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Abstract 

We present an estimator for a nonparametric function that depends on 
an unobservable random variable in a nonadditive way. The unobservable 
random term is assumed to be distributed independently of the observable 
exogenous variables, with an unknown distribution. We show that, when 
the function satisfies sorne properties that are implied by economic theory, 
such as homogeneity of degree one, the nonparametric function and the dis
tribution of the unobservable random term are identified subject to minor 
normalizations. For the . cases in which the properties of economic t heory 
are not satisfied, we provide a convenient normalization. The estimators are 
shown to be consistent and asymptotically normal. 

*The support of NSF is gratefully acknowledged. I have benefitted from my 
interaction with Joe Altonji, Jim Heckman, Chuck Manski, and Whitney Newey, 
and the research assistance of Ulrich Doraszelski and Elie Tamer. This paper is 
to be presented at the Invited Lecture on New Developments in the Estimation of 
Preferences and Production Functions, Latin American Meeting of the Economet
ric Society, August 1999. 
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1 Introduction 

A common practice when estimating rnany economic models proceeds by 
first specifying the relationship between a vector of observable exogenous 
variables, X, and a dependent variable, Y, and then, adding a random un
observable term, e, to the relationship. In the resulting model, e is typically 
interpreted as the difference between the observed value of the dependent 
variable, Y, and the conditional expectation of Y given X. This procedure 
has been criticized on the grounds that instead of adding an unobservable 
randorn term to the relationship, as an after-thought, one should be able 
to generate this unobservable random terrn from wi thin the rnodel. When 
approaching the randorn relationship in the latter way, é rnay represent an 
heterogeneity pararneter in a utility function, sorne productivity shock in a 
production function, or sorne other relevant unobservable variable. When us
ing this approach, the randorn term e rarely appears in the rnodel as a terrn 
added to the conditional expectation of Y given X. (See McElroy (1981, 
1987) and Brown and Walker (1989, 1995).) In general, even when paramet
ric functions are used to specify the underlying functions in the economic 
model, the resulting function by which the values of Y are determined frorn 
X and é is nonlinear in é. 

Most nonparametric rnethods that are currently used to specify the re
lationship between the vector of observable exogenous variables, X, an un
observable terrn, and the observable dependent variable, Y, define the unob
servable randorn terrn as being the difference between Y and the conditional 
expectation. The resulting rnodel is then one where the unobservable randorn 
term is added to the relationship. Although one could interpret this a.dded 
unobservable random termas being a function of the observable and unob
servable variables, the existent rnethods do not provide a way of studying this 
function, which has information about the important interaction between the 
observable anrl. unobservable variables. 

In this paper, we present a nonparametric method of estimating the rela
tionship between a dependent variable Y, an observable vector of exogenous 
variables, X, and an unobservable exogenous variable c. The method does 
not require that the unobservable variable e be additive. It also does not re
quire that either the function or the distribution of the unobservable random 
term be parametric. More specifi.cally, we consider the model Y = m(X,c) 
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where e is distributed independently of X, and both the function m and the 
distribution of e are unknown. While, without any restrictions, the function 
m and the distribution of e are not jointly identified, we present sorne re
strictions that, in sorne economic rnodels such as when m is a cost or profit 
function, rnay be derived frorn economic theory. When these restrictions are 
satisfied, only minor norrnalizations, such as fixing the value of the function 
m at one point, rnay suffice to jointly identify the function m and the dis
tribution of c. For the cases in which economic theory <loes not irnply these 
restrictions, we present convenient normalizations. 

The estimators are very easy to calculate. They are defined as nonlinear 
functionals of a nonpararnetric estirnator of the joint cumulative distribution 
fundion of the observable variables. We present the asyrnptotic properties of 
the estimators for the case in which the nonparametric estirnator of the cu
mulative distribution function is obtained by kernel methods. The estimators 
are shown to be consistent and asyrnptotically normal. 

Other papers that consider nonparametric rnodels where the random 
terrns do not enter in an additive form are Roehrig (1988), Brown and 
Matzkin (1996), Altonji and Ichimura (1997), and Altonji and Matzkin (1997). 
Roehrig (1988) provides a general condition for the identi:fication of non
pararnetric systems of equations. Brown and Matzkin (1996) extend Roehrig 
(1988)'s conditions and provide an extrernum estimator for estimating non
parametric simul taneous equations of the from studied in Roehrig ( 1988). 
Altoniji and Ichimura (1997) consider models with one dependent variable, 
and estímate an average derivative. Altonji and Matzkin (1997) consider the 
estimation of models for panel data. In nonparametric models where the 
unobservable random term is additive, shape restrictions have been used in 
previous work to identify otherwise unidentified functions , and to estímate 
nonparametric models. (Matzkin (1994) reviews sorne of the existent liter
ature for limited dependent variable rnodels and nonparametric regression 
functions.) In a different vein, Manski (1997), uses restrictions of economic 
theory to determine bounds for the distribution of a dependent variable. 

The outline of the paper is as follows. In the next section, we present the 
model and two sets of conditions under which the function m and the distri
bution of é are identified. In Section 3, we present the estimators and their 
asymptotic properties. Section 4 presents additional conditions under which 
m and the distribution of e are identified. The results of sorne simulations 
are described in Section 5. 
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2 The Model 

The model that we will <leal with is 

(1) Y= m(X, t:) 

where m : Ax E ---+ R is strictly increasing in é, A e RK, E e R, y and 
X are observable, ~nd é is an unobservable random term which is distributed 
independently of X. If the económic model contains several unobservable 
random terms, then the function m is assumed to be weakly separable in all 
these terms, and é denotes the value of the function that aggregates these 
terms. We will denote the distribution of é by F,;; . 

One possible example of this model, to which we will return below, is 
where m denotes the profit function of a typical firm, X is a vector of the 
observable output and input prices and é is the unobsé~able price of a (pos
sibly unobservable) input. As another example, _ let Y denote the cost of 
undertaking a particular project by a typical firm, and suppose that all the 
inputs prices are observed except for one, which is distributed independently 
of the others. If X denotes the vector of observable input prices and é de
notes the unobservable price, then m is the cost function, which, in general, 
is not additively separable in c. Note that in these two examples, economic 
theory implies that the function m is homogenous of degree one in X and é. 

The first question that arises when specifying the model in (1) is whether 
one can identify the function m and the distribution of c. Following the 
standard definition of identification, we say that (m, F,;;) is identified if we 
can uniquely recover it from the distribution of the observable variables. 
More specifically, let M denote a set to which the function m belongs, and 
let r denote a set to which F,;; . Let Fy,x(·; m', F;) denote the joint cdf of the 
observable variables when m = m' and F,;;=F;. Then, 

Definition: The pair (m, F,;;) is identified in the set (NI x r) if 
(i) (m, F,;;) E (M x r) and (ii) for all (m', F;) in (NI x r) 
[Fy,x(,; m, F,;;) = (Fy,x(·; m', F:)] =* (m', F~) = (m, F,;;) 
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If for any two functions, m' and m" in M , we can find distributions, F; 
and Fe:" in r such that the pairs ( m', F;) and ( m" , Fe:") genera te the sarne 
distribution of observable variables, m' and m" are said to be observationally 
equivalent. 

Definition: Any two functidns, m' and m" in M are said to be observationally 
equivalent if there exist F;, F~' in r such that far all (y, x) 

Fy,x(Y, x; m', F;) = Fy,x(Y, x; m", F;). 

Below, we present sorne sets of functions in which (m, Fe:) is identified. 
The following assumptions will be made: 

Assumption 1.1: é is distributed independent of X . The support of é 

includes the set E. 

Assumption I.2: Vx, m(x, ·) is strictly increasing in é. 

Assumption 1.3: The support of X includes the set A. 

