the period under analysis in both countries. Concretely, both economies were subject to processes of financial liberalization (caps on interest rates were removed, controls on credit allocation by the central bank were supressed, etc), experimented a remarkable increase in financial development, and gained access to both international equity and bond markets. In this section, I make an attempt to control for all these developments, including an index of financial liberalization, an index of financial development, an index of firms' access to bond markets, and an index of firms' access to equity markets in the right hand side of my regressions⁸. Table 7 below presents the new Two Ways Fixed Effect results.

TABLE 7

i.year	I	year_1-7	(naturally	coded; Iye	ar_1 omitted)
	cts (within) able (i) : id	regression		Number o Number o	* 0.000 M 0.000	513 113
aroup var±	ubit (1) . Iu			Number 0	i groups –	113
R-sq: with	hin = 0.1678			Obs per	group: min =	1
	ween = 0.0673				avg =	4.5
ove	rall = 0.1011				max =	7
corr(u_i, i	Xb) = 0.0442			F(15,385 Prob > F		0111
con (u_1, .	AD) = 0.0442			P1.00 3 F		0.0000
ltdtd	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnfa	.0141999	.4609235	0.031	0.975	8920423	.9204421
nfata	.0941142	.116634	FRE 0.807	0.420	1352051	.3234335
nsnfa	.0000713	.0025389	0.028	0.978	0049206	.0050632
pta	0476963	.113903	-0.419	0.676	2716462	.1762535
access	.0424009	.0364346	1 51.164	0.245	0292348	.1140366
access2	.0306561	.081039	0.378	0.705	-,1286784	.1899906
findev	-1.17077	.4301481	-2.722	0.007	-2.016504	3250368
lib	1701748	.1263473	-1.347	0.179	4185919	.0782423
stab	.2339085	.0620704	3.768	0.000	.111869	.355948
Iyear_2	.0207226	.0263299	0.787	0.432	0310458	.072491
Iyear_3	.0742875	.0307168	2.418	0.016	.0138939	.1346811
Iyear_4	0690697	.0468355	-1.475	0.141	161155	.0230157
Iyear_5	0113246	.0363135	-0.312	0.755	0827222	.0600729
Iyear_6	.058058	.0410636	1.414	0.158	022679	.1387951
Iyear_7	.0477439	.0475193	1.005	0.316	0456859	.1411737
_cons	.7130929	.1136509	6.274	0.000	.4896389	.936547
sigma u	01017050					
sigma_u sigma e	.21317659					
rho	.69281471	(fraction	ef venienes		`	
1110	.032014/1	(Traction)	or variance	due to u_i)	
F test tha	t all u i=0;	F(112,3	85) = 7	.71	Prob >	F = 0.0000
	-	,				

⁸ See the appendix for the definition (and source) of the variables.

As Table 7 shows, once I control for all the macroeconomic developments that took place in both countries during the period of analysis, the effect of permanent stabilization on Argentine firms' (LTD/TD) remains statitically significant and with the correct sign. Certainly it is higher than it was in the previous section.

I present the alternative Random Effect estimate in Table 8 below

TABLE 8

i.year	I	year_1-7	(naturally	/ coded; Iy	ear_1 omitted	1)
Random-effe	ects GLS regr	ession		Number	of obs =	513
	able (i) : id				of groups =	
					- 3 -	(*CALERC
R-sq: with	nin = 0.1590			Obs per	group: min =	: 1
betv	veen = 0.1555				avg =	= 4.5
over	all = 0.1668				max =	
Random effe	ects u_i ~ Ga	ussian		Wald ch	i2(15) =	93,57
corr(u_i,)	() = 0	(assumed)		Prob >	chi2 =	0.0000
				<i></i>		
ltdtd	Coef.	Std. Err.	AERERE VZRUM	P> z	[95% Conf	. Interval]
+						
lnfa	.3004086	.1410003	2.131	0.033	.024053	.5767642
nfata	.1481419	.0788546	1.879	0.060	0064102	,302694
nsnfa	.0018935	.0021503	0.881	0.379	0023209	.006108
pta	0797684	.1057305	-0.754	0.451	2869964	.1274596
access	.0655204	.0358303	1.829	0.067	0047056	.1357464
access2	.0450126	.0794119	0.567	0.571	1106319	.200657
findev	-1.593858	.3903435	-4.083	0.000	-2.358917	-,8287987
lib	1454301	.0473176	-3.073	0.002	2381709	0526894
stab	.2841456	.0509341	5.579	0.000	.1843165	.3839746
Iyear_2	.0156622	.0264914	0.591	0.554	03626	.0675843
Iyear_3	.0589757	.0304891	1.934	0.053	0007819	.1187333
Iyear_4	1075227	.0350017	-3.072	0.002	1761249	0389206
Iyear_5	0363161	.0291019	-1.248	0.212	0933549	.0207226
Iyear_6	.0507361	.037675	1.347	0.178	0231055	.1245777
Iyear_7	.046021	.0453717	1.014	0.310	0429058	.1349478
_cons	.5525831	.1006814	5.488	0.000	.3552512	.7499151
sigma_u	.17681506					
sigma_e	.14194862					
rho	.60808706	(fraction	of variance	e due to u_	i)	

