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Abstrnct: This paper presents a model wherc boundedly rational agents explore 
an unknown environment using only random encounters with other individuals 
and the observation of thc most successful stratcgies in the past periocl. Agents do 
nol calculate best responses, but rather imitate, with a certain probability, the 
characteristics of the most successful players. Also, once in a while they 
experiment with some new or relatively unsuccessful slrategy. In the long run we 
find a unique stationary distribution of the states played by the agents. The resu~ts 
are applied to severa! games ancl show that perfect rationality or complete 
knowledge of the payoffmatrix are not necessary to 1:each "rational" equilibria. 
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l. Introduction 

Forman y years game lheory has moslly concenlraled on lhe sludy of agenls with an amazing 

capacily for calculaling lheir optima! slralegies. In lhe lasl few years we have wilnessed an 

increase in lhe number of models wilh boundedly ralional agenls. We will focus our attenlion on 

evolutionary game lheory, which is characterized by (l) players with limited rationality, (2) an 

explicil dynamic process that describes how players adjust their strategies through time, and (3) 

the addition of new stralegies through mutalion. 

The lirsl characlcrization or evolutionary equilibria is due lo Maynard Smilh and Price ( 1973) 

who inlroduced the concepl of evolulionary stable slrategy. Maynard Smith and Price described a 

societal gamc where individuals are randomly matched to play a symmetric lwo-person game, 

and they can only play a certain pure or mixed strategy. lf we now allow a relatively small 

population of mutants to invade the original population, then if the incumbent strategy survives 

and satisfies certain mathemalical condilions, il is an evolulionary stable strntegy. 

Foster and Young ( 1990) replaced the one-time mutation of the evolutionary stable strategy with 

a repeated mutation process which results in a stricler equilibrium concept. Kanclori, Mailalh and 

Rob ( 1993), Kandori and Rob ( 1995) ami Young ( 1993) among othcrs applicd lhis framework of 

repeatcd mutalions resulting in the concepts of long-run cquilibrium and slochaslically slable 

equilibrium, respeclively. This paper follows an approach similar to Kandori and Rob ( 1995). 
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The main contributions of this paper are: 

( 1) the replacement of the mutation rate by experimentation rates, since the concept of mutation 

and its biological interpretation are understandably rejected by many economists as not suitable 

for economic agents. 

(2) the experimentation rate is endogenous. Agents have different experimentalion rates, a 

relaxation of the assumption of inclcpendence of the mutation rate across players adopted in the 

literature. In the long run, the diverse experimentation rates converge toward a stationary 

distribution. 

(3) agents need significantly less information. Particularly, they discover better strategies tluough 

imitation and experimentation without knowing the payoff matrix. 

( 4) agents need less computational capabilities than in previous models. For example, during the 

adaptation stage each player simply compares its payoff with the highest average payoff in the 

population, instead of calculating the best response to the frequency of strategies in the 

population. 

(5) the discrete and finite state space used in the literature can be generalized to countable 

Jiscrcte state spaces or cven continuous state spaces. 

(6) the imitation/adaptation rate is endogenous. Agents have different imitation rates and, in the 

long run, evolution rcsults in them converging towarcl a stationary distribution. 

(7) a future version of this paper will (i) explicitly extend the discrete state space to ge~1eral state 

spaces, (ii) allow for a changing (ami unknown) environment, (iii) study the effect of local 

intcractions, ancl (iv) inclulie more applications of the general model lo specific games. I am also 

working in using this modcl to explain some phenomena thal appear in insurance m_arkets. 
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2. Model 

f'irst Jet me summarize the chain of events in the model so we have a map to guide us when we 

analyze thc complete, dctailed version. 

( 1) initialization: the M agents in thc population are randomly assigned 01l°e strategy of a two­

person game andan experimcntation rate. 

(2) confrontation: ali individuals are randomly matched, and each pair plays the two-person 

game with their pre-assigned strategies. 

(3) adaptation: agents imitate with probability 'lli the strategies played by the most successful 

individuals (on average) during the confrontation stage. 