The independence between é and X irnplies that the conditional proba
bility density of Y given X is generated, for all values of X, by a cornrnon 
distribution of é. In pal'ticular, if the distribution of é can be recovered frorn 
the conditional cdf of Y given X at sorne value of X, then it can be used to 
identify m frorn the conditional cdf of Y given X at any other value of X . 
Assumption I.2 guarantees that, given m and X , the pdf of é can be obtained 
frorn the conditional pdf of Y given X. Our results can be easily modified 
if mis strictly deceasing, instead of increasing, in é. The support conditions 
on é and X are made to guarantee that all the values of ( x, E) in the dornain 
of the function m are in the support of the joint distribution of (x, E) . If m 
were a parametric function , these support conditions would not, in general, 
be necessary to identify m. 

We describe below two possible sets of functions to which the function 
m may belong. In Section 4, we consider two other sets of functions. We 
will show that when the distribution of E belongs to the set, r , of strictly 
increasing distributions whose support includes the set E, and m belongs to 
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any one of these sets of functions, the pair ( m, Fe:) is identified. 
Let I denote the set of functions on ( x, E) that are strictly increasing in 

E, i.e. 

I = {m': Ax E--+ Rlfor ali X E A, m'(x, ·) is strictly increasing} 

The first is the set of functions that are strictly increasing in é, attain a 
given value at one point, and are homogeneous of degree one along the ray 
that goes through that poin'c. Let x E RK, l E R, and a E R be given. 
Then, the set Ml is defined by: 

Nll={m': Ax E---+ Rlm' E J, m'(x,l) = a and V>-. E R, m'(>-.x,>-.i) = >-.a} 

In sorne economic models, such as the ones described above where Y 
denotes either the profit or the cost of a typical firm, m is known to be 
homogenous of degree one in ( x, E) and strictly increasing ( decreasing) in E. 

In such cases, the only restriction in m guaranteeing that it belongs to Ml 
is that it attains the value a at (x, i) . It will follow from our analysis below 
that the latter is the only normalization needed in the set of homogenous of 
degree one functions that are strictly increasing in E . Hence, as long as we 
specify the value of m at one point, we can identify m and the distribution 
of E. 

The second set of functions provides a convenient normalization for the 
set of functions that are strictly increasing in E. It is the set of functions that 
are strictly increasing in E and whose values when X equals smr.e vector, 
x, are known to equal E. Let x E RK. Then, the second set of functions is 

J\ll2={m' : Ax E-----+ R I m' E J and m'(x,E) = e} 

For any function m( x, E) that is strictly increasing in e, there exists a func
tion m' ( x, E) that 1s observationally equivalent to m( x, E) and satisfies m' (x, E) 
= E. The function m' is defined by m'(x, e)= m(x, rñ,-1(x, e)), where by m-1 

we mean the inverse with respect to the last coordinate ( Altonji and Matzkin 
(1997). Hence, the requirement that m(x, e) = e <loes not restrict the set of 
identified functions. 

A common property of the two sets of functions described above is t hat 
the functions in each of these sets attain common known values on a set that 
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is mapped into the real line. In Ml, this is the ray from the origin that 
passes through the point (x, i) . In M2, this is the set of all vectors for which 
X = x. Let 

r = { F : R -t R I F is strictly increasing}. 

Our first identifi.cation result is the following: 

Theorem 1 Suppose that Assumptions I.1-I. 3 are satisfied. Then, 
(i) if m belongs to Ml, (m, F,;) is identified in (Jvll x r) 
(ii) if m belongs to M2, (m , Fe ) is identified in (M2 x f ) 

Proof of Theorem 1: We first note that for ali e E E and X E A, 

(1) Fe(e) = FYIX=x (m(x, e)). 

This is because Fe(e) = Pr (e::; e) = P ( e::; el X = x) = Pr( m(x, e) ::; 
m(x, e) 1 X= x) = Pr (Y ::; m(x, e)_ 1 X = x) = FYJX=x (m(x, e)). The first 
equality follows by the definition of Fe, the second follows by the indepen
dence between e and X, the third follows by the monotonicity of m(x, •), the 
fourth follows by the definition of Y, and the fifth equality follows by the 
definition of Fy¡x . 

Suppose first that m E Nl2. Then, letting X= x in (1) and noticing that 
m(x, e) = e, we get that 

H~nce, Fe is identified from the conditional cdf of Y given X = ?f'. Next, 
from (1) and (2) it follows that for all e E E and X E A, FYIX=x (e) = 
FYIX=x (m(x,e)). Since Y= m(X,c) and m(x, •) is strictly increasing, it 
follows that the conditional cdf of Y given X = x is strictly increasing on 
the set m(x, E) = {yjy = m(x, e), e E E}; hence Fy¡x has an inverse on 
m(x, E). It follows then that 
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Hence, the function m is identified. 
Suppose, next, that m E Ml. Then, given any >. E R and letting x = 

Xx ande= >."E, we have that Fe(>.K) = FYIX=Ax (m(>.x, >.K)) = FYIX=Ax (>.a), 
where the second equality follows because m(>.x, >.K) = >.m(x, l) = >.a. In 
particular, for any e E E, 

by letting >. = (e/l). Hence, Fe(e) is identified from the conditional cdf of 
Y given X, when y= (e/l)a and x = (e/l)x . From (1) and (4), we have that 
for any e E E and x E A, FYIX=(e/E°)x ((e/l)a) = FYIX=x (m(x, e)). Using the 
fact that FYIX=x( ·) has an inverse, we get that 

Hence, the function m is identified. ■ 

If the functions in the sets were required to be diff erentiable, and the 
joint cdf of (Y, X) were assumed to be absolutely continuous and with sup
port RK+i, then the above theorem could have been proved by showing that 
the functions in Ml and M2 satisfy the rank conditions given in Roehrig 
(1988). Instead, we used ~he above argument, because besides not requiring 
the additional conditions, suggests a method of obtaining estimators for the 
function m and the distribution of é. 

3 Estimation 

Since, in equations (2)-(5), the functions m and Fe are expressed in terms 
of the conditional cdf's óf Y given X, we can obtain estimators for m and 
Fe by substituting the conditional cdf of Y given X by a nonparametric 
estimator of it. While one could consider using any type of nonparametric 
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estimators for the conciitional cdf's of Y given X, we present here the details 
and asymptotic properties for the case in which the conditional cdf's are 
estimated using the method of kernels . 

. . N 
Let the data be denoted by {xi, yi} i=l . Let f (y, x) and F (y, x) denote, 

respectively, the joint pdf and cdf of (Y, X), let }(y, x) and F(y, x) denote, 
respectively, their kernel estimators, and let JYIX=x(Y) and FYIX=x(Y) denote 
the kernel estimators of, respectively, the conditional pdf and conditional cdf 
of Y given X= x. Then, 

JA( ) 1 ..,,_...N K(y-Yi x-Xi) 
Y, X = NuK+l L..Ji=l u , u 

N 

jN y,x and 
_

00 
fN(s,x) ds ' 

J
I/ • 

A _

00 
fN(s,x) ds 

FY IX=x(Y) = f:"500 jN(s,x) ds 

where K : R x RK -t R is a kernel function and a-N is the bandwidth. 
Note that the estimator for the conditional cdf of Y given X is different 
from the Nadaraya-Watson estimator for FYIX=x(y). The latter is the kernel 
estimator for the conditional expectation of Z - l[Y :s; y] given X = x. For 
any t and x, Fy11x=x(t) will denote the set of values of y for which PYIX=x(Y) 
= t. When m belongs to Ml, the estimators for FE and m are defined by 

When m belongs to lvl2, they are defined by 
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To derive the asymptotic properties of the estimators, we make the fal
lowing assumptions: 

Assumption S.l: The sequence {Yi, Xi} is a strictly stationary ,8-rnixing 
sequence satisfying kv ,Bk - O as k - oo, far sorne v > l. 

Assumption S. 2: f (y, x) is continuously diff erentiable u p to the arder 
s, where s is the first even integer larger than or equal to K + l. The support 
off is compact. The derivatives of f(y, x) up to arder s are bounded and in 
L2(RK+l). 

Assumption S.3: The kernel function K(·, ·) is an even function, in
tegrates to 1, is of arder s, is continuously differentiable up to the arder 
s + K + l, and its derivatives of arder up to s are in L2 ( RK +l). The value 
of K is zero outside a compact set. 

11\r s+K 1 
Assumption S.4: As N - oo v NuN 2 + J'Ñu7¡.;' -t O where r > O and 

O:S m < s/2 + K/4. 

Assumption S. l allows far dependence across observations. Assumption 
S.2 requires that the pdf of (Y, X) be sufficiently smooth. Note that this 
requires é to have a smooth enough density. The support of f is required 
to be compact in arder to guarantee that f can be approximated by func
tions that vanish outside a compact set . Assumption S.3 restricts the kernel 
function that may be used. Assumption S.4 restricts the rate at which the 
bandwidth, O'N goes to zero. In the next two results, we make use of these 
assumptions to establish the consistency and asymptotic normality of our 
estimators. The proofs of these results are presented in the Appendix. The 
first result concerns the estimator far the cdf pf e. 

Theorem 2 : Suppose that Assumptions I.1-1. 3 and S .1-S. 4 are satisfied, 
and that the function m belongs to either MI or M2. Then, 
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(i) supeER !Pie) - Fe:(e)I ----+ O in probability and 

(ii)foralle, J"Na(K/2) (Fe:(e) - Fe(e))----+ N(O,Vp), 
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where, if m E Ml, Vp = { J (J K(s, z) ds )2 
dz} [Fe:(e) (1 - Fe:(e)] [1/ J((e/t)x)] , 

and if m E Jvl2, Vp = { J (J K(s, z) ds)2 
dz} [Fe:(e) (1 - Fe:(e)] [1/ J(x)]. 

The above asymptotic distribution is the same as that of the estimator 
for the conditional distribution of Y given X, which, itself, is the same as 
the asymptotic distribution of the Nadaraya-Watson estimator for the con
ditional expectation of Z = [Y :s:; y] given X. The next result concerns the 
estimator for the function m. Let int( C) denote the interior of the set C. 

Theorem 3 Suppose that Assumptions I.1-I.3 and S.1-S.4 are satisfied. Let 
b > O. Let C = {slf(s,x) ~ b}. Suppose that m(x, e) E int(C) and f(x) > 
O. If m E lvll, assume that J((e/t)x) > O. If m E M2, assume that f(x) > O. 
Then, 

(i} m(x, e) converges in probability to m(x, e), and 

(ii) ./Nai12 (m(x, e) - m(x, e)) - N (O, V-n) in distribution, 

h ·¡ Ml V: {J (J K( ) d )2 d } [ F,(e) (1-F,(e)) ] [ 1 1 ] w ere i m E ) m = s, z s z ÍYIX=x(m(x,e))2 f(x) + !((e/e)x)) 

d f M 2 V: _ {J (J K( ) d )2 d } [ F,(e) (l-F,(e)) ] [ 1 1 ] an i m E ) m - s, z s z ÍYIX=:i:(m(x,e))2 f(x) + f(x) 

The rate of convergence in (ii) is the same as that of the N adaraya-Watson 
estimator for the conditional expectation of Y given X. The kernel function 
influences the asymptotic variance of our estimator in the same way as it does 
for the Nadaraya-Watson estimator. However, while the asymptotic variance 
of the Nadaraya-Watson estimator depends on the pdf of X only through 
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the value that this attains at x. The asymptotic variance of our estimator 
depends also on the value of the pdf of X at the value of X that is used to 
estimate the value of the cdf of €ate. This is because m(x, e) is derived from 
.FYIX=((e/i)x)((e/E')a) (or .FYIX=x(e), if m E M2) and FYIX=x(m(x, e)) . Hence, 
the asymptotic variance of m(x, e) depends on the asymptotic variances of 
.FYIX=x(e) and .FYIX=x(m(x, e)) . The asymptotic variance of our estimator 
depends also on the value of the conditional pdf of Y given X = x at m( x, e). 
If m(x, •) is differentiable, ÍYIX=x(m(x, e)) = !1::(e) / l&m(x, e)/&él. Hence, 
the asymptotic variance decreases the larger is the value of the pdf of é at e 
and the "flatter" m(x,é) iswith respect to€ when €=e. 

4 Additive Separable Functions 

In sorne cases, the economic model might imply that the function m is 
the addition of two functions, of which only one of them depends on epsilon. 
Consider, for example, the case where Y is the cost of undertaking a partic
ular project. Y may be the sum of a fixed and a variable cost. If € denotes 
the unobservable price of a variable input, we may specify the model as Y 
= v1(x1) + v2(x2, é), where x1 are variables that affect the fixed cost, and 
(x2, €1) represents the vector of prices of the variable inputs.· 

When the function m is additively separable, we may identify m and 
F1:: under weaker restrictions than the ones presented in Section 2. We present 
below two sets of additive separable functions such that when m belongs to 
any of these functions , m and F1:: are identified. 

Let x E RK, E' E R, anda E R be given. Let K1, K 2 > O be such 
that K1 + K2 = K. Let , E R be also given, and denote x = (x1, x2) E 
A1 x A2 C RK1 x RK2 • We consider sets of functions of the form m'(x1, x2) = 
v~ (x1) + v~(x2, é) where v~ belongs to the set 

and v~ belongs to either Ml or Nl2. More specifically, let 

I2 = {v~: A2 X E --t Rlv'x2 E A2 v~(x2, ·) is strictly increasing}, 
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and 

Then, we define the sets 

and 

So; when v1 denotes a fixed cost and v2 denotes a variable cost, the 
function m belongs to M3b if the values of v1 and v2 are specified at one 
value. 

Note that, as it was the case with Ml and M2, ali the functions in 
M3a and M3b attain common known values on a set that is mapped into 
the real line. In M3a, ali the functions attain the same known values on 
the set {(x1 , Ax2 ) i>- E R} . In M3b, ali the functions attain the same known 
values on the set (x1 , x2 ) = (x1 , x2). This property allows us to identify the 
distribution of epsilon from the conditional cdf of Y given X. The cdf of 
epsilon can then be used to identify the function m from the conditional cdf 
of Y given X when X= x . The next result formally states the identification 
result for these types of functions. 

Theorem 4 Suppose that Assumptions I.1-I. 3 are satisfied. Then, 
{i) if m belongs to Jvf3a, (m, v1 , V2, Fe) is identified in (M3ax Vi x ½a xr), 
{ii) if m belongs to Jvf 3b, ( m, v1 , v2, Fe) is identified in ( !VI 3b x Vi x ½b x r). 

The proof, which is presented in the Appendix, provides expressions for 
Fe:, m, v1 , and v2 in terms of the conditional cdf of Y given X . When this 
conditional cdf is substituted by its kernel estimator, we obtain the estimators 
for Fe:, m , V1, and v2. When m E M3a, 
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Fe:(e) = F'y¡x=(xi,(e/e)x2) (, + ((e/E)a)), 

m(x, e) = Fy¡3(=(x1,x2) ( .F'y¡x=(:i:1,(e/e):i:2) (, + (e/E)a)), 

And, when m belongs to M3b, 

v2(x2, e) = m(x1, Xz, e) - , and for any e E E 

The asymptotic properties of the above estimators for Fe. are the same as 
those stated in Theorem 2, except that, if m E M3a, 

a:rid if m E M3b, 

Properties (i) and (ii) of Theorem 3 are satisfied by the estimators for 
m(x, e) in the additive separable case. If m E lvl3a, 

V. {J (J K( ) d )2 d } [ F,(e) (1 - F,(e}} ] [ 1 + 1 7 
m = s, Z S Z ÍYIX=:r(m(x,e))2 f(x) /(x1,(e/e)x2)J 

and if m E lvl3b, 

V. = {J (J K(s z) ds)2 dz} [ F, (e} (1-F,(e)) ] [-1 + 1 ] 
m ' ÍYIX=:r(m(x,e))2 J(x) /(x1,x2) · 
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When m E Jvl3a, the asymptotic properties of v1(x1 ) and v2 (x2 ,é) are, 
respectively, those of m(x1 ,x2, e) and m(x1 , x2 , e). The asymptotic proper
ties of v1(x1) and v2(x2, é) when m E M3b are those of m(x1, x2, e) and 
m(X1 , X2, e). 

We could exploit the additivity of m to develop estimators for v1 and 
v2 that possess better asymptotic properties t han the estimators described 
above. This is, however, beyond the scope of this paper. 

5 Simulations 

To evaluate the performance of the new estimators in small samples, we 
performed sorne simulations. We used the following designs: 

• Design I: Y = X + E, 

where X~ N(O, 1) and E~ N(O, ¼)-

• Design II: Y = X + E, 

where X~ N(O, 1) and E~ N(O, 1). 

• Design III: Y = 33')4 X 3141:1/4, 

where X~ N(O, 6) and E~ N(O, 6) . 

• Design IV: Y = !! X4 
( -é) :-3 

where X~ N(6, 1) and E~ N(-6, 1). 

The first design was chosen to evaluate how badly the estimator may 
perform, relative to the best estimator that one can use when the function 
is additively separable in é and its parametric form is known. Also, since 
the function belongs to both Ml and M2, it allows one to evaluate . the 
effect of the two normalizations. This design was estimated using the first 
normalization with x = l = 1 a = 2 and using the second normalization ' , 
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with x = O. The· second design is identical to the first, except thát the 
variance of E is faur times as large as that in the first design. The data 
simulated from this model was estimated using the second normalization 
with x = l. Design III is the cost function of a Cobb-Douglas production 
function of the farm n(x1 , x2) = x~14x~14, when X is the price of x1 and E 

is the price of x2 . This design was used with the fist normalization with x 
= l = 6 and a = 24/ (3)314 . Note that in this design, the function m is 
clase to being linear in X, but is not additive separable in E . Design IV is 
the profit function generated from a production function of the farrn p( z) = 
zª where a= .75, X is the price of the output, and -E is the price of the 
input z. We write this function in terms of -E to transfarrn it so that it is 
strictly increasing in E. Alternatively, we could have calculated the estimators 
under the restriction that m is strictly decreasing in E. This would have only 

· modified the estirnator far FE (e). Instead of deriving FE (e) from the value of 
F'y¡x=x(Y) at a particular y and x, we would have derived FE(e) from 1 -
Fy¡x=x(Y) at the sarne particular y and x. The expression far m would have 
been the same as far the strictly increasing case. We used this design with x 
= l = 6 and a = · 6 . 33 / 44 . The normat distributions, which were chosen far 
X and E in these designs, violate Assurnption S.2, but, since we are·dealing 
with a finite set of data, we could obtain the sarne results if we specified the 
distributions of X and E so that they are equal to the chosen distributions 
only on a large enough compact set. 

Far each design, we run 500 sirnulations of 500 observations each. The. 
estimators of the joint pdf and cdf of (Y, X) were obtained using a multi
plicative Gaussian kernel. The bandwidths were chosen to roughly rninimize 
the integrated squared error of fY,x : J(fY,x(y,x) - ÍY,x(y,x))2dydx. The 
following table specifies the bandwidth sizes that were used far each design: 

O"y <J'x 
Design I 0.2156 0.1850 
Design II 0.4031 0.2928 
Design III 0.0596 0.2619 
Design IV 0.2017 0.1302 

The results obtained far Design I, Norrnalization I (where m is specified 
to be in Ml) and far Design I, Norrnalization 11 (where m is specified to 

-. 
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be in M2) are presented below, together with the results obtained when the 
function m is estimated by Least Squares. The latter estimator is denoted 
by mLs- The estimators are evaluated at points where x equals the 5th, 25th, 
50th, 75th, and 95th quantile of the distribution of X. The values of é were 
chosen similarly. For each point, the tables show the bias, variance, mean 
square error, and asymptotic variance of the estimator. 

Graphs corresponding to Design I, Normalization I are presented in Pages 
DI/Nia and DI/Nib. The first graph in page DI/Nia plots m for one simu
lation. The second graph plots the true distribution Ff; (in a solid line) and 
~ for one simulation. The last two graphs plot m(· , O) and m(l, ·) (in the - -
lines) versus m(-, O) and m(l, •) (in the solid lines) . In page DI/Nib, the first 
graphs plots the average of mover the 500 simulations. The other graphs plot 
the mean (in a - •- line), and the 5th and 95th percentiles (in the · · .. lines) 
of Ít m(·, O) and m(l, ·), together with the true values of FE, m(·, O) and 
m( l , •) (in the solid lines). 

Design I / Normalization I 

(x , e) m Bias(m) Var(m) MSE(m) AVar(m) 
(-1.6449,-0.8224) -2.467280 0.035774 0.028337 0.029617 0.044973 
(-1.6449, 0.8224) -0.822427 0.078586 0.024113 0.030289 0.044973 
( 1.6449,-0.8224) 0.822427 -0.070478 0.024894 0.029861 0.044973 
( 1.6449, 0.8224) 2.467280 -0.020636 0.025500 0.025926 0.044973 
(-0.67 45,-0.3372) -1.011735 0.006765 0.004384 0.004429 0.008209 
(-0.6745, 0.3372) -0.337245 0.034004 0.007438 0.008595 0.008209 
( 0.6745,-0.3372) 0.337245 -0.036290 0.006890 0.008207 0.008209 
( 0.6745, 0.3372) 1.011735 -0.010081 0.004487 0.004589 0.008209 
( 0.0000, 0.0000) 0.000000 0.000000 0.000000 0.000000 0.006003 
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e F Bias(F) Var(F) MSE(F) AVar(F) 

-0.8224 0.05 0.020432 0.000400 0.000818 0.000509 

-0.3372 0.25 0.023079 0.001056 0.001589 0.001517 

0.0000 0.50 -0.002542 0.001332 0.001338 0.001911 

0.3372 0.75 -0.022267 0.001041 0.001537 0.001517 

0.8224 0.95 -0.019337 0.000370 0.000744 0.000509 

• 

Design I / Normalization II 

(x, e) m Bias(m) Var(m) NISE(m) AVar(m) 
(-1.6449,-0.8224) -2.467280 0.060026 0.027209 0.030812 0.041541 
(-1.6449, 0.8224) -0.822427 0.044748 0.021093 0.023095 0.041541 
( 1.6449,-0.8224) 0.822427 -0.045390 0.020585 0.022645 0.041541 
( 1.6449, 0.8224) 2.467280 -0.053573 0.024551 0.027421 0.041541 
(-0.67 45,-0.3372) -1.011735 0.015474 0.006338 0.006578 0.008003 
(-0.6745, 0.3372) -0.337245 0.018240 0.007030 .0.007363 0.008003 
( 0.6745,-0.3372) 0.337245 -0.028173 0.006022 0.006815 0.008003 
( 0.6745, 0.3372) 1.011735 -0.027071 0.006619 0.007352 0.008003 
( 0.0000, 0.0000) 0.000000 0.000000 0.000000 0.000000 0.006003 

e F Bias(F) Var(F) MSE(F) AVar(F) 
-0.8224 0.05 0.026224 0.000304 0.000991 0.000363 
-0.3372 0.25 0.027458 0.001032 0.001785 0.001433 
0.0000 0.50 -0.002542 0.001332 0.001338 0.001911 
0.3372 0.75 -0.031512 0.001093 0.002086 0.001433 
0.8224 0.95 -0.026939 0.000315 0.001041 0.000363 
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Design I / Least Squares 

(x, e) m Bias(mLs) Var(mLs) MSE(mLs) 
(-1.6449,-0.8224) -2.467280 -0.004959 0.001823 0.001848 
(-1.6449, 0.8224) -0.822427 -0.004959 0.001823 0.001848 
( 1.6449,-0.8224) 0.822427 0.004884 0.002029 0.002053 
( 1.6449, 0.8224) 2.467280 0.004884 0.002029 0.002053 
(-0.6745,-0.3372) -1.011735 -0.002056 0.000716 0.000720 
(-0.6745, 0.3372) -0.337245 -0.002056 0.000716 0.000720 
( 0.6745,-0.3372) 0.337245 -0.002056 0.000716 0.000720 
( 0.6745, 0.3372) 1.011735 0.001980 0.000801 0.000805 
( 0.0000, 0.0000) 0.000000 -0.000038 0.000522 0.000522 

In general, we do not see a big difference between the results from the 
two normalizations. This is probably because, except for the point (O, O) the 
chosen points are sufficiently away from the points at which the value of the 
function m is known. Comparison with the Least Squares (LS) estimator 
shows that the MSE of the new estimator may be up to 16 times larger than 
that of the LS estimator, specially at points where the pdf of both X and é 

is very small. For points where these pdf's are larger, the MSE of the new 
estimator is around 6 times larger than that of the LS estimator. 
· To evaluate the effect that the variance of é has on the new estimators, 
we can compare the table for Design I / Normalization II with the results of 
the table below, for which the simulated data was generated with a variance 
of é four times larger than that in Design I. We can see that this has the 
effect of increasing the variance of the estimator by, roughly, a factor of 2.5. 
Hence, the new estimator seems to be much less sensitive to the variance of é 

than the N adaraya-Watson or the LS estimator, whose asymptotic variapces 
increase linearly in the variance of é. The graphs corresponding to this design 
are presented in pages DII/NIIa and DII/NIIb . 
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Design II / N ormalization II 

(x, e) m Bias(m) Var(m) MSE(m) AVar(m) 
(-1.6449,-1.6449) -3.289707 0.134679 0.066571 0.084710 0.105033 

(-1.6449, 1.6449) 0.000000 0.111552 0.051961 0.064405 0.105033 

( 1.6449,-1.6449) 0.000000 0.119248 0.051053 0.065273 0.105033 
( 1.6449, 1.6449) -3.289707 -0.128687 0.063948 0.080509 0.105033 

(-0.6745,-0.6745) -1.348980 0.043760 0.013495 0.015410 0.020226 

(-0.6745, 0.6745) 0.000000 0.045323 0.01452i 0.016575 0.020226 
( 0.6745,-0.6745) 0.000000 -0.057992 0.012395 0.015758 0.020226 
( 0.6745, 0.6745) 1.348980 -0.056681 0.013435 0.016647 0.020226 
( 0.0000, 0.0000) 0.000000 0.000000 0.000000 0.000000 0.015174 

e F Bias(F) Var(F) MSE(F) AVar(F) 
-1.6449 0.05 0.020293 0.000195 0.000607 0.000229 
-0.6745 0.25 0.022256 0.000676 0.001172 0.000906 
0.0000 0.50 -0.001386 0.000909 0.000911 0.001207 

0.6745 0.75 -0.024429 0.000717 0.001313 0.000906 
1.6449 0.95 -0.020745 0.000194 0.000625 0.000229 

The superiority of the LS estimator gets reversed when the function m · 

is nonlinear and nonadditive in é. We present below the results for the cost 
function example (Design III) and the profit function example (Design IV), 
together with the corresponding results for the LS estimators. For Design 
III, the LS estimator, mLs, at any point (x, e) is mLs(x, e) = !Jo + !J1x + 
e - Ec, where !Jo and jJ1 are the LS estimators for the coeffi.cients of a linear 
function in X. For Design IV, we present two LS estimators for m(x, e), 

+ - - - -mLs(x, e) = ,60 + ,61x + e - Ec, and mL8(x, e) = ,60 + ,61x - ·e+ Ec. While the 
former is the obvious LS estimator for m(x, e), the latter yields a smaller bias, 
probably because the true function is strictly decreasing in e, so we present 
the results for both. The points at which the estimators were evaluated were 
the 2.5th, 27.5th, 50th, 77.5th, and 92.5th quantiles of the distribution of 
X and of the distribution of e. We did not use the same quantiles as in the 
previous designs to avoid points along the 45 degree line, where the value of 
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mis known. The graphs for these designs are presented in pages DIII/NIIa 
and DIII/NIIb for Design III, and DIV /NIIa and DIV /NIIb for design IV. 

Design III / N ormalization II 

X e m Bias(m) Var(m) MSE(m) 
4.0400 4.5605 7.307357 -0.013097 0.043489 0.043660 
4.0400 7.4395. 8.258371 0.145575 0.022846 0.044038 
7.9600 4.5605 12.152195 -0.014446 0.117609 0.117817 
7.9600 7.4395 13.733738 -0.031865 0.062351 0.063367 
5.4022 5.2446 9.409731 0.002017 0.003799 0.003804 
5.4022 6.7554 10.024494 0.045864 0.005687 0.007791 
6.5978 5.2446 10.931864 -0.014342 0.010321 0.010526 
6.5978 6.7554 11.646071 0.003830 0.003186 0.003201 
6.0000 6.0000 10.528592 0.000000 0.000000 0.000000 

e F Bias(F) Var(F) MSE(F) 
4.5605 0.025 0.029452 0.001740 0.002608 
5.2446 0.275 0.034205 0.001712 0.002882 
6.0000 0.500 0.003859 0.001769 0.001784 
6.7554 0.725 0.017013 0.001404 0.001693 
7.4395 0.975 -0.021691 0.001676 0.002146 

Design III / Least Squares 

X e m Bias(mLs) Var(mLs) MSE(mLs) 
4.0400 4.5605 7.307357 -0.863639 0.001667 0.747538 
4.0400 7.4395. 8.258371 1.064411 0.001667 1.134637 
7.9600 4.5605 12.152195 -0.529689 0.002733 0.283304 
7.9600 7.4395 13.733738 0.767830 0.002733 0.592296 
5.4022 5.2446 9.409731 -0.482230 0.000435 0.232981 
5.4022 6.7554 10.024494 0.413838 0.000435 0.171697 
6.5978 5.2446 10.931864 -0.424908 0.000761 0.181308 
6.5978 6.7554 11.646071 0.371714 0.000761 0.138932 
6.0000 6.0000 10.528592 -0.055948 0.000434 0.003564 
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Design IV / N ormalization II 

X e m Bias(m) Var(m) lvlSE(m) 
4.0400 -7.4395 0.068238 -0.021932 0.000302 0.000783 
4.0400 -4.5605 0.296235 0.030986 0.002574 0.003534 
7.9600 -7.4395 1.028328 0.009417 0.017004 0.017093 • 

7.9600 -4.5605 4.464161 -0.607415 1.013710 1.382663 
5.4022 -6.7554 0.291382 0.013688 0.000528 0.000716 
5.4022 -5.2446 0.622710 -0.005127 0.000388 0.000414 
6.5978 -6.7554 0.648267 0.001158 0.000286 0.000287 
6.5978 -5.2446 1.385404 0.096138 0.012280 0.021523 
6.0000 -6.0000 0.632813 0.000000 0.000000 0.000000 

e F Bias(F) Var(F) MSE(F) 
-7.4395 0.025 0.031442 0.000982 0.001970 
-6.7554 0.275 0.032348 0.001119 0.002165 
-6.0000 0.500 -0.006567 0.001260 0.001303 
-5.2446 0.725 -0.039862 0.001179 0.002768 
-4.5605 0.925 -0.037608 0.000990 0.002405 

Design IV / Least Squares 

X e m Bias(rri!8 ) Var(rri!8 ) MSE(rri!s) 
4.0400 -7.4395 0.068238 1.172196 0.007153 1.381196 
4.0400 -4.5605 0.296235 -1.934864 0.007153 3.750849 
7.9600 -7.4395 1.028328 2.412921 0.019719 5.841907 
7.9600 -4.5605 4.464161 -3.901975 0.019719 15.245128 
5.4022 -6.7554 0.291382 1.029735 0.000748 1.061102 
5.4022 -5.2446 0.622710 -0.812423 0.000748 0.660779 
6.5978 -6.7554 0.648267 1.344066 0.004581 1.811095 
6.5978 -5.2446 1.385404 -0.903901 0.004581 0.821618 
6.0000 -6.0000 0.632813 0.268498 0.001560 0.073651 
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X e m Bias(m-¡8 ) Var(mLs) MSE(mLs) 
4.0400 -7.4395 0.068238 -1.706867 0.007153 2.920547 

4.0400 -4.5605 0.296235 0.944199 0.007153 0.898665 

7.9600 -7.4395 1.028328 -0.466142 0.019719 0.237007 

7.9600 -4.5605 4.464161 -1.022912 0.019719 1.066068 

5.4022 -6.7554 0.291382 -0.481095 0.000748 0.232201 
5.4022 -5.2446 0.622710 0.698407 0.000748 0.488521 
6.5978 -6.7554 0.648267 -0.166764 0.004581 0.032391 
6.5978 -5.2446 1.385404 0.606929 0.004581 0.372943 
6.0000 -6.0000 0.632813 0.268498 0.001560 0.073651 

In these designs, the outperformance of the new estimator over that of 
the LS estimator is qrnte large, even at points where the values of the pdf's of 
X and e are small. For example, in Design III, at the point (x, c) = (4.0400, 
7.4395) the MSE of the LS estimator is 25 times larger than the MSE of the 
new estimator. At the point (x, e) = (6.5978, 5.2446) the ratio of the MSE's 
is around 17. The difference is more striking in Design IV, where at the point 
(x, e) = (4.0400, 7.4395) the ratio of the MSE's is around 1700, and at (x, e) 
= (5.4022, -6.7554), the ratio is around 300. 

6 Summary 

We have presented an estimator for a model in which the value of the de
pendent variable is determined by a nonparametric function that is nonaddi
tive in an unobservable exogenous variables. The unobservable variable is as
sumed to be distributed, with a.n unknown distribution, independently of the 
observable exogenous variables. Under sorne normalizations, estimators for 
both, the distribution of the unobservable random variable and the nonpara
metric function are derived and are shown to be consistent and asymptotically 
normal. Both estimators converge at the same rate as the N adaraya-Watson 
estimator of the conditional expectation of the dependent variable given the 
observed exogenous variables. When the nonparametric function is known to 
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be homogenous of degree one, or additively separable into an homogenous 
of degree one function, the only normalization needed is the specification of 
the value of the function, or functions in the additively separable case, at 
one point. The estimators were defined as nonlinear functionals of a kernel 
estimator for the distribution of the observable variables. To derive their 
asymptotic distributions, we first linearized the functionals, by calculating 
their Hadarnard-derivatives, and then applied the Delta method developed 
by Ait-Sahalia (1994). 

The results of sorne simulations indicate that the method may outperform 
estimators that require specifying a parametric structure for the function to 
be estimated, when the specified structure is incorrect. The extent of the 
outperformance·seems to depend on the degree of the misspecification. Since 
one can rarely find a pararnetric specification that would perfectly fit the 
true function, there seems to be a benefit to using the new estimators. Our 
simulation results indicate that for large data sets and values of the exogenous 
variables at which their pdf's are not too small, the increase in variance that 
is due to the weak structure may be reasonable. 

• 
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7 Appendix 

Proof of Theorem 2: Let F denote the joint cdf of (Y, X) . For any 
x in A and y in R, define the functional .6.(F) by .6.(F) = FYIX=x(y). Let 
IIHII denote the sum of the L2 norrns of all the derivatives of H up to the 
order 2K + l. Then, for any H such that H is constant outside a cornpact set 
and IIHII is sufliciently srnall, we have that, lh(x)I :S IIHII, IJ~= h(s, x)dsl :S • 
IIHII, and IJ(x) + h(x)I ~ a lf(x)I for sorne a (O < a< oo) where h(s, z) = 
()K+I H(s, z)/8s8z1 · • • OZK and h(x) = J~= h(s, x)ds. Then, 

= D.6.(F, H) + R.6.(F, H), where 

D.6.(F H) = J~00 h(s,x)ds-h(x) FYIX=x(Y) 
' f(x) ' 

,6.( ) _ [f~00 h(s,x)ds-h(x) FYJX=x(Y)] [ h(x) ] 
R F, H - f(x) f(x)+h(x) , 

and for sorne O< e< oo, 

(2) ID.6.(F, H)I :S /~) IIHII, and IR.6.(F, H)I :S f(:)2 IIHll 2
. 

Let H = 11-fr - FIi . It follows frorn (1) and (2) that IPYIX=x(Y) - FYIX=x(Y)I 

:S ¡{x) 11-fr - Fil + /(:)2 IIP - F!l2 . Under Assumptions S.1-S.4, IIP - Fil -
O in probability (see Ait-Sahalia (1994). Hence, for. any x E X and y E 

R, supyER 1-frYIX=x(Y) - FYIX=x(Y)I - O in probability. By the definition 

of .F,;, this irnplies that supeER IF,;(e) - F,:(e)I - O in probability. 

Next, by (1) and (2), .6. is L(2, 2K + 1)- Hadamard differentiable at 
F D.6.(F H) = J~00 h(s,~)ds - h(x) FYJX=x(Y) = J J [l[s:Syj-Fy¡x=x(Y)] l ( ) 

. , f(x) f(x) (s,x) S, Z 

h( s, z) ds dz, where 1[·] = 1 if [·] is correct and it equals O otherwise; l (t,x) ( s, z) 
= 1 if (t, z) = (s, x) and it equals O otherwise. It then follows by the Delta 
method of Ait-Sahalia (1994) that for any x E A and y E R, 
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./Na(K/2) (FYIX=x(Y) - FYIX=x(Y))- N(O, Vp) indistribution, where 

Vp = {J (J K(s, z)ds)2 dz} { (1/ f(x) 2
) J ( 1 [s ~ y] - FYIX=x(Y) )2 f(s, x)ds} 

= { f (J K(s, x) ds) 2 ds} ((1/ f(x) 2
)) [FYIX=x(Y) ( 1 - Fy¡x=x(Y))] . 

Substituting the appropriate values of X and Y, for which .F.,(e) = FYIX=x(Y), 
it follows that • 

./Na(K/2) (.F.,(e) - F.,(e)) --t N(O, Vp), 

where Vp = {JU K(s,z) ds)2dz} [F.,(e) (1- F.,(e))] L and where L = 
1/J((e/t)x) ifm E Ml and L = 1/f(x) ifm E M2. 

Proof of Theorem 3: Suppose first that m E NI2. Define the functional 
<I> by <I>(F) = F;¡-; (Fy¡x(e)). Then, m(x, e) = <I>(.F). If more than one value 
satisfies the definition of m(x, e), then, let m(x, e) be an arbitrary element 
within the set of all those values. 

Let H be such that H vanishes outside a compact set and IIHII ~ J(x)/2. By 
IIHII we mean the sum of the L 2 norms of ali derivatives of H up to the arder 
2K + 2. As in the proof of the previous theorem, we can show that for all x 
there exists e < oo such that 

Hence, since for all y E C, f(y, x) ~ b, there exists p > O such that if IIHII :S 
min{p, J(x)/2)}, then i(F + H)YIX=x(FYIX=x(e)) - F;/\'=x(FYIX=x(e))I < 
r¡. It follows that for all r that is between (F + H)YIX=x (FYIX=x(e)) and 

Fyl~=x (FYIX=x(e)), r must belong to C. Moreover, if IIHII :S min{p, J(x)/2, b/2}, 
IJ(x) + h(x)I ~ b/2. Hence, if IIHII :S min{p, f(x) /2, b/2}, then for all r 
that is between (F + H)YIX=x(FYIX=x(e)) and Fyl~=x(FYIX=x(e)), 
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Let then H be such that H vanishes outside a compact interval and 
IIHII ::S min{p, f(x)/2, 8/2}. Using arguments similar to those used in 
Matzkin and Newey (1993), we will obtain a first order Taylor expansion for 
<l>(F + H). For this we note that 

(2) <l>(F + H) - <l>(F) 

= (F + H);¡; ( (F + H)y¡x(e)) - Fy¡; ( Fy¡x(e)) 

= {(F+H);¡; ((F+H)y¡x(e))-(F+H);¡; (Fy¡x(e))} 

+ { (F + H);¡; (Fy¡x(e)) - Fy¡; (Fy¡x(e))} 

To obtain an expression for the difference in the first bracket of (2), we 
note that by (1) and Taylor's Theorem, 

(F + H);¡; ((F + H)y¡x(e)) - (F + H);¡; (Fy¡x(e)) 

= a(F~:);,~ (Fy¡x(e)) [(F + H)y¡x(e) - Fy¡x(e)] + Rem 

where, for sorne d (O< d < oo), Rem ::S d i(F + H)y¡x(e) - Fy¡x(e)l
2

. Hence, 

(3) (F+H);¡; ((F+H)y¡x(e))- (F+H);¡; (Fv1x(e)) 

aF-1 
= at (Fy¡x(e)) [(F+H)y¡x(e)-Fy¡x(e)] +Rem, 

[
a(F+H)- 1 ap- 1 

] + ay vi"' (Fy¡x(e)) - 8~1"' (Fy¡x(e)) [(F + H)y¡x(e) - Fy¡x(e)]. 

= [ª~y1
"' (Fy¡; (Fv1x(e)))r

1 
[(F + H)y¡x(e) - Fy¡x(e)] + Rem 

+{[ª(F~:)y¡x ((F+H)-1 (Fy¡x(e)))r
1 

- [ª~~I"' (Fy¡; (Fy¡x(e)))r
1

} 

. · [(F + H)y¡x(e) - Fy¡x(e)] 

.,A 

• 
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To obtain an expression for the difference in the second brackets of (2), 
we note that by (1) and the Mean Value Theorem, for any t E R, 

(F + H)y¡x ( (F + H);¡; (t)) - (F + H)y¡x ( Fy¡; (t)) 

= a(F~:)vl"(r*) [(F+H);¡;(t)- Fy¡;(t)] 

where r* is between (F + H);¡;(t) and F;¡;(t). Hence, since 

(F + H)y¡x ((F + H);¡; (t)) = t = Fy¡x (FY1; (t)), it follows that for any 
t E R, 

( 4) (F +H);¡;(t)-Fy¡;(t) = [ (f+h)~¡,,(r•)] · [ Fy¡x ( Fy¡; (t)) - (F + H)y¡x ( Fy¡; (t))] , 

where r* is between (F + H);¡;(t) and F;i;(t). From (4) it follows that 
for any t E R, 

(5) (F+H);¡;(t)- Fy¡;(t) = [Íy¡x(}~;(t)) ]-[Fy¡x ( Fy,; (t)) - (F + H)y¡x ( Fy,; (t))] 

+ [ (f+h)~¡x(r•) - Íy¡,.(i~;(t))] . [Fy¡x ( Fy¡; (t)) - (F + H)y¡x ( Fy¡; (t))] , 

where r* is between (F + H);¡;(t) and F;¡;(t). Hence, by (2) and (3) and by 
(5) with t = Fy¡;;(e), it follows that 

<I>(F + H) - cI>(F) 

= [ª~~I" (Fvl; (Fy¡;;(e)))r
1 

[(F + H)y¡;;(e) - Fy¡;;(e)] + Rem 

+ { [ª(F~:)v1x ( (F + H)-1 
( Fy¡;;(e))) r 1 

- [ª~~,, ( Fy¡; ( Fy¡x( e))) r 1
} 

· [(F + H)y¡;;(e) - Fy¡x(e)]. 

+ [Jy¡,,(F~;~Fy¡"i(e))) ]-[Fy¡x ( Fy¡; (Fy¡x(e))) - (F + H)y¡x (Fy¡; ( Fy¡x(e)))] 

• 
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where r* is between (F + H);¡;(Fy¡x(e)) and FY1;(Fy¡x(e)). 

Let 

(6) A(F,H) = [ª~~lz (F~; (Fy¡x(e)))r1 
· • 

{ [ (F + H )y¡x(e) - Fy¡x(e)] + [Fy¡x ( Fy¡; ( Fy¡x(e))) - (F + H)y¡x ( Fy¡; ( Fy¡x(e)))]} , 

and 

(7) D(F, H) = 

= {[ª(F~:)vlz ((F+H)-1 (Fy¡x(e)))r1 
- [ª~ylz (Fy¡; (Fy¡x(e)))r1

} 

· [(F + H)y¡x(e) - Fy¡x(e)] 

+ Rem 

wherer* is between (F+H);¡; (Fy¡x(e)) and F~; (Fy¡x(e)). Then, <P(F+H) 
- <P(F) = A(F, H) + D(F, H). Moreover, A(F, H) = B(F, H) + C(F, H) 
where 

(8) B(F, H) = [ª~~z (r) r 1
. 

~ f(x) J~""' h(s,x)ds - h(x) J~""' f(s,x)ds _ f(;) J~""' h(s,x)ds - h(x) J~""' f(s,x)ds} 
~ f(x)2 f(x)2 ' 

and where, for r = FY1; ( Fy¡x( e)) , 

(9) C(F, H) 
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= [ª~~jx (r)r
1
-[J(x)I.:ooh(s,?x)ds - h(x) f.'.'.oof(s,x)ds] [1(x)2+!(x)J(x) - !(~)2] 

- [ª~~X (r)r
1 

• [f(x) J.:oo h(s, x)ds - h(x) ¡_:00 J(s, x)ds] [1(x)2+!(x)J(x) - !(;)2], 

Let D<P(F, H) = B(F, H) and R<P(F, H) = C(F, H) + D(F, H). Then, 

(10) <P(F + H) - <P(F) = D<P(F, H) + R<P(F, H). 

Moreover, since m(x, e) E C, J(x) > O, and f (x) > O, it follows frorn (8) 
that for sorne Vi (O< Vi < oo), 

(11) ID<P(F, H)I ~ V IIHII 

and it follows frorn (9) that for sorne Vi (O < Vi < oo), 

(13) IC(F, H)I ~ Vi IIHll 2
. 

We next show that for sorne½ (O<½< oo), 

(14) ID(F, H)I ~ V3 IIHll2 

For this we note th~t, letting t = Fy¡x(e),in (4), 

(15) (F + H);¡;(Fy¡x(e)) - Fy¡;(Fy¡x(e)) 

= [ (J+h)~¡x(r•)] · [Fy¡x ( Fy¡; ( Fy¡x(e))) - (F + H)y¡x ( Fy¡; ( Fy¡x(e)))] 

where r• is between (F+H);¡;(Fy¡x(e)) and Fy¡;(Fy¡x(e)). Also, for sorne 
n such that O< n < oo, ali t1, t2 E N(m(x , e), 77) and all t between t1 and t2, 

• 

(J( ) ¡ ( )) of(t,x) a¡(t,x) 
(16)1 l __ 1_, < (l(t1,x)+J(x))nllHII+ x+ix oy + éJy it1-t2i-

(J+h)y¡x(ti) Íy¡x(t2) - f(t¡,x) 2 [J(t,x)+h(t,x)] 

This latter expression follows because 
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1 {/+h)~¡,,(t1) - Íy¡,,\t2) 1 

<j 1 __ l j+j-1 __ l 1 
- (/+h)y¡,,(t1) Íy¡,,(t1) Íy¡:i:(t1) Íy¡:i:(t2) 

8 l -

< 1 f(x)+h(x) J.Ja_l {J+h.)y¡:i:(t) 
- f(t1,x)+h(t1,x) - f(t1,x) + 8y 

where the last inequality follows by the Mean Value Theorem and t is between 
t 1 and t2, 

By (O), there exists T (O< T < oo) such that 

(17) l(F + H)y¡x(e) - Fy¡x(e)I ~ T IIHII, 

(18) IFy¡x (F;¡-; (Fy¡x(e)))-(F+H)y¡x (Fy¡; (Fy¡x(e)))I ~ T IIHII and 

(19) Rem ~ T IIHll2 

Letting t 1 = (F + H);¡; ( Fy¡x(e)) and t2 = FY1; ( Fy¡x(e)) in (16), we get 

1 [ª(F~:)* ( (F + H)-1 
( Fy¡x(e))) r 1 

- [ª~~% ( F;¡-; ( Fy¡x(e))) r 1 
j 

~ 1 f((F+H)-;~~ylz(e)),x )+f2(x) 1 n IIHII 
f((F+H\

1
,, Fy¡z(e) ,x) 

(f(x)+h(x)) 8/(t,o:) + 8/(t,o:) 

+ [f(t,x)+:(;,x)] av l(F+H);¡; (Fy¡x(e))-Fy¡; (Fy¡x(e))I 

~ 1 f((F+H);;~~ylz(e)),x)+f2(x) 1 n IIHII 
f((F+H)y¡,, Fy¡z(e) ,x) 

(f(x)+h(x)) 8/(t,x) + 8/(t,x) + 8y 8y 

[f(t,x)+h(t,x)] 

1 {/+h)~¡,,(r•) l · 1 [ Fy¡x ( Fy¡; ( Fy¡x( e))) - (F + H)y¡x ( Fy¡; ( Fy¡;;;(e)))] 1 

< 1 f((F+H);~(Fy¡z(e)),x)+f(x) 1 IIHII 
- f((F+H);1~ Fy¡z(e) ,x)2 n 

• 
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(f(x)+h(x)) 
81Á~x) + 81Á~x) 1 1 

+ [ - - ] · (/+h):¡x(r•) · T IIHII , J(t,x)+h(t,x) 

where the second inequality follows by (15), the third inequality fol
lows by (18) , and where t and r* are between (F + H);¡; ( Fy¡x{e)) and 

FY1; ( Fy¡x( e)) . Since 

1 

J((F+H);,~(Fy¡x(e)),x)+J(x) 1 (f(x)+h(x)) ~+~ J 
J((F+H)~~ ( Fy¡x(e) ),x)2 

' [J(t,x)+h(t,x)] , and 1 (f+h):¡,,(r•) 1 are 

all bounded, there exists E (O < E < oo) such that 

Letting t 1 = r* and t2 = F;¡;(Fy¡x(e)) in (16), it follows that 

1 1 

(f+h)y¡x(r•) Íy¡x F~;(F
11
¡x(e)) 

- -
(

J(r•,x)+f(x)) 11 11 (f(x)+h(x)) ~+~ < f( • )2 n H + [ _ _ ] - r ,x J(t,x)+h(t,x) 

(f( ) h( )) 8/(t.x) 8/(t,x) 
< (l(r•,x)+J(x)) IIHII x + x 8y + 8y _ Je • )2 n + [ _ _ l r ,x J(t,x)+h(t,x) 

where the second inequality follows because r* is between (F +H);¡;(Fy¡x( e)) 

and FY1; ( Fy¡x (e)), the third inequality follows by ( 15), the fourth follows 

by (18), and where t is between r* and Fy¡;(Fy¡x(e)), and r** is between 

(F + H );¡;(Fy¡x(e)) and Fy¡;(Fy¡x(e)). Since 

• 
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(f(x)+h(x)) B'&t,z) + BJ(t,z) 

( f(r· x)+f(x)) 
11 

{}y d 1 1 1 11 b d d 
!(, • )2 , [ - - ] , an (f+h) ( ••) are a aun e , 

r ,x J(t,x)+h(t,x) ,;lx r 

it fallows that far sorne Q such that O< Q < oo, 

Hence, (14) fallows from (7), (20), (17), (19), and (21). 

Let H = F - F. We have shown that 

(22) m(x, e) - m(x, e) = <P(F) - <P(F) 

= D<P(F, F- F) + R<P(F, F- F) , 

and far sorne C (O< C < oo). 

Under Assumptions S.1-S.4, jjfr - FIi - O in probability. Hence, by (22) 
and (23), it fallows that 

(24) m(x, e) - m(x, e) in probabiHty. 

Hence, the estimator of m(x, e) is consistent 

Next, by (22) and (23), <P is L(2, 2K + 2)-Hadamard differentiable. By 
(8), 

D<I?(F, H) = B(F, H) 

_ 1 J (l(s~e)-Fy¡:.(e)] ( ) ( ) 
- Íy¡.,(m(x,e)) f f(x) ls,x s, Z h s, Z ds dz-

- 1 J J [ l(s~m(x,e))-Fy¡.,(m(x,e))] l ( ) h( ) d d 
/y¡.,(m(x,e)) f(x) s,x s, Z s, Z S Z . 

• 
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Hence, by Ait-Sahalia (1994), it follows that 

JN o-Z12 (m(x, e) - m(x, e)) = JN o-Z12 ( <P(F) - <P(F)) - N(O, Vm) 

where Vm = {I J[J K(s,z)dsj2dz} [ÍYIX=:i:(m(x,e))r L and 

L = J [l(s::e) - F111~e)]2 f(s x) ds + J [l(s<m(x,e)) - Fy¡z(e)]2 f(s x) ds 
f(x) f(x) ' f(x) f(x) ' 

= tc1~)Fy¡x(e)(l - Fy¡x(e)) + ¡/x)Fy¡x(m(x, e))( l - Fy¡x(m(x , e))) 

= [!(~) + !(~)] Fé'.(e)( l - Fé'.(e)) 

Suppose next that m E Ml . By substituting x in the above argurnent 
by (e/t)x we obtain that m(x,e) is a consistent estimator of m(x,e) and 
.,/N o-Z12 (m(x, e) - m(x, e)) converges in distribution to N(O, Vm) where 

Proof of Theorem 4: As in the proof of Theorem 1, we first note that 
for all e E E and x E A, 

Suppose first that m E M3a, we get from (1), letting x1 = x1 and x2 = 
(e/t)x2, that Fé'.(e) = Fy¡x=(xi,(e/t:)x2 ) (m(x1, x2, e)) = FYIX=(x1 ,(e/t:)x2)(v1(xi) 
+ v2((e/t)x2, (e/e)e) )= FYIX=(xi,(e/t:)x2 ) (, + (e/e)a). Hence, Fe(c) is iden
tified from the conditional cdf of Y given X, when x 1 = x1 , x2 = (e/e)x2 , and 
y=,+ (e/e)a. Using this together with (1), it follows that for all (x1, x2, e), 
Fy¡x=(x1,(e/t:)x2 )(í' + (e/e)a) = FYIX=x (v1(x1) + v2(x2, e)). Letting X1 = X1 
in this last expression, we get that v2(x2,e) = F;;{~:-=(xi,x

2
)FY¡X=(x1 ,(e/t:)x2)(, 

+ (e/e)a )- 1 . Hence, v2 is identified. Letting x2 = x2 ande = e in that 

same expression, we get that v1 (xi) = Fy¡~Y=(xi,x
2

) ( Fy¡x=(x1 ,x2 ) (, + e)) -
a. Hence, v1 is identified . 

• 
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Suppose next that m E M3b. Then, letting X1 = X1 and X2 = x2, we get 
from (1) that Fe:(e) = FYIX=(x1 ,x2 ) (m(x1, x2, e))= FYIX=(x1 ,x2) (v1(x1) + v2(x2, e)) 
= FYIX=(x1,x2) (,+e) . Hence, Fe: is identified from the conditional cdf of Y 
givenX=(x1,x2),andforall(x1,x2,e), FYIX=(x1 ,x2)(, + e)=Fy1x=x(v1(xi) 
+ v2(x2, e)). Letting x1 = x1 in this last expression, we get that v2(x2, e) = 
Fyl~=(xi,x

2
/ FYIX=(x1 ,x2 )( 1 + e) - ,) . Hence, v2 is identified. Letting x2 = x2 

in that same expression, we get that, for any e, V1 (xi)= Fyl~=(xi,x
2

) (FYIX=(x1 ,x2 ) (, 

+ e)) - e. Hence, v1 is identified. : 

• 
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