10

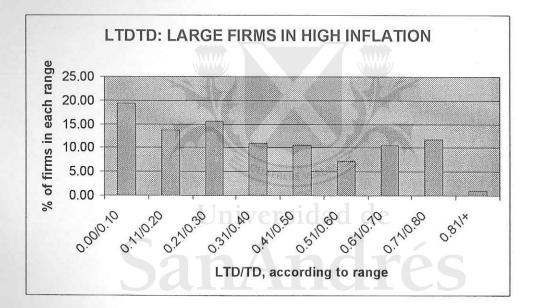
In this specification, stab remains statistically significant and retains the correct sign. To discern which specification is correct, I include the Hauman specification test in Table 9 below.

TABLE 9

Hausman specification test

	Coeffi	cients		
	Fixed	Random		
ltdtd	Effects	Effects	Difference	
lnfa	.0141999	.3004086	2862087	
nfata	.0941142	.1481419	0540277	
	.0000713	.0018935	-,0018222	
pta	0476963	0797684	.0320721	
access	.0424009	.0655204	0231195	
access2	.0306561	.0450126	0143565	
findev	-1.17077	-1.593858	.4230876	
lib	1701748	1454301	0247446	
stab	.2339085	.2841456	050237	
Iyear_2	.0207226	.0156622	.0050604	
Iyear_3	.0742875	.0589757	RE VERUN. 0153118	
Iyear_4	-,0690697	1075227	.038453	
Iyear_5	0113246	0363161	.0249915	
Iyear_6	.058058	.0507361	01012.0073219	
Iyear_7	.0477439	.046021	.0017229	
Test: Ho:	difference	in coefficient	s not systematic	
	chi2(15)	= (b-B)'[S^(-1 = 31.94)](b-B), S = (S_fe - S_	re)
	Prob>chi2	= 0.0066		

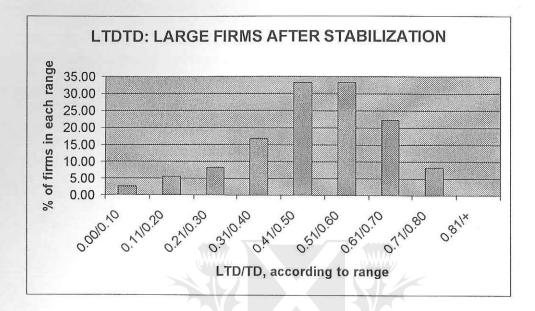
Again, the Fixed Efect is the correct specification.


5. SPLITTING THE SAMPLE

In this section, I split the sample in two parts according to the sample median value of different variables (such as size, fraction of physical capital in total assets, rate of profit

over assets, and revenues from sales) to try to infer how is that high inflation (or, more properly, stabilization) affects firms' (LTD/TD)⁹.

I start by splitting the sample between large and small firms (large firms being the ones for which the natural logarithm of total assets, as a proxy for size, is larger than the sample median value for that variable). Demirguc-Kunt and Maksimovic (1999) present preliminary cross-country evidence that the effect of inflation is not very different between large and small firms.


To start with, consider the histograms for the behavior of (LTD/TD) for large firms in high inflation and after stabilization takes place in Argentina. I start with the one corresponding to large firms operating in high inflation.

Notice from the histogram presented above that 1 out of 5 large firms have (LTD/TD) < 10% during high inflation. Moreover, almost 50% (exactly 48.8%) of firms display a ratio (LTD/TD) < 30%, clear evidence in support of the hypothesis that corporate debt tend to be short-term in high inflation environments.

⁹ Probably the best way to infer how is that inflation affects firms' debt maturity is by interacting the dummy variable stab with the vector of corporate finance determinants included in the regressions.

Consider now the histogram for large firms operating in low inflation environments (after stabilization occurred):

After stabilization occurred, only 10% of large firms have (LTD/TD) < 10% and the fraction of firms with ratios (LTD/TD) below 30% is only 17%.

Indeed, the regression results show that the effect of inflation on firms' debt maturity is due to the effect that inflation has on *large* firms. Table 10 below shows the Two Ways Fixed Effect estimation procedure applied to large firms¹⁰.

