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Abstract. We conducted a laboratory experiment to test the comparative statics 

predictions of a new approach to collective action games based on the method of 

stability sets. We find robust support for the main theoretical predictions. As we 

increase the payoff of a successful collective action (accruing to all players and only to 

those that contribute) the share of cooperators increases. The experiment also suggests 

new avenues to refine the theory. We find that as the payoff of a successful collective 

action increases, subjects tend to upgrade their prior beliefs on the expected share of 

cooperators. Although this does not qualitative affect comparative static predictions, 

using the reported distribution of beliefs rather than an ad hoc uniform distribution 

reduces the gap between theoretical predictions and observed outcomes. This finding 

also allows as to decompose the mechanism that leads to more cooperation in a ‘belief 

effect’ and a ‘range of cooperation effect’. 
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1. Introduction 

The rational-choice theory of collective action comprises two main paradigms. Olson’s 

model regards collective action as a prisoners’ dilemma with only one equilibrium 

(Olson, 1965), while Schelling’s model conceives it as a tipping game with multiple 

equilibria (Schelling, 1978). Medina (2007) develops a unifying framework that covers 

both paradigms and produces novel comparative statics predictions about the effects of 

the parameters of the game on the probability of a successful collective action. In this 

paper we use a simple laboratory experiment to test some of these implications. 

The unifying framework relies on the notion of stability sets to deal with multiple 

equilibria. The method of stability sets originally proposed by Harsanyi and Selten 

(1988) and further developed and applied to collective action problems by Medina 

(2007) is a very useful theoretical tool to study large games of collective action with 

multiple equilibria. The crucial advantage of the stability sets method is that it provides 

an assessment of the likelihood of different equilibria as a function of the payoffs of the 

game and the distribution of prior beliefs. Thus, the method generates clear predictions 

on the comparative statics of the probability of a successful collective action with 

respect to any variable that affects the payoffs of the collective action game. The focus of 

this paper is to test these comparative statics predictions using a controlled randomized 

laboratory experiment. In particular, we concentrate on testing a key theoretical 

prediction of the new framework. The probability of a successful collective action should 

increase with the benefit accrued to all players involved, including those who do not 

contribute if the collective action is successful, as well as with the extra benefit obtained 

by those who contribute. 

In order to test these predictions we conducted a laboratory experiment at Universidad 

de San Andrés and Universidad Nacional de La Plata, in the province of Buenos Aires, 

Argentina. We recruited undergraduate and graduate students from any field of study 

and regardless of their knowledge of game theory and economics. We conducted 16 

sessions (7 in Universidad de San Andrés and 9 in Universidad Nacional de La Plata) 

with 20 subjects each, totaling 320 participants. In each round of each session, subjects 

were randomly allocated into groups of 10 and asked to play a simple game. At the 

beginning each subject has one point and must decide to invest it or not. The probability 

that the investment is successful depends on the share of subjects that contribute their 
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point. If the investment is successful all players obtain ܤ points and those that 

contributed obtains ݏ extra points. Depending on the values of ܤ and ݏ, the game 

has one Nash equilibrium in which nobody contribute, or three Nash equilibria, one in 

which nobody contributes, another in which all contribute and a third one in which each 

player contributes with positive probability (the same for all players). We consider 4 

possible treatments. Treatment 1 is the baseline free rider Olsonian model with one 

Nash equilibrium in which nobody contributes. In treatments 2 to 4 we gradually 

increase ܤ and/or ݏ inducing multiple equilibria. Furthermore, the probability of a 

successful collective action predicted by the stability sets method is 0 in treatment 1 and 

increases to 0.25, 0.50, and 0.75, in treatments 2, 3, and 4, respectively (assuming initial 

beliefs on the expected share of cooperators are uniformly distributed). 

In general we find robust support for the main theoretical predictions of the stability 

sets method applied to collective action. As ܤ and/or ݏ are increased the share of 

cooperators and, hence, the probability of a successful collective action increases. 

Analogous results are obtained for the payoffs. The effects are statistically significant 

whether or not we include controls for individual characteristics, level of understanding 

of the game measure by the performance in a quiz before playing the rounds, fixed 

effects by session, if subjects are asked to report their prior beliefs on the expected share 

of cooperators, whether in the previous round the collective action was successful, and 

the number of players in the same group that decided to invest in the previous round. 

We also find that on average there is more cooperation than predicted by the theory 

when theoretical predictions are obtained under different assumptions on the 

distribution of expected cooperators. As a benchmark, we first assume that subjects’ 

prior beliefs on the share of cooperators has a uniform distribution on [0,1] for all 

treatments. This can be considered a Laplacian assumption when no information on 

prior beliefs is available. Second, in some randomly selected sessions, before subjects 

start playing, we asked them to report their prior beliefs on the share of cooperators in 

each treatment. We find that subjects’ prior beliefs are not uniformly distributed and 

vary among treatments. Specifically, as the benefit of cooperation increases, subjects 

upgrade their assessments on the expected share of cooperators. Using reported prior 

beliefs to compute the theoretical prediction on the probability of a successful collective 
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action reduces the gap between the model predictions and observed behavior. Still, in 

the data there is more cooperation than expected. 

Finally, taking into account that prior beliefs vary among treatments, we decompose the 

total effect on the probability of a successful collective action in two analytically 

different effects. In particular, as the benefit of cooperation increases, subjects upgrade 

their assessments on the expected share of cooperators. We illustrate how to compute 

the change in the probability of a successful collective action attributed to belief 

upgrading (belief effect) and to an increase in the range of prior beliefs that induce 

cooperation (range of cooperation effect). 

There are two branches of experimental literature connected with this work. First, there 

exists a vast literature on laboratory and field experiments with voluntary contribution 

games, public goods games and common pool resource games. Second, many 

experiments have been conducted employing games with multiple equilibria. 

Experiments with Public Good Games. Many laboratory experiments have been 

conducted with static public good games with only one Nash equilibrium.2 Most of these 

studies have found levels of cooperation that are significantly above theoretical 

prediction. Several mechanisms have been proposed to explain this phenomenon 

(kindness, altruism, conditional cooperation, reciprocity, repetition, etc.3). Although we 

also find more cooperation than predicted by the theory in most of our treatments and, 

in particular, in treatment 1 which only has one Nash equilibrium, the focus of our work 

is on testing the comparative static predictions of the stability set methods in the context 

of multiple equilibria. Closer to our work are the experiments with static threshold public 

good games4. In contrast to standard public good games, threshold public good games 

have many efficient equilibria, resulting in a coordination problem.5 The collective 

action game we consider in this paper can have multiple equilibria, but never multiple 

efficient equilibria. More importantly, to the best of our knowledge, the predictions 

                                                   
2 See among others Marwell and Ames (1981), Isaac, Walker, and Williams (1994), Andreoni (1995), 
Ostrom, (1998), Cherry et al (2005), Hichri (2005), Sefton , Shupp, and Walker (2007), and Baker, 
Williams and Walker (2009).  
3 See for example Andreoni (1990), Anderson, Goeree and Holt (1998), and Fischbacher, Gätcher and 
Feehr (2001).  
4 An extensive number of studies using variations of the design of public good experiments have been 
synthesized in Davis and Holt (1993), Ledyard (1995), Offerman (1997) and Chaudhuri (2011). 
5 See among others, Cadsby and Maynes (1998), Saunders (2010), and Banerjee et al. (2011). 
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provided by the stability sets method has never been tested in the context of a threshold 

public good game.6  

Multiple equilibria and selection. There is also a large literature on experiments with 

multiple equilibria games and equilibrium selection.7 Most of this literature has been 

focused on testing different equilibrium selection criteria and learning rules. In some 

sense we adopt and test a different approach to multiple equilibria. Instead of focusing 

on identifying different criteria for equilibrium selection we use the stability sets 

method to obtain theoretical predictions on the probability of occurrence of each of the 

Nash equilibrium of the collective action game.8  

The rest of the paper is organized as follows: Section 2 presents the theoretical 

framework. Section 3 describes the laboratory experiment. Section 4 shows that subjects 

understood the game they were playing and that the randomization was balanced. 

Section 5 presents descriptive statistics for the main variables. Section 6 contains the 

main results of the paper. Section 7 shows a decomposing of a change in the predicted 

share of cooperators in a ‘belief effect’ that captures the change in prior beliefs and a 

‘range of cooperation effect’ that captures the change in the range of prior beliefs that 

induced cooperation. Finally, Section 8 concludes. 

 

2. Theoretical Framework 

In this section we present a collective action model based on Medina (2007). Then, we 

adapt the model for use in a laboratory experiment. We focus on the comparative static 

results of the model under two different assumptions on the distribution of prior beliefs 

                                                   
6 Not only laboratory, but also field experiments with collective action games have been conducted. See, 
for example, Schmitt (2000), Cardenas (2003), and Barr et al. (2012). However, none of them have tested 
the comparative statics predictions derived from the stability set method. 
7 See among others Van Huyck et al. (1990) for coordination games; Van Huyck et al. (1991) for average 
opinion games; Battalio et al. (2001) and Golman and Page (2010) for stag-hunt games; Cason et al. 
(2004), Neugebauer et al. (2008) and Oprea et al. (2011) for hawk-dove games; and Haruvy and Stahl 
(2000) for symmetric normal-form games with multiple Nash equilibria. There is also a large literature on 
tests of equilibrium selection theories in multiple equilibrium games with repeated interactions. See, for 
example, Van Huyck et al. (1990, 1991) and Iwasaki et al. (2003).  
8 Golman and Page (2010) use a related approach, to compare cultural learning versus belief-based 
learning. They consider a class of generalized stag-hunt games, in which agents can choose from among 
multiple potentially cooperative actions or can take a secure, self-interested action. Though the set of 
stable equilibria is identical under the two learning rules, the basins of attraction for the efficient 
equilibria are much larger for cultural learning. Moreover, as the stakes grow arbitrarily large, cultural 
learning always locates an efficient equilibrium while belief-based learning never does. 
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on the expected share of cooperators. First, we assume that the distribution of prior 

beliefs is fixed for the whole set of parameters of the collective action game. Second, we 

relax this assumption and we assume that a change in parameters that increases the set 

of beliefs that induce cooperation leads to a new distribution of prior beliefs that first 

order stochastically dominates the old one. 

 

2.1. A Collective Action Model (based on Medina 2007). Consider a set of players 

ࡺ > 2. For each player the set of pure strategies is ࢏࡭ = ࢏࡯ where ,{࢏ࡰ,࢏࡯} = ૚	 and 

࢏ࡰ = ૙	 mean cooperate and defect, respectively. Let ࢏ࢇ indicates a generic element of 

 ,(࢏࡭)∆ indicates a generic element of ࢏ࢻ and (࢏࡭)∆ The set of mixed strategies is .࢏࡭

where ࢏ࢻ = (࢏࡯)	ܚ۾  and (૚ − (࢏ࢻ = (࢏ࡰ)	ܚ۾ . Let ࡭ ୀ૚࢏×=
ࡺ ࢏࡭  and ࢇ  indicates a 

generic element of ࡭. There are two possible outcomes: either the collective action is a 

success or it is a failure, indicated by ࡿ and ࡲ respectively. The probability that the 

collective action is successful is a function ࡳ of the proportion of players that 

cooperate. Formally (ࡿ)ܚ۾ = ൯(ࢇ)ࢽ൫ࡳ , where (ࢇ)ࢽ	 = ૚
ࡺ

࢏ࢇ:࢏}# = {࢏࡯ . Logically, 

ܚ۾ (ࡲ)	 = ૚ − ࡳ .(ࡿ)	ܚ۾  is assumed continuous, monotonically increasing (as the 

proportion of cooperators increases the probability of success also increases) and 

(૙)ࡳ = ૙. The payoff of each player ࢛࢏ only depends on her action and the outcome of 

the collective action. Thus, ࢛࢏ can be fully described with just four numbers: ࢛(ࡿ,࢏࡯)࢏ 

(the payoff when i cooperates and the collective action is successful), ࢛(ࡲ,࢏࡯)࢏ (the 

payoff when i cooperates and the collective action does not prosper), ࢛࢏ࡰ)࢏,  the) (ࡿ

payoff when i defects and the collective actions is successful), and ࢛(ࡲ,࢏ࡰ)࢏	(the payoff 

when i defects and the collective action does not prosper). Moreover, we will assume 

that for all ࢏  it is always the case that ܖܑܕ	࢏࢛} ,࢏ࡰ)࢏࢛,(ࡿ,࢏࡯) {(ࡿ > (ࡲ,࢏ࡰ)࢏࢛ >

 	.(ࡲ,࢏࡯)࢏࢛

Medina (2007) studies this game when ܰ → ∞, i.e., he focuses on a large game of 

collective action. We briefly summarize his results when all players have identical payoff 

functions. Any correlated equilibrium of a large game of collective action can be 

represented by an aggregate share	ߛఓ . Define ܹ = ௨೔(஽೔,ி)ି௨೔(஼೔,ி)
௨೔(஽೔,ி)ି௨೔(஼೔,ி)ା௨೔(஼೔,ௌ)ି௨೔(஽೔,ௌ)

. If 

ܹ > 1, then there exists a unique equilibrium where nobody cooperates ൫ߛఓ = 0൯. 

However, if 0 < ܹ < 1, the large game of collective action has three correlated 
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equilibria. One equilibrium in which all players cooperate (ߛఓ = 1), another in which 

nobody cooperates (ߛఓ = 0) and a third one with an intermediate level of cooperation 

given by ܩ(ߛఓ) = ܹ. In order to deal with multiplicity of equilibria, Medina (2007) 

extends the notion of stability sets originated in Harsanyi and Selten (1988). He uses a 

methodology known as the tracing procedure to assign to each equilibrium a set of 

initial belief conditions, which can be represented as a share of expected cooperators 

 ఎ assigned to it. Theߛ ఎ. Then, the stability set of an equilibrium is defined as the setߛ

key result states that ߛఎ < ܹ belongs to the stability set of ߛఓ = 0, while ߛఎ > ܹ 

belongs to the stability set of ߛఓ = 1. As Medina (2007) emphasizes, the threshold value 

of ߛఎ  that separates the stability set of ߛఓ = 0 from the one of ߛఓ = 1	is associated 

with the mixed strategy equilibrium implicitly given by ܩ(ߛఓ) = ܹ. In order to see this 

more clearly, assume that (ߛ)ܩ = ఓߛ Then, the stability set of .ߛ = 0 is the set of all 

share of expected cooperators lower than the mixed strategy equilibrium share of 

cooperators ߛఓ = ܹ, while the stability set of ߛఓ = 1 is the set of all share of expected 

cooperators higher than the mixed strategy equilibrium share of cooperators ߛఓ = ܹ. 

Finally, Medina (2007) shows how to use stability sets to compute the probability of 

cooperation. In order to do so, assume that the initial belief conditions ߛఎ is distributed 

with the CDF H. Then: 

 Pr	(ߛఓ = 1) = Pr 	൫ߛఎ > ܹ൯ = 1 − Pr 	൫ߛఎ < ܹ൯ = 1 −   (ܹ)ܪ

This expression is very useful to deduce comparative static results. In particular note 

that as ܹ increases the probability of cooperation decreases. To illustrate the results 

we have just summarized consider the following examples. 

Olson’s Model (Single Nash Equilibrium for N Large): The standard Olson’s public 

good model of collective action is a special case of the above model when the payoffs are 

given by: 

(ܵ,௜ܥ)௜ݑ  = ܤ − ܿ, ௜ܦ)௜ݑ	 ,ܵ) = ,ܤ (ܨ,௜ܥ)௜ݑ	 = −ܿ, (ܨ,௜ܦ)௜ݑ	 = 0 (1) 

where c >0. For this model ܹ = ∞. Hence, when ܰ → ∞, the unique equilibrium is 

ఓߛ = 0. More intuitively, in a large group (ܰ → ∞) there is a free rider problem (it is a 
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dominant strategy for every player to defeat) that impedes the members of the group to 

advance their common interests. 

Schelling’s Model (Multiple Nash Equilibria for N Large): Consider a simple 

modification of Olson’s model. 

(ܵ,௜ܥ)௜ݑ  = ܤ − ܿ + ,ݏ ௜ܦ)௜ݑ	 ,ܵ) = ,ܤ ௜ܥ)௜ݑ	 (ܨ, = −ܿ, ௜ܦ)௜ݑ	 (ܨ, = 0 (2) 

where ݏ > ܿ > 0. For this model ܹ = ௖
௦

< 1. Hence, when ܰ → ∞, there are three 

Nash equilibria ߛఓ = ఓߛ ,0 = 1, and ߛఓ  such that ܩ(ߛఓ) = ௖
௦
. The stability set of 

ఓߛ = 0 is {ߛఎ: 0 ≤ ఎߛ < ܹ}, while the stability set of ߛఓ = 1 is {ߛఎ:ܹ < ఎߛ ≤ 1}. More 

intuitively, introducing an extra payoff ݏ > ܿ obtained only by those who cooperate 

when the collective action is successful, transforms Olson’s game into a coordination 

game with multiple equilibria. If everybody defeat, the best strategy is to defeat, but if 

everybody cooperates, the best strategy is to cooperate. Moreover, there is a threshold 

in the share of expected cooperators (ܹ = ௖
௦
) such that players cooperate if and only if 

they expect more cooperators than this threshold. Finally, if the expected share of 

cooperators ߛఎ  is distributed with the cumulative distribution function H we have: 

 Pr൫ߛఓ = 1൯ = 1 − ܪ ቀ	
ܿ
  ቁ	ݏ

Hence, as ܿ decreases and/or ݏ increases the probability of cooperation increases. 

Thus, for Schelling’s model the method of stability sets predicts as ܿ decreases and/or 

 .increases, it is more likely that players coordinate in the efficient equilibrium ݏ

2.2. Laboratory Adaptation. In order to test the predictions derived by Medina (2007) 

using a laboratory experiment we need to make some adjustments to the model in the 

previous section. The most important change is that we must consider the case when N 

is finite. This implies that we need to compute a threshold for the number of players 

such that the game with finite N has the same set of equilibria as the large game. To do 

so, we focus on simple cases. In particular, we will assume (ࢽ)ࡳ =  and study the ࢽ

Olson and Schelling models. 

We begin by defining a Nash equilibrium of the game of collective action when N is finite. 

Let ܵ(݇) = ൛ܽ:∑ ௝ܽ = ݇௝ ൟ and ܵ(݇, ݅) = ൛ܽିଵ:∑ ௝ܽ = ݇௝ஷ௜ ൟ. ܵ(݇) is the set of pure 

strategy profiles in which ݇ players cooperate, while ܵ(݇, ݅) is the set of pure strategy 
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profiles of all players except i in which k players cooperate. Given a strategy profile 

ߙ = ௜ߙ)  ௜), we can compute the probability that ݇ players cooperate given thatିߙ,

player i does not cooperate. It is given by ܲ(݇, ݅) = ∑ ∏ ௝ߙ
௔ೕ(1 − ௌ(௞,௜)	ఢ	௝)ଵିఈೕ௝ஷ௜௔ష೔ߙ .  

Therefore, the payoff of player i associated with the strategy profile ߙ = ௜ߙ)  ௜) isିߙ,

given by: 

 
௜ܷ(ߙ௜ (௜ିߙ, = ௜ߙ ෍ ൤൫ݑ௜(ܥ௜ ,ܵ) − ௜ܥ)௜ݑ ܩ൯(ܨ, ൬

݇ + 1
ܰ ൰

ேିଵ

௞ୀ଴

+ ௜ܥ)௜ݑ ൨(ܨ, ܲ(݇, ݅) 

+	(1 − (௜ିߙ ෍൤൫ݑ௜(ܦ௜ ,ܵ) ௜ܦ)௜ݑ− ܩ൯(ܨ, ൬
݇
ܰ൰ + ൨(ܨ,௜ܦ)௜ݑ

ேିଵ

௞ୀ଴

ܲ(݇, ݅)	 

 

 

Definition 1 A Nash equilibrium of the collective action game with N finite is a strategy 
profile α such that for each i one of the following conditions holds: 

 ௜ܷ(1,ିߙ௜) ≥ ௜ܷ(0,ିߙ௜)	ܽ݊݀		ߙ௜ = 1 

௜ܷ(1,ିߙ௜) ≤ ௜ܷ(0,ିߙ௜)	ܽ݊݀		ߙ௜ = 0 

௜ܷ(1,ିߙ௜) = ௜ܷ(0,ିߙ௜)	ܽ݊݀		ߙ௜ ∈ (0,1) 

 

 

The following proposition characterizes the set of Nash equilibria for the Olson and 

Schelling collective action games when N is finite and (ߛ)ܩ =  .ߛ

 

Proposition 1 Suppose that N is finite and (ߛ)ܩ =  :Then .ߛ

1. Olson’s Model: Assume that ݑ௜ is given by (1). Then, if ܰ < ஻
௖

, the unique Nash 

equilibrium i s ܥ௜  for all i, while if ܰ > ஻
௖

, the unique Nash equilibrium is ܦ௜ for all i. 

2. Schelling’s Model: Assume that ݑ௜ is given by (2). Then, if ܰ < ஻ା௦
௖

, then ܥ௜  for all i is 

the unique Nash equilibrium, while if ܰ > ஻ା௦
௖

, there are three Nash equilibria: ܥ௜   for all 

i, ܦ௜ 		for all i, and ߙ௜ = ොߙ = ௖ேି஻ି௦
௦(ேିଵ)

  for all i. Moreover, in the third Nash equilibrium the 

expected share of cooperators is ણ ቂ௞
ே
ቃ = ොߙ . 
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Proof: See Online Appendix 1. ■ 

Summing up, when ܰ > ஻
௖

 the unique Nash equilibrium of Olson’s model with N finite 

is ܦ௜ 		for all i, which coincides with the equilibrium of the Olson’s model when N→∞. 

Similarly, when ܰ > ஻ା௦
௖

, the set of Nash equilibria of the Schelling’s model with N finite 

is: ܥ௜  for all i, ܦ௜ for all i, and ߙ௜ = ොߙ = ௖ேି஻ି௦
௦(ேିଵ)

 for all i, which is analogous to the set 

of Nash equilibria of the Schelling’s model when ܰ → ∞. Note in particular that 

limே→ஶߙො = ௖
௦
, the share of cooperators in the mixed strategy equilibrium in the large 

game. 

Suppose that as in the large game of collective action we use the mixed strategy 

equilibrium of the Schelling’s model with N finite to compute the probability of 

occurrence of the two pure strategy equilibria. In particular, assume that the share of 

expected cooperators ߛఎ  is distributed according to the cumulative distribution 

function ܪ. Then: 

 Pr ௜ܥ)	 	for	all	݅	) = 1 −   (ොߙ)ܪ

Changes in ࢻෝ. The probability of cooperation increases with B and s and decreases with 

c. Formally: 

 ߲ Pr 	(݅	all	for	௜ܥ)	
ܤ߲ = (ොߙ)′ܪ−

ොߙ߲
ܤ߲ > 0 

  
߲ Pr 	(݅	all	for	௜ܥ)	

ݏ߲ = (ොߙ)′ܪ−
ොߙ߲
ݏ߲ > 0 

 
߲ Pr 	(݅	all	for	௜ܥ)	

߲ܿ = (ොߙ)′ܪ−
ොߙ߲
߲ܿ < 0 

 

 
because డఈෝ

డ஻
< 0, డఈෝ

డ௦
< 0, and డఈෝ

డ௖
> 0. For example if H is the uniform distribution we 

have Pr ௜ܥ)	 	for	all	݅	) = (௦ି௖)	ேା஻
௦	(ேିଵ)

 and, henceడ ୔୰ 	(஼೔	୤୭୰	ୟ୪୪	௜)	
డ஻

= ଵ
௦(ேିଵ)

> 0, డ୔୰ 	(஼೔	୤୭୰	ୟ୪୪	௜)	
డ௦

=

(ேିଵ)௖ேା஻
[௦(ேିଵ)]మ

> 0 and డ ୔୰ 	(஼೔	୤୭୰	ୟ୪୪	௜)	
డ௖

= ିே
௦(ேିଵ)

< 0. Intuitively, as B and/or s increases or c 

decreases, the threshold in the share of expected cooperators that makes players 

indifferent between cooperating and defeating decreases. Cooperation becomes more 

attractive and, hence, players require a lower share of expected cooperators in order to 
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cooperate. Thus, given the distribution of the share of expected cooperators, the 

probability of cooperation increases. 

 

Changes in ࡴ induced by changes in ࢻෝ. Suppose that ࡴ is not independent of ࢻෝ. 

In particular, assume that we have a family of distributions indexed by ࢻෝ. We write 

 ෝ൯ to indicate the probability that the expected share of cooperators is less thanࢻ,ࣁࢽ൫ࡴ

or equal ࣁࢽ when ࢏ࢻ = ෝࢻ = ࢙ି࡮ିࡺࢉ
(૚ିࡺ)࢙

	 for all ࢏ is the mixed strategy Nash equilibrium 

of the collective action game. Furthermore, assume that ࡴ൫ࢻ,ࣁࢽෝᇱ൯ ≤  ෝ൯ for allࢻ,ࣁࢽ൫ࡴ

ࣁࢽ  whenever ࢻෝᇱ < .)ࡴ ,.ෝ, i.eࢻ .)ࡴ ෝᇱ) first order stochastically dominatesࢻ,  ෝ) whenࢻ,

 :ෝ. Then, we haveࢻ ෝᇱ is lower thanࢻ

 ߲ Pr 	(݅	all	for	௜ܥ)	
ܤ߲ = ෝ,ߙ)ଵܪ]− (ොߙ + ෝ,ߙ)ଶܪ [(ොߙ

ොߙ߲
ܤ߲ > 0 

 
߲ Pr 	(݅	all	for	௜ܥ)	

ݏ߲ = ෝ,ߙ)ଵܪ]− (ොߙ + ෝ,ߙ)ଶܪ [(ොߙ
ොߙ߲
ݏ߲ > 0 

߲ Pr 	(݅	all	for	௜ܥ)	
߲ܿ = ෝ,ߙ)ଵܪ]− (ොߙ + ෝ,ߙ)ଶܪ ෝ,ߙ )]

ොߙ߲
߲ܿ < 0 

 

 

ଶܪ  ,is the partial derivative with respect to the first (second) argument (ଶܪ) ଵܪ > 0 

because ܪ(. ොߙ, ᇱ)  first order stochastically dominates ܪ(. , (ොߙ  whenever ߙොᇱ < ොߙ , 
డఈෝ
డ஻

< 0, డఈෝ
డ௦

< 0, and డఈෝ
డ௖

> 0. Note that if ܪ(. , ොߙ ᇱ) first order stochastically dominates 

.)ܪ , (ොߙ  whenever ߙොᇱ < ොߙ , then the dependence of ܪ  on ߙො  magnifies all the 

comparative statics derivatives, without affecting their signs. Intuitively, as B and/or s 

increases or c decreases, the probability of cooperation increases for two reasons. First, 

the threshold in the share of expected cooperators that makes players indifferent 

between cooperating and defeating decreases. Second, initial beliefs on the expected 

share of cooperators are updated in the sense that the new distribution gives at least as 

high a probability of an initial belief at least ࣁࢽ as does the old distribution. 

 

3. The Laboratory Experiment 

In this section we describe our laboratory experiment. First, we provide a general 

description of the experiment, including its monetary payoffs, number of sessions and 

rounds, matching procedure, and the instructions received by the subjects. Second, we 
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give a detailed description of the game subjects played. Finally, we summarize the 

treatments and compute the corresponding theoretical predicted outcomes. 

 

3.1. General Description of the Experiment. The experiment was conducted between 

May and October 2014 at Universidad de San Andrés and Universidad Nacional de La 

Plata, located in the province of Buenos Aires, Argentina. We recruited undergraduate 

and graduate students from any field of study and regardless of how familiar they were 

with game theory and economic theory. We conducted 16 sessions with 20 subjects 

each, totaling 320 participants. Subjects were allowed to participate in only one session. 

Every session included four treatments, which avoids any selection problem among 

treatments. In each treatment, subjects were asked to play a collective action game. The 

experiment was programmed and conducted using z-Tree software (Fischbacher, 2007). 

Each session lasted approximately 50 minutes. The experiment proceeded as follows: 

1. Allocation to Computer Terminals. Before each session began subjects were 

randomly assigned to computer terminals. 

2. Instructions. After subjects were at their terminals, they received the instructions, 

which were also explained by the organizers. Subjects then had time to read the 

instructions on their own and ask questions. Online Appendix 2.1 and 2.2 contain an 

English translation from Spanish of the script we employed for instructions and the 

printed version, respectively. This was the last opportunity that subjects had to ask 

questions. 

3. Prior Beliefs. At the beginning of the session, in randomly selected sessions, subjects 

were asked to report their assessments on how the game would develop.9 In particular, 

for each treatment, we asked each subject how many subjects from a group of 10 would 

contribute their point. This allowed us to obtain an empirical distribution of individual’s 

prior beliefs on the expected share of cooperators for each treatment. The questions we 

asked can be found in Online Appendix 2.3. 

4. Quiz. In order to check whether participants understood the rules of the game, we 

asked them to take a five-question quiz. The quiz was administered after we had given 

the instructions, but before the rounds began. Subjects were paid approximately US$ 
                                                   
9 For each session, all participants were asked to report their prior beliefs with probability 1/2. Thus, on 
average in half of the sessions subjects reported their prior beliefs.  
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0.25 per correct answer, but we never informed them which ones they had correctly 

answered. The quiz questions can be found in Online Appendix 2.4. 

5. Rounds. After subjects had finished the quiz, they began playing rounds, during 

which they interacted solely through a computer network using z-Tree software. 

Subjects played 16 rounds of the collective action game. The first 4 rounds were for 

practice, and the last 12 rounds were for pay. At the end of each round, subjects received 

a summary of the decisions taken by both themselves and their partners, including 

payoffs per round, their own accumulated payoffs for paid rounds, and nature’s decision. 

Online Appendix 2.5 contains a sample of the screens that subjects visualized. 

6. Matching. In odd rounds 10 players were randomly matched and play treatment 1 

( ଵܶ) and the other 10 players play treatment 3 ( ଷܶ). In even rounds 10 players were 

randomly matched and played treatment 2 ( ଶܶ) and the other 10 players played 

treatment 1 ( ସܶ). See below for a detailed explanation of the treatments. 

7. Questionnaire. Finally, just before leaving the laboratory, all the subjects were asked 

to complete a questionnaire, which was designed to enable us to test the balance across 

experimental groups and to control for their characteristics in the econometric analysis. 

Online Appendix 2.6 contains the questionnaire. 

8. Payments. All subjects were paid privately, in cash. After the experiment was 

completed, a password appeared on each subject’s screen. The subjects then had to 

present this password to the person who was running the experiment in order to receive 

their payoffs. Subjects earned, on average, US$ 11.80, which included a US$ 2 show-up 

fee, US$ 0.25 per correct answer on the quiz, and US$ 0.25 for each point they received 

during the paid rounds of the experiment. All payments were made in Argentine 

currency; at the time, US$ 1 was equivalent to AR$ 8.10 

3.2. Treatments and Predicted Outcomes. Once they finished the quiz, subjects 

directed their attention to their computers and proceeded to play the first round of the 

session. In each round subjects were randomly assigned to one of two groups, each 

consisting of 10 participants. At the beginning of the round they received one point and 

then they decided whether to keep it for them or invest it in a common fund. The 

                                                   
10 Since Argentina’s rate of inflation was very high, we adjusted the conversion rate in order to maintain 
the purchasing power of the payments constant. Specifically, from May to July the conversion rate was 2 
pesos per point, while from August to October it was 2.4 pesos per point. 
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probability that the investment in the common fund is successful equals the share of 

subjects that contribute their point in the group of 10. If the investment was successful 

all players obtained ࡮ points and those that contributed obtained ࢙ extra points. 

The experiment consisted of four different treatments. The first treatment represents a 

scenario of no cooperation opportunities (࡮ = ૚.૛૞ and ࢙ = ૙); in other words, this is 

the free rider Olsonian model with one Nash equilibrium in which nobody contributes. 

In treatment 2 to 4 we gradually increase ࡮ and/or ࢙ inducing multiple equilibria. 

Specifically, the second treatment represents a scenario of low cooperation 

opportunities (࡮ = ૚.૛૞ and ࢙ = ૚.૛૞); the third treatment a scenario of high (but 

not full) cooperation opportunities (࡮ = ૜ and ࢙ = ૚.૛૞); and the forth, a scenario 

where the incentives to cooperate are the highest (࡮ = ૜ and ࢙ = ૚.ૠ૞). 

Table 1 summarizes the relevant parameