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Abstract: This paper presents a model where boundedly rational agents explore
an unknown environment using only random encounters with other individuals
and the observation of the most successful strategies in the past period. Agents do
not calculate best responses, but rather imitate, with a certain probability, the
characteristics of the most successful players. Also, once in a while they
experiment with some new or relatively unsuccessful strategy. In the long run we
find a unique stationary distribution of the states played by the agents. The results
are applied to several games and show that perfect rationality or complete
knowledge of the payoff matrix are not necessary to reach “rational” equilibria.
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1. Introduction

For many years game theory has mostly concentrated on the study of agents with an amazing
capacity for calculating their optimal strategies. In the last few years we have witnessed an
increase in the number of models with boundedly rational agents. We will focus our attention on
evolutionary game theory, which is characterized by (1) players with limited rationality, (2) an
explicit dynamic process that describes how players adjust their strategies through time, and (3)

the addition of new strategies through mutation.

The first characterization of evolutionary equilibria is due to Maynard Smith and Price (1973)
who introduced the concept of evolutionary stable strategy. Maynard Smith and Price described a
societal game where individuals are randomly matched to play a symmetric two-person game,
and they can only play a certain pure or mixed strategy. If we now allow a relatively small
population of mutants to invade the original population, then if the incumbent strategy survives

and satisfies certain mathematical conditions, it is an evolutionary stable strategy.

Foster and Young (1990) replaced the one-time mutation of the evolutionary stable strategy with
a repeated mutation process which results in a stricter equilibrium concept. Kandori, Mailath and
Rob (1993), Kandori and Rob (1995) and Young (1993) among others applied this framework of
repeated mutations resulting in the concepts of long-run equilibrium and stochastically stable

equilibrium, respectively. This paper follows an approach similar to Kandori and Rob (1995).



‘The main contributions of this paper are:

(1) the replacement of the mutation rate by experimentation rates, since the concept of mutation
and its biological interpretation are understandably rejected by many economists as not suitable
for economic agents.

(2) the experimentation rate is endogenous. Agents have different experimentation rates, a
relaxation of the assumption of independence of the mutation rate across players adopted in the
literature. In the long run, the diverse experimentation rates converge toward a stationary
distribution.

(3) agents need significantly less information. Particularly, they discover better strategies through
imitation and experimentation without knowing the payoff matrix.

(4) agents need less computational capabilities than in previous models. For example, during the
adaptation stage each player simply compares its payoff with the highest average payoff in the
population, instead of calculating the best response to the frequency of strategies in the
population.

(5) the discrete and finite state space used in the literature can be generalized to countable
discrete state spaces or even continuous state spaces.

(6) the imitation/adaptation rate is endogenous. Agents have different imitation rates and, in the
long run, evolution results in them converging toward a stationary distribution.

(7) a future version of this paper will (i) explicitly extend the di;screte state space to general state
spaces, (ii) allow for a changing (and unknown) environment, (iii) study the effect of local
interactions, and (iv) include more applications of the general model to specific games. I am also
working in using this model to explain some phenomena that appear in insurance markets.
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2. Model

First let me summarize the chain of events in the model so we have a map to guide us when we
analyze the complete, detailed version. |

(1) initialization: the M agents in the population are randomly assigned one strategy of a two-
person game and an experimentation rate.

(2) confrontation: all individuals are randomly matched, and each pair plays the two-person
game with their pre-assigned strategies.

(3) adaptation: agents imitate with probability 1, the strategies played by the most successful
individuals (on average) during the confrontation stage.

(4) experimentation: agents experiment playing random strategies with probability e, their
individual experimentation rate. Individuals can also experiment using new imitation and

experimentation rates. After experimentation, the players go back to the confrontation stage.

The first part of the model was built on Kandori, Mailath and Rob’s (KMR from now on) model,
but there are several crucial differences that I will point out along the way. For simplicity I start
considering a symmetric two-person game with z strategics, but we can extend the model to an
asymmetric N-player game with a continuum of strategies (or more general spaces) without
affecting the main results. The fact that we can consider games with a continuum of strategies is

the first departure from KMR’s model, since they only consider discrete strategies. This will



3. Equilibrium

[f the Markov chain were characterized only by the strategies and the adaptation pért of the
dynamic process, then the initial configuration would determine where the system would settle or
cycle. However, experimentation introduces a positive probability of reaching any final state
from any initial state. The system is irreducible and aperiodic since we have limited the imitation
and experimentation rates to be strictly positive, and the theory of Markov chains allows us to
conclude that there is a unique, globally stable and ergodic stationary distribution (see definition

| and proposition ).

Definition 1: p € A is a stationary distribution if pP = p, where A is the |Z| - 1 dimensional

simplex and |Z| = nl? is the number of elements in the state space.

Proposition 1:?
(1) uniqueness: there exists a unique stationary distribution ji.
(2) global st'abilily: for any initial distribution ¢, the distribution converges 1o .

(3) ergodicity: p represents the long-run proportion of time spent in each state.

2Kandori and Rob (1995) use the assumption of finiteness of the state space and cite Hoel, Port and Stone
(1972) to obtain these results. However, we can obtain the same results using more general state spaces. For
| example, discrete spaces do not need to be finite (sce Romanovsky, 1970). If we use continuous strategies and/or
experimentation rates (and even if' we use a combination of discrete and continuous strategies), we can model the
Markov chain as a positive Harris recurrent chain and get uniqueness, global stability and ergodicity (see Meyn and
Tweedie, 1993).
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KMR use a small mutation rate € ~ 0 (o obtain a unique limit distribution. Note that the lower the
mutation rate, the longer the time the system will take to reach the long-run equilibria. That is
why KMR argue that their analysis is most relevant for a small population, though Ellison (1993)
has shown that local interaction, in which each agent is allowed to interact only with its

neighbors, reduces the amount of time necessary to achieve equilibrium.

In our model the experimentation rates can be significantly larger than KMR’s mutation rate and
the imitation process depends only on the highest average payoff achieved by the players during
the confrontation stage—and not on the frequency of individuals in the population playing each
strategy—, so these two factors accelerate the convergence .of the strategies to the long-run Nash
equilibrium. Thus, even a large population can reach the strategy portion of the long-run
equilibrium reasonably fast, though the imitation and experimentation rates will take a longer

time before they converge to their final endogenous value.

In the following section I present results for some specific games.
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4. Applications

[ have analyzed a number of two-person symmetric games with different characteristics to test

the results of the societal game described in this paper.

4.1 Pure coordination games

Kandori, Mailath and Rob (1993) apply their model to pure coordination games—Kandori and
Rob (1995) also study supermodular games—so it seems natural to start by analyzing numerical

results for the following two-strategy pure coordination game.’

S1 | S2
S1 |1 0
S2 |0 2

Table 1

Two-strategy pure coordination games have two pure-strategy Nash equilibria. Both KMR’s.
agents and our imitating-experimenting individuals under the complete-imitation rule mostly
play the strategy that results in the Pareto optimal equilibrium (S2 in table 1). Figure 1 shows the

stationary distribution of strategies under the complete-imitation rule, while figure 2 shows the

*The matrix shows the payoffs to player | (the row player). Since the game is symmetric we do not need to
show the payoffs to player 2.

13



same distribution under the strategy-imitation rule. As you can see. the strategy-imitation rule
does not result in the selection ol a pure-strategy Nash equilibrium due to the lack ol a link

between payolT and imitation-experimentation. as explained in section 2.

The same observation applics to the experimentation and imitation rates. Under the complete-
imitation rule the experimentation rate of those agents playﬂxg the highest-average-payoff
strategy converges lo its lowest strictly positive limit (figure 3) while higher imitation rates are
rewarded (figure 4) due to the nature of the payoffs in a pure coordination game, but different
results are observed under the strategy-imitation rule (ligures 5 and 6). In this case. the stationary
distributions of the imitation and experimentation rates simply reflect what happens when you
randomly alter the imitation and experimentation rates over a long period of time and. in fact,
under the strategy-imitation rule the same stationary distributions are obtained for all the games
studied in this section. These observations show that the strategy-imitation rule, though simpler
than the complete-imitation rule, yields stationary distributions not only far from theoretical
predictions for perfectly rational players, but also far from experimental results. Thus. in the rest
of this section we will restrict our attention to individuals who copy the whole organizational

structure—the triple (strategy, imitation rate, experimentation rate)—of the agents playing the

strategies with the highest average payolfs.

Figure 7 shows an typical example ol how fast the population converges to playing mostly

strategy 2 under the complete-imitation rule. It is interesting to notice that we do not need



hundreds or thousands of periods to get close to the stationary distribution ol the strategies. even

though the population size in this particular simulation is quite large (M = 500 individuals).'

4.2 Coordination games

Two-strategy non-pure coordination games (for example. see Table 2) have two pure-strategy
Nash equilibria, and the agents choose the risk dominant one—in this case, S2-S2—under the
complete-imitation rule (figure 8). Again the population quickly converges to the equilibrium

distribution (figure 9).

81 |52

S1 [ 50 |49

S2 |10 60
Table 2

altler

Even though this is a coordination game, high imitation rates are punished-—not rewarded
the risk dominant equilibrium is found. Once in a while experimentation and random matching
will result in two agents playing S2 against each other for a payolf of 60, higher than the risk
dominant payoff. Individuals with high imitation rates will quickly switch to S2, but they will
soon find out that whenever they meet someone playing S1 they get a payolf of zero and they
have to imitate one of the agents that continued playing S1. Since most ol the agents who did not

switch to S2 had low imitation rates, everyone will eventually end up with a low imitation rate

“The software used to calculate the stationary distributions and all runs are available upon request.
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(figure 10). The same rationale applies to the experimentation rate: if you have a high
experimentation rate and switch to S2, very soon you will have to copy the organizational
structure of those who remained playing S1 and you will also get a low experimentation rate

(figure 11).

4.3 Prisoner’s dilemma

As in the prisoner’s dilemma with perlectly rational agents and known payolT matrix, most of the
individuals choose to defect (strategy 2) given the present societal game (figure 12). This
behavior is expected to change when we add the possibility of local interaction to the

model—some cooperation should follow,

S1 |82

SI |50 |20

S2 |60 |27
Table 3

4.4 Hawlk-dove games

The population of agents reaches a proportion close to that predicted by the evolutionary stable
strategy with known payoff matrix and replicator dynamics. For the game shown in table 4, 83%

of the agents should be playing strategy 2 (dove). Compare that to 80.3% playing dove in our
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model (figure 13) without knowledge of the payolf matrix and without using the replicator

dynamics, a tool inherited (rom evolutionary biology.

s1 | s2
st |5 |2
s2 |0 |1 )

Table 4

5. Conclusions

This paper eliminates the system-wide mutation prevalent in the literature by reinterpreting
mutation as experimentation—an explanation much more palatable for economic agents who are
learning while they interact with other players in an unknown cnvironment than the explanation
used in biology. This model also allows agents to experiment and imitate with different
probabilities, and lets the experimentation and imitation rates evolve to endogenous values

instead of imposing them exogenously.

Note that under the complete-imitation rule the experimentation rate converges o its lowest

strictly positive value allowed in all games analyzed. This fact suggests that KMR’s assumption

of a small system-wide mutation rate going (o zero is reasonable for two-person symmetric
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games, but [ believe we will find a quite different stationary distribution of experimentation rates

in asymmetric games with only mixed strategy equilibria, such as the matching pennies game.

This paper also provides some insight on what is necessary and what is not enough to obtain
equilibria similar to those obtained with perfectly rational agents who know the payolT matrix.

Imitating the observed strategies ol the most successlul players is not enough: we need to copy

their whole organizational structure in order to get reasonable results.

Future improvements in this paper will include:

(1) the explicit extension of the theoretical framework to more general state spaces,

(2) the analysis of the effect of a changing environment on the equilibria and the out-of-
equilibrium path for both strategies and experimentation rates,

(3) local interaction;

(4) costs of imitation and experimentation, and

(5) more applications, including asymmetric games. | am currently working on models of the

insurance industry (earthquake, life, and auto insurance).
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Pure Coordination: experimentation rate stationary distribution
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Pure Coordination: imitation rate stationary distribution
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Pure Coordination: experimentation rate stationary distribution
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Pure Coordination: imitation rate stationary distribution
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Pure coordination game
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Coordination game
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Coordination: imitation rate stationary distribution
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Prisoner's dilemma
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Hawk-Dove game
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