 TABLE 10: EFFECTS OF STABILIZATION ON LARGE FIRMS

 i.year
 Iyear_1-7 (naturally coded; Iyear_1 omitted)

 Fixed-effects (within) regression
 Number of obs =

 Group variable (i) : id
 Number of groups =

However, as a first step, I decided to split the sample in this discrete, two dimensional way to get some intuition as of what was going on. ¹⁰ The Random Effects estimation and the Hausman test (chi2 = 48.18) are not reported for space

260

58

The Random Effects estimation and the Hausman test (chi2 = 48.18) are not reported for space considerations, but are available upon request from the author. Anyways, according to the Hausman test, the Fixed Effect is the correct specification in the present case.

and the second designed of	hin = 0.3200			Obs pe	r group: min =	- 1
bet	ween = 0.0456	5			avg =	4.5
ove	rall = 0.0014	•			max =	- 7
				F(15,1	87) -	5.87
corr(u_i,	Xb) = -0.77	16		Prob >	F :	= 0.0000
ltdtd	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
lnfa	.8983104	.5806382	1.547	0.124	2471327	2.043753
nfata	3415427	.1864293	-1.832	0.069	7093176	.0262321
nsnfa	0000727	.0233805	-0.003	0.998	0461962	.0460508
pta	3861706	.2247795	-1.718	0.087	8296001	.0572589
access	0049633	.051998	-0.095	0.924	1075413	.0976147
access2	0894445	.1143214	-0.782	0.435	3149698	.1360808
findev	9183345	.5799096	-1.584	0.115	-2.06234	.225671
lib	6072963	.2158572	-2.813	0.005	-1.033124	1814681
stab	.257595	.0981641	2.624	0.009	.0639437	.4512463
Iyear_2	.0074857	.0297569	0.252	0.802	0512166	.0661879
Iyear_3	.0132157	.0363357	0.364	0.716	0584649	.0848962
Iyear_4	1339382	.0547477	-2.446	0.015	2419406	0259358
Iyear_5	0774358	.0434061	-1.784	0.076	1630644	.0081929
Iyear_6	000096	.0803946	-0.001	0.999	1586929	.1585009
Iyear_7	0031782	.0918702	-0.035	0.972	1844134	.1780571
_cons	1.041552	.1804018	5.774	0.000	.6856673	1.397436
sigma u	.38473655					
sigma_e	.13710878					
rho	.88731147	(fraction o	f variance	e due to u	_i)	
F test tha	t all u_i=0:	F(57,187) ^Q ⊭ _{AERER} 6	.05.0	Prob >	F = 0.0000

Instead, when the effect of inflation stabilization on small firms is considered, the results are not so neat: the coefficient on stab is very large, displays the correct sign, but it is not statistically significant. Table 11 reports the results.

TABLE 11: EFFECTS OF STABILIZATION ON SMALL FIRMS

Fixed-effects (within) regression	Number of obs	= 253
Group variable (i) : id	Number of groups	= 67
R-sq: within = 0.0903	Obs per group: min	= 1
between = 0.0996	avg	= 3.8
overall = 0.0056	max	= 7
	F(14,172)	= 1.22
corr(u_i, Xb) = -0.3746	Prob > F	= 0.2648
ltdtd Coef. Std. Err. t	P> t [95% Con	f. Interval]
lnfa 343781 1.108531 -0.310	0.757 -2.531856	1.844294

nfata	.2792556	.167318	1.669	0.097	0510053	.6095165
nsnfa	0006012	.0026871	-0.224	0.823	0059051	.0047026
pta	.1112451	.1331972	0.835	0.405	1516665	.3741567
access	.0430723	.0602974	0.714	0.476	0759459	.1620904
access2	.2160269	.1591726	1.357	0.177	0981563	.5302101
findev	-3.7954670	7.133732	-0.532	0.595	-17.8764	10.28546
lib	.0630832	.7398072	0.085	0.932	-1.397187	1.523353
stab	.6507176	1.3619999	0.478	0.633	-2.037668	3.339103
Iyear_2	0074122	.2301837	-0.032	0.974	4617607	.4469363
Iyear_3	.0824923	.2944216	0.280	0.780	4986524	.6636371
Iyear_4	.2879072	.6255642	0.460	0.646	946864	1.522678
Iyear_5	.5359671	1.043803	0.513	0.608	-1.524345	2.596279
Iyear_6	.6756174	1.307618	0.517	0.606	-1.905428	3.256663
Iyear_7	.6507216	1.361999	0.478	0.633	-2.037663	3.339107
_cons	.6844093	2.302178	0.297	0.767	-3.859749	5.228567
sigma_u	.23587782					
sigma_e	.13833427					
rho	.74407966	(fraction o	of varianc	e due to u	_i)	
test tha	t all u_i=0:	F(66,172	2) = 6	.15	Prob >	F = 0.0000

When I splitted the sample according to the sample median value of the ratio of tangible assets to total assets (a proxy for the stock of physical capital), I found that the effects of inflation stabilization were not very different for firms holding a relatively high fraction of human capital in the production process than for firms using a relatively low fraction of human capital in production. Tables 12 and 13 below report those results¹¹.

TABLE 12: EFFECTS OF STABILIZATION ON FIRMS WITH A LOW NFATA

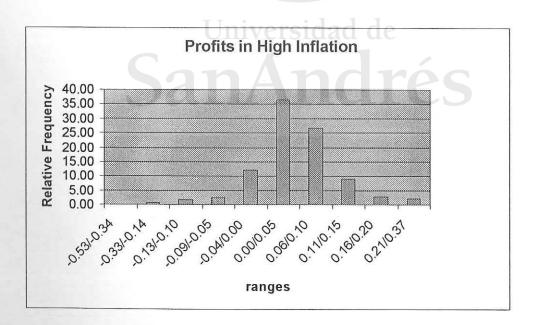
i.year	Iyear_1-7	(naturally coded; Iyear_1 omitte	ed)	
Fixed-effects (with	thin) regression	Number of obs	=	269
Group variable (i)) : id	Number of groups	=	80
R-sq: within = (0.2144	Obs per group: min	=	1
between = (0.0456	avg	=	3.4
overall = (0.0023	max	=	7
		F(15,174)	=	3.17
<pre>corr(u_i, Xb) =</pre>	-0.8653	Prob > F	=	0.0001

¹¹ Again, the Random Effects specifications and the Hausman tests will not be included for space considerations, but are available upon request from the author. In both cases, the Fixed Effect spcification turned out to be the correct one, anyways.

[95% Conf. Interva	P> t	t	Std. Err.	Coef.	ltdtd
-3.234929 .02767	0.054	-1.940	.8265242	-1.603625	lnfa
2044093 .54782	0.369	0.901	.1905661	.1717093	nfata
0121152 .00269	0.211	-1.256	.0037508	0047122	nsnfa
4090699 .10371	0.241	-1.175	.1299051	1526772	pta
0571741 .14212	0.401	0.841	.0504881	.0424737	access
149774 1.8494	0.095	1.678	.5064701	.8498416	access2
-2.341488 .38462	0.158	-1.417	.6906118	9784336	findev
0689311 .69760	0.107	1.619	.1941894	.3143389	lib
0082302 .36883	0.061	1.888	.095522	.1803008	stab
0350035 .13210	0.253	1.147	.0423352	.0485532	[year_2
0104893 .19224	0.079	1.769	.0513599	.0908793	[year_3
1601705 .16193	0.991	0.011	.0815998	.0008823	[year_4
0290909 .21139	0.136	1.496	.060924	.0911543	Iyear 5
.0138744 .25469	0.029	2.201	.0610076	.1342845	[year_6
0520355 .21642	0.228	1.209	.0680105	.0821962	[year_7
.1837236 .85528	0.003	3.054	.170127	.5195018	_cons
				.472248	sigma_u
				.12902672	sigma_e
i)	e due to u	f variance	(fraction o	.93053712	rho

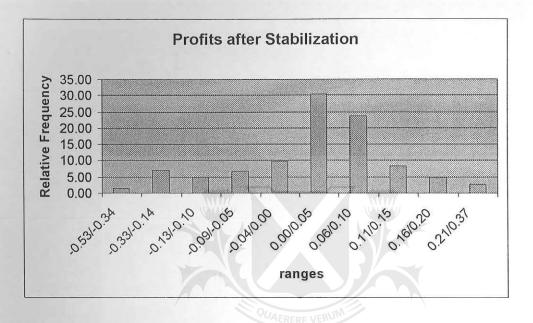
Notice that stab is not significant at the 5% conventional level to explain how inflation stabilization affects the debt maturity of firms holding a low fraction of physical capital to produce output. However, it is marginally significant at the 6% level, and the sign is positive, as expected.

Iniversidad de


TABLE 13: EFFECTS OF STABILIZATION ON FIRMS WITH A HIGH NFATA

(naturally	coded; Iy	/ear_1 omitt	ed)	
	Number	of obs	=	244
	Number	of groups	z	69
	Obs pe	r group: min	=	1
	5-10-11-0 -	avg	=	3.5
		max	=	7
	F(15,1	60)	=	3.67
	Prob >	F	=	0.0000
t	P> t	(95% Con	f.	Interval]
0.682	0.496	8112376		1.6674
-0.879	0.381	7362864		.2827639
-1.894	0.060	194466		.0040586
	t 0.682 -0.879	Number Number Obs per F(15,10 Prob > t P> t 0.682 0.496 -0.879 0.381	Number of obs Number of groups Obs per group: min avg max F(15,160) Prob > F t P> t 0.682 0.496 -0.879 0.381	Number of obs = Number of groups = Obs per group: min = avg = max = F(15,160) = Prob > F = t P> t [95% Conf. 0.682 0.4968112376 -0.879 0.3817362864

	pta	008797	.2781564	-0.032	0.975	5581284	.5405344	
	access	.0468578	.0515507	0.909	0.365	0549497	.1486653	
	access2	1052252	.0946413	-1.112	0.268	2921325	.0816821	
	findev	9961849	.5894228	-1.690	0.093	-2.160237	.167867	
	lib	3417862	.1906134	-1.793	0.075	7182289	.0346566	
	stab	.175124	.0891296	1.965	0.051	0008981	.3511462	
	Iyear_2	0098285	.0339385	-0.290	0.773	0768537	.0571968	
	Iyear_3	.010998	.0420601	0.261	0.794	0720665	.0940624	
	Iyear_4	1235426	.0615621	-2.007	0.046	2451217	0019634	
	Iyear_5	0804026	.0471584	-1.705	0.090	1735359	.0127306	
	Iyear_6	.0049588	.0611402	0.081	0.935	1157871	.1257046	
	Iyear_7	.0554817	.0745647	0.744	0.458	0917763	.2027396	
	_cons	1.111957	.2375821	4.680	0.000	.6427558	1.581158	
-	sigma u	.24707044						
	sigma e	.13808834						
	rho	.76197892	(fraction of	variance	due to u_	i)		
F	test that	all u i=0:	F(68,160)	= 5.	39	Prob >	F = 0.0000	
			. (50,100)	•.		.105 -		


Notice that the coefficient on stab is very similar than the one reported in Table 12. The only (very slight) difference is that now stab is marginally significant at the 5% level.

The next step was to split the sample according to the sample median value of the rate of profit over assets. Before presenting the regression results, it pays to take a glance at the histograms for profits in high inflation and after stabilization takes place.

UNIVERSIDAD DE SAN ANDRES BIBLIOTECA Notice from the chart presented above that less than 5 % of firms (actually 4.87 %) have a rate of profit over assets that is less than 5 % in a high inflation environment.

When we take a glance at the histogram for profits in a stable environment, the picture changes completely:

Now, exactly 20 % of firms have a rate of profit below 5 %. This evidence is consistent with the finding that the number of bankruptcies increased dramatically after the 1985 israeli stabilization (reported by Bruno and Meridar, 1991). The previous finding is consistent with the hypothesis, first formulated in an analytical model by Tommasi (1994), that resources are poorly allocated in a high inflation regime and the low rates of profit (or even bankruptcies) are the result to be expected after inflation is stabilized. Both histograms suggest what to expect from the regression results: the effects of inflation should be stronger for firms with high profits (i.e. the ones that were probably not able to get long-term financing in a high inflation environment, even when their solvency was not in question, but the ones that will be able to get it when inflation is stabilized). Tables 14 and 15 below show exactly this result.

TABLE 14: EFFECTS OF STABILIZATION ON FIRMS WITH LOW PROFITS

i.year

Iyear_1-7 (naturally coded; Iyear_1 omitted)

	cts (within) able (i) : io				of obs of groups	=	268 94
	(-) -			Humber	or groupo		01
25. I I I I I I I I I I I I I I I I I I I	hin = 0.241			Obs pe	r group: min	1 =	1
bet	ween = 0.0390)			avg	3 =	2.9
ove	rall = 0.0934	ŀ			max	< =	7
				F(15,1	59)	=	3.37
corr(u_i,	Xb) = -0.18	31		Prob >	F	=	0.0001
ltdtd	Coef.	Std. Err.	t	P> t	[95% Coi	nf.	Interval]
+ 1nfa	301418	.808601	-0.373	0.710	-1.898402	· ·	1.295566
nfata	.2578932	.2008629	1.284	0.201	1388103		.6545967
nsnfa	0147181	.0229265	-0.642	0.522	0599978		.0305616
pta	.4929788	.2010084	2.453	0.015	.0959879		.8899696
access	0406882	.069587	-0.585	0.560	1781223		.096746
access2	.289075	.2233083	1.295	0.197	1519579		.730108
findev	.2454484	.7028875	0.349	0.727	-1.142752		1.633649
lib	2963764	.2193039	-1.351	0.178	7295008	3	.1367479
stab	.0713481	.1101344	0.648	0.518	-,146167		.2888632
Iyear 2	0302089	.0399335	-0.756	0.450	1090775		.0486597
Iyear 3	.1215368	.048386	2.512	0.013	.0259748		.2170989
Iyear 4	.0334094	.088876	0.376	0.707	1421204	1	.2089391
Iyear_5	.0450038	.0682999	0.659	0.511	0898883	3	.1798959
Iyear_6	.0589805	.0702002	0.840	0.402	0796646	6	.1976257
Iyear_7	0262777	.0856418	-0.307	0.759	19542	2	.1428645
_cons	.8589739	.187879	4.572	0.000	.4879136	5	1.230034
sigma u	.23937165		QUAERERE	- PIIM			
sigma e	.14181395						
rho	.74019891	(fraction o	of varianc	e due to u	_i)		
		······································	wers	Idad-	de		
F test tha	t all u_i=0:	F(93,159	9) = 6	.04	Prob	> F	= 0.0000

As Table 14 shows, it seems that stabilization does not affect the ratio LTD/TD for firms with low profits.

anAndres

However, this is not the case for firms with higher than saple median profits, as Table 15 makes clear.

TABLE 15 : EFFECTS OF STABILIZATION ON FIRMS WITH HIGH PROFITS

i.year	Iyear_1-7	(naturally coded; Iyear_1 om	itted)	
Fixed-effects	(within) regression	Number of obs	=	245

Group vari	able (i) : io	I		Number	of groups =	83
R-sq: wit	hin = 0.2419)		Obs pe	r group: min =	1
bet	ween = 0.0445	5			avg =	3.0
ove	rall = 0.1306				max =	6
				F/4F 4	47)	0.40
conn/u i	Vh) - 0.000			F(15,1		3.13
con (u_1,	Xb) = -0.002	21		Prob >	r =	0.0002
ltdtd	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+ lnfa	. 1677803	.6749875	0.249	0.804	-1.166152	1.501713
nfata	.019904	.1964518	0.101	0.919	3683307	.4081386
nsnfa	.0039472	.005937	0.665	0.507	0077857	.0156801
pta	6513988	.2524923	-2.580	0.011	-1.150383	1524151
access	.0665793	.0460049	1.447	0.150	024337	.1574956
access2	0748324	.094514	-0.792	0.430	2616142	.1119494
findev	-1.954954	.6582229	-2.970	0.003	-3.255756	6541523
lib	139303	.1829906	-0.761	0.448	5009351	.2223291
stab	.2969647	.0921133	3.224	0.002	.1149274	.4790021
Iyear 2	0060694	.0403193	-0.151	0.881	0857498	.4790021
Iyear 3	.0259791	.0452008	0.575	0.566	0633483	.1153065
Iyear 4	0958691	.0656774	-1.460	0.147	2256631	.0339248
Iyear 5	0272218	.0503167	-0.541	0.589	1266593	.0722157
	.0884753	.0604654	1.463	0.146	0310184	.207969
Iyear_7	.1027673	.0661559	1.553	0.122	0279722	.2335069
_cons	.7665737	.1768365	4.335	0.000	.4171034	1.116044
sigma_u	.22742946					
sigma_e	.1345209					
rho	.7408212	(fraction o	f varianc	e due to u	_i)	
F test tha	t all u_i=0:	F(82,147) = 4	.85	Prob >	F = 0.0000

At this point, an additional question arises: the effect summarized in Tables 14 and 15 is originated in firms' revenues, or in firms' costs? The answer to this question is important because the existing models that help to rationalize the effects of inflation (of the Tommasi, 1994 search-theoretic variety) are based on costs considerations. Since profits are equal to revenues minus costs, even with no data for firms' costs (as it is the present case), if I find no impact of inflation stabilization for either firms with small revenues from sales, or for firms with high revenues from sales, I will be able to infer that the effects of inflation stabilization operate through firms' costs. This is exactly what Tables 16 and 17 below seem to be showing.

TABLE 16: EFFECTS OF STABILIZATION ON FIRMS WITH LOW REVENUES

i.year	1	year_1-7	(naturally	coded; Iye	ar_1 omitted)
Fixed-effe	cts (within)	rearession		Number o	fobs =	261
	able (i) : id			Number o		72
	(1) . 1	•		- Humber 0	groupo	12
R-sq: wit	hin = 0.220	3		Obs per	group: min =	1
bet	ween = 0.0014	ł			avg =	3.6
ove	rall = 0.0121				max =	7
				F(15,174		3.29
corr(u_i,	Xb) = -0.412	75		Prob > F	=	0.0001
ltdtd	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Infa	375028	.6173146	-0.608	0.544	-1.593416	.8433605
nfata	0550838	.1817085	-0.303	0.762	4137203	.3035526
nsnfa	1910822	.0627509	-3.045	0.003	3149331	0672312
pta	.4383477	.2115801	2.072	0.040	.020754	.8559415
access	.0503716	.0463459	1.087	0.279	0411009	.141844
access2	1358026	.1065974	-1.274	0.204	3461929	.0745877
findev	-1.31887	.613914	-2.148	0.033	-2.530547	1071934
lib	.0863838	.1834122	0.471	0.638	2756153	.4483828
stab	.1383679	.0904501	1.530	0.128	0401527	.3168886
Iyear 2	0119647	.0360405	-0.332	0.740	0830975	.0591681
Iyear 3	0043185	.0417193	-0.104	0.918	0866594	.0780225
Iyear 4	1124588	.0614225	-1.831	0.069	2336879	.0087703
Iyear 5	0314939	.0490076	-0,643	0.521	1282197	.0652319
Iyear 6	.0593208	.0584843	1.014	0.312	0561092	.1747508
Iyear 7	.0930283	.0696827	1.335	0.184	0445038	.2305604
cons	.9308774	.1746046	5.331	0.000	.5862618	1.275493
sigma_u	.24257079					
sigma_e	.14155039					
rho	.74597806	(fraction o	of variance	due to u_i)	
F test tha	t all u_i=0:	F(71,174	4) = 6.	06	Prob > 1	= = 0.0000

No statistically significant (at the 5 % level) effect of stabilization occurs on firms with lower than median revenues from sales.

TABLE 17: EFFECTS OF STABILIZATION ON FIRMS WITH HIGH REVENUES

i.year

Iyear_1-7 (naturally coded; Iyear_1 omitted)

Fixed-effects (within) regression	Number of obs =	252
Group variable (i) : id	Number of groups =	72
R-sq: within = 0.1738	Obs per group: min =	1
between = 0.0169	avg =	3.5

max	=		

7

overall = 0.0000

corr(u_i,)	Xb) = -0.800	02		F(15,16 Prob >		2.31 0.0051
ltdtd	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnfa	9936359	.7022687	-1.415	0.159	-2.380227	.3929554
nfata	.1694896	.1447047	1.171	0.243	116222	.4552012
nsnfa	0031034	.0031999	-0.970	0.334	0094214	.0032145
pta	0678502	.1232483	-0.551	0.583	3111972	.1754968
access	.0543306	.0520695	1.043	0.298	0484779	.1571391
access2	.6632692	.4362504	1.520	0.130	1980835	1.524622
findev	4822439	.5223587	-0.923	0.357	-1.513613	.5491249
lib	.1421082	.1830969	0.776	0.439	2194066	.503623
stab	.1041638	.0814146	1.279	0.203	056585	.2649126
Iyear 2	.0403091	.0314152	1.283	0.201	0217184	.1023366
Iyear 3	.0843435	.0431981	1.952	0.053	0009487	.1696358
Iyear_4	.0547457	.0667593	0.820	0.413	077067	.1865584
Iyear_5	.084024	.0492188	1.707	0.090	0131559	.1812039
Iyear_6	.1169825	.0508329	2.301	0.023	.0166158	.2173492
Iyear_7	.0428843	.0574907	0.746	0.457	070628	.1563966
_cons	.4072395	.1438357	2.831	0.005	.1232438	.6912353
sigma_u sigma_e	.30998127 .10937338					
rho	.88928797	(fraction of	variance	e due to u_	i)	
F test that	t all u_i=0:	F(71,165)	= 6 QUAERERI	.06 VERUM	Prob >	F = 0.0000

Again, there is no statistically significant (at the 5 % level) effect of stabilization on the ratio LTD/TD for firms with higher than sample median values for revenues from sales.

6. SUMMARY OF RESULTS AND CONCLUDING REMARKS

The main results can be summarized as follows. First, there is a clear positive effect of a permanent stabilization on the lenghthening of Argentine firms' debt, after controlling for both a vector of standard corporate finance determinants and a set of macroeconomic developments that took place more or less simultaneously with the stabilization of inflation. Second, the stabilization of inflation seems to have affected particularly large firms and high profits/low cost firms' (LTD/TD) in Argentina.

A rather natural question may arise at this point: why is the shortening of debt maturity under high inflation conditions (or its reciprocal, the lenghthening of debt maturity after permanent inflation stabilization takes place) a relevant issue?

First, the shortening of the term structure of nominal contracts in high inflation conditions has been a major financial development in economies displaying high rates of inflation during the 1980s. In fact, the issue is receiving attention in the monetary economics literature¹². Second, the issue is potentially relevant for economic growth. Recent studies in this area (Barro, 1995, 1997; De Gregorio 1992, 1993) found, using aggregate data for a cross-section of countries, that investment is the main link between inflation and growth (i.e. inflation reduces investment and, hence, growth is adversely affected). Endogeneity is a big problem, however. Using firm level data can help to deal with the endogeneity problem (it is difficult to make the point that the rate of inflation is affected at the firm level). If one finds support for the idea that inflation shortens the maturity structure of nominal contracts, then a second natural step would be to investigate how investment is affected. The hypothesis is that both the level and the efficiency of investment are decreased by high inflation. This constitutes the second part of my PhD dissertation agenda. Finally, recent studies in the area of applied corporate finance (Schmukler and Vesperoni, 2000, for instance) have found that a measure of financial liberalization tends to shorten the maturity structure of firms' corporate debt, in a subset of emerging economies. They did not control for inflation stabilization, however. Therefore, applying the same methodology used in this paper to their data set, I will be able to test the robustness of their finding to the inclusion of inflation stabilization considerations.

¹² See the recent paper by Neumeyer in the Journal of Economic Dynamics and Control (1999), for instance.

APPENDIX: Definition of Variables in the DATA SET

All the corporate data is taken from the IFC (World Bank) database, or the Worldscope database.

LTD/TD: Ratio of debt obligations due more than one year and total liabilities.

LNFA: Natural logarithm of Net Fixed Assets.

NFATA: Ratio of Net Fixed Assets and Total Assets.

NSNFA: Ratio of Net Sales and Net Fixed Assets

PTA: Ratio of firms' Profits and Total Assets.

I have borrowed all the "macro" data from Sergio Schmukler, at The World Bank.

FINDEV: Average of an index of Market Capitalization and an index of the degree of monetization of the economy. The index of Financial Development was constructed by A. Demirguc-Kunt, Research Department, The World Bank, Washington, D.C. The index is used in Schmukler and Vesperoni (2000).

ACCESS: Index of the access of firms to international Bonds markets. Constructed by Schmukler and Vesperoni (Research Department, The World Bank, Washington, D.C.). The index is used in Schmukler and Vesperoni (2000).

ACCESS2: Index of the access of firms to international equity markets. Constructed by Schmukler and Vesperoni (Research Department, The World Bank, Washington, D.C.). The index is used in Schmukler and Vesperoni (2000).

LIB: Multidimensional index of Financial Liberalization. It is a weighted average of measures of interest rates (both credit and deposit rates) liberalization, credit control deregulation, reserve requirements liberalization on bank deposits, liberalization on restrictions on deposits in foreign currency in the domestic financial system and liberalization on borrowing abroad restrictions both by corporations and commercial banks.

References:

Barro, R.: "Inflation and Economic Growth". NBER Working Paper 5326. 1995.

Barro, R.: Determinants of Economic Growth. A Cross-Country Empirical Study. Chapter 3. The MIT Press. Cambridge, Massachusetts. 1997.

Boyd, J., R. Levine, and B. Smith: "The Impact of Inflation on Financial Sector Performance". Working Paper. Carlson School of Management, University of Minnesota. February, 2000.

Bruno, M. and L. Meridor: "The costly transition from stabilization to sustainable growth: Israel's case". In Bruno et al. (Eds.), *Lessons of Economic Stabilization and its Aftermath*. The MIT Press, Cambridge, Mass., 1991.

Cavallo, D.: PhD Doctoral Dissertation. 1st part. Department of Economics. Harvard University. Cambridge. Mass. April 1977.

De Gregorio, J.: "The Effects of Inflation on Economic Growth: Lessons from Latin America". European Economic Review 36, 417-25. 1992.

De Gregorio, J.: "Inflation, Taxation and Long Run Growth". Journal of Monetary Economics 31, 271-98. 1993.

Demirguc-Kunt, A. and B. Maksimovic: "Institutions, Financial Markets, and Firm Debt Maturity". *Journal of Financial Economics* 54 (1999) 295-336.

Guerrero, F.: "High Inflation and Long-Term Financial Contracts". Mimeo. Department of Economics. University of Maryland at College Park. April, 2000.

Heymann, D. and A. Leijonhufvud: *High Inflation*. Oxford University Press. 1995. IMF: *Recent Economic Developments*. Various issues: Argentina, 1984, page 36, Peru, 1983, page31 and 1989, pages 42-43.

Rojas, E. and P. C. Rodríguez: "The Role of the Financial Structure in the Transmission of Monetary Policy". Working Paper # 8. Research Department. Central Bank of Venezuela. 1997.

Schmukler, S. and E. Vesperoni (2000): "Does Integration with Global Markets Affect Firms' Financing Choices?: Evidence from Emerging Economies". Paper presented at the World Bank Conference Financial Structure and Economic Development, organized by Ashli Demirguc Kunt and Ross Levine. February, 2000. Washington, D.C.

Tommasi, M.: "The Consequences of Price Instability on Search Markets: Toward Understanding the Effects of Inflation". American Economic Review, vol. 84, #3. December, 1994.

Tommasi, M.: "On high inflation and the allocation of resources". Journal of Monetary Economics 44 (1999) 401-421.