(4) experimentation: agents experiment playing random strategies with probability e¡, their 

individual cxperimcntation rate. Individuals can also experimcnt using ncw imitation and 

experimentation rates. After experimentation, the players go back to the confrontation stage. 

Thc first part of the moclel was built on Kandori, Mailath an~ Rob's (KMR from now on) model, 

but there are severa( crucial differences thal I will point out along the way. For simplicity I start 

considering a symmetric two-pcrson gamc with II stratcgics, but we can cxtcnd thc modcl toan 

asymmetric N-player game with a continuum of strategies (or more general spaces) without 

affecting the main resulls. The fact that we can consider games with a continuum of strntcgies is 

the first cleparture from KMR's model, since they only consider discrete stratcgies. This will 
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3. Equilibrium 

· If the Markov chain were characterized only by the strategies and the adaptation part of the 

dynamic process, then the initial configuration would determine where the system would settle or 

cycle. However, experimentation introduces a positive probability of reaching any final state 

from any initial state. The system is irreducible and aperiodic since we have limited the imitation 

and experimentation rates to be strictly positive, and the theory of Markov chains allows us to 

conclude that there is a unique, globally stable and ergodic stationary distribution (see definition 

1 an<l proposition l ). 

Definition 1: µ E Li121 is a stationary distribution if µP = µ, where L\121 is the IZI - 1 dimensional 

simplex and IZI = n/2 is the number of elements in the state space. 

Proposition 1: 2 

( 1) uniqucncss: there exists a unique stationary distribution ~L. 

(2) global stability: for any initial <listribution q , the distribution converges to µ . 

(3) c1·godicity: µ represcnts the long-run proportion of time spent in each state. 

2Kandori ami Rob ( 1995) use the assumption of finitcness of the state space and cite Hoel, Port and Stone 
( 1972) to obtain thesc results. However, we can obtain the same results using more general state spaces. For 

' cxamplc, discrctc spaccs do not necd to be linitc (scc Romanovsky, 1970). lfwc use continuous strategics and/or 
cxpcrimcntation ratcs (ami cvcn ir wc use a combi11atio11 of discrcte ancl continuous strategics), we can model thc 
Markov chain as a positive Harris recurrent chain and gel uniqueness, global stability and ergodicity (see Meyn and 
Tweedie, 1993). 
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KMR use a small mutation ralc e -• O to obtain a unique limit distribution. Note that the lower the 

mutation rate, the longer the time the system will take to reach the long-run equilibria. That is 

' why KMR argue that their analysis is most relevant for a small population, though Ellison ( 1993) 

has shown that local interaction, in which each agent is allowed to interact only with its 

neighbors, reduces the amount of time necessary to achieve equilibrium. 

In our model the experimentation rates can be significantly larger than KMR's mutation rate and 

the imitation process depends only on the highest average payoff achieved by the players during 

the confrontation stage- and not on the frequency of individuals in the population· playing each 

strategy-, so these two factors accelerate the convergence of the strategies to the long..,nm Nash 

equilibrium. Thus, even a large population can reach the strategy portion of the long-run 

equilibrium reasonably fast , though the imitation and experimentation rates will take a longer 

time before they converge to their fina l endogenous valuc. 

In the following section I present results for some specific games. 
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4. Applications 

I have analyzed a number of two-person symmetric games with different characteristics to test 

the results of the societal game described in this paper. 

4.1 Pnrc coordination gamcs 

Kandori, Mailath and Rob ( 1993) apply their model to pure coordination games- Kandori and 

Rob ( 1995) also study supermodular games-so it seems natural to start by analyzing numerical 

results for the following two-strategy pure coordination game.3 

Sl S2 

Sl 1 o 
S2 o 2 

Table l 

Two-strategy pure coordination games have two pure-strategy Nash equilibria. Both KMR's. 

agents ami our imitating-experimenting individuals under the complete-imitation rule mostly 

play the stratcgy that results in the Pareto optimal equilibrium (S2 in table 1). Figure l shows the 

stationary distribution of strategies under the complete-imitation rule, while figure 2 shows the 

3'f11e matrix shows thc payoffs to player 1 (the row playcr). Sincc the game is symmetric we do not need to 
show the payoffs to player 2 . 
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same distribution unde r the s trategy-illlitation rul e. As you can see. thc s tratcgy-i111itation rule 

<loes not result in thc se lectio n of a pure-strategy Nash cquilibriulll due to thc lack ora link 

between payoff ancl illlilation-expe rimentation. as explnined in scction 2. 

The same observation applics to thc cxpcri111cntatio11 a1HI illlitation ratcs. l lndc r lhc complete-

imital io n rule the experimental io n ratc o í thosc agcnls playing the highcst-average-payoff 

slralegy converges lo ils lowest stric tly pos iti ve lilllil ( figure 3) whilc hi g her Ílllilation mies are 

rewarded (figure 4) clue lo the nalmc of the payoffs in a pme coordinalion game. bul differenl 

results are observccl undcr thc s lralcgy-imita tion rule ( ligmcs 5 ami 6). In this case. the stationary 

distributions or thc i111itation ami cx perimcntalion ralcs s impl y reflcct whal happcns when you 

ranclomly a lter the imita tion all(I cxpcrimenla lion rates ovcr a long pcriod oí time ami. in facl, 

under the strategy-imitalion rule the sallle stationary clis lribulions are ohlained far a li the games 

stuclied in this seclion. T hese observalions show that lhe s trntcgy-imitation rule, though simplcr 

than the complele-imitation rule, y ie lds s talionary distributions not onl y far from theoretical 

predictions far perfecll y rntional players, but also far fro m experimental rcsults. Thus. in the rcsl 

of lhis seclio n we wi ll rcs tricl our allention to indi vidual s who copy lhe who lc organizalional 

struclure- the triple (strategy, imitatio n ratc, experimental io n rate)- üf lhc agcnts playing the 

stralegies with the hi ghcsl average payo ff<;. 

í-igure 7 sh?ws an typical cxarnple orliow fost thc popula tion converges lo playing rnostly 

s lralegy 2 under the co.mple te-i mitation rule. ll is interesting to nolicc that we do nol need 
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hundreds o r tho wrn nd s or pcri ods lo gel e lose lo thc s la tio nary distributio n or thc s lra tegies. cven 

lhough lhe populatio n s i/.c in this partic ular si111ulatin11 is quite larg1.: (tvl -, 500 indi viduals).'1 

4.2 CoonJination gamcs 

.; 

T wo-strategy non-pure coordi11ati o 11 games ( for cxnrnplc. see Table 2) ha ve two pure-slrategy 

Nas h equilibria, and lhe agenls choose the risk dominan! one- in this case. S2-S2- undcr the 

complete-imilation rule ( fi gure 8). 1\gain the populalion quic kly converges lo the equilibrium 

dis lribution ( figure 9). 

S I S2 

S l 50 49 

S2 o 60 

Table 2 

Even thoug h this is a eoordination game, hig h imitalion rnles a re pu11ishcd- 11ot rcwnrded- nlte r 

lhe risk do minnnt equilihrium is foun<l . O nce in a w hilc expcrimc11tntion and random malc hing 

w ill result in two agents pl nying S2 agains l each o lher for a payo ff or 60. highc r than the ri sk 

dominant payoff. Indiv idua ls w ith high imita tion mies will quie kly switch to S2, but they will 

soon find out that w h,e never lhey meet someone playing S 1 thcy gel a payoff o f zero and they 

hav.e lo imita te o ne o f the age11ls thal continued playi 11g S 1. S ince m ost or the a gents w ho <lid 110 1 

switch lo S2 had low imilalio n ratcs. cvcryo11c w ill evc11lt1nlly cnd up with a low imilalion rntc 

4Thc sofiwarc used to calculate thc stationary distrihut ions ami all rnns are availablc upon request. 
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(fi gure 10). The samc rnt ionalc applics to thc cxpcrimentation rntc: iryou hnvc a high 

cxpcrimcnlali on ralc ami switch to S2. vcry soon yo11 will havc lo copy lhc org:mizational 

struclurc of those who rcmaincd playi ng SI ami you will also gel a low cxpcri111c11latio11 rate 

(figure 11 ). 

4.3 Prisoncr's dilcmma 

As in thc prisoncr's dilc111111a wilh pcrfccll y ralio11al agcnls ami known payolf 111alrix. 111osl o l' lhc 

individuals choose to de fccl (stralcgy 2) givcn lhc presenl societal gamc ( fi g ure 12). This 

behavior is cxpcctcd lo chnngc whcn wc add lhc possibilily o r local intcracl ion to thc 

model- some coopcrntion should follow. 

Sl S2 

SI 50 20 

S2 60 27 

Table 3 

4.4 Hawk-dovc gamcs 

The ,population of agcnts rcaches a proporlion closc to that prcdiclcd by thc cvolutionary sta ble 

strategy with k.nown payoff matrix and replicator dynamics. For the gamc shown in table 4. 83% 

of the agents should be playing slrategy 2 (dove). Compare that to 80.3% playing dove in our 
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model (figure 13) wilhoul knowlcdgc of thc payoff nrntrix and withoul using thc replicalor 

dynamics, a too l inheritcd fro111 evolutionary bio logy. 

SI S2 

S I -5 2 

S2 o 1 

Table 4 

5. Conclusions 

This paper climinalcs lhc system-wide mulation prevalen! in the litcrnture by reinterpreling 

mutation as experimentalion- an cxplanalion much more palatablc for cconomic agents who are 

learning whilc thcy intcracl wilh other playcrs in an unknown cnvironmcnt than thc cxplanation 

used in biology. This modcl also a llows agents to cxperimenl ami imitalc with differenl 

probabilitics, and lcls the experimenlalion and imitalion rates evolve to endogenous values 

instead of imposing thcm exogenously. 

Note thal undcr thc complctc-i111itatio11 rule thc cxpcrimcnlntion rnlc converges lo ils lowcsl 

strictly posilivc va luc allowecl in al i gamcs analyzcd. This f'nct suggesls that K!VIR ·s assumplion 

of a small syslem-wide mulalion ralc going lo zcro is rcasonable lor two-pcrson symmctric 

17 
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games, bul I believe we will find a quite differenl stalionary clistribution or experimenlation rates 

in asymmetrie games with only mi xccl strnlegy equilibria. such as !he matehing pennies game. 

This pape r also providcs some insighl 011 whal is neccssary ami what is nol cnough to obtain 

equilibria similar to !hose obtaincd with pcrrcctly rntional agcnts who know the payolT matrix. 

Imitating the observcd stralcgics or thc most succcsslitl playcrs is nol cnough: wc nccd to copy 

their whole organizational structure in order to gel reasonable results. 

Future improvemenls in this paper will inclucle: 

(l) the explicil exlension of the theoretical framcwork to more genera l s tale spaccs, 

(2) the analysis of the effeet of a changing environment on the equilibria and the out-of­

equilibrium path for both strategies all(I experimentation rntes, 

(3) local interaction; 

(4) costs of imitation and experimental ion, ami 

(5) more applicalions. including asymmetric gamcs. 1 am currcnlly working on 111otlc ls orthc 

insurance industry (earthquake. life. and auto insurance). 
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Pure Coordination game 
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Pure Coordination game 
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Pure Coordination: experimentation rate stationary distribution 
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Pure Coordination: imitation rate stationary distribution 
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Pure Coordination: experimentation rate stationary distribution 
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Pure Coordination: imitation rate stationary distribution 
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Pure coordination game 
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Coordination: imitation rate stationary distribution 
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Coordination: experimentation rate stationary distribution 
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Prisoner's dilemma 
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Hawk-Dove game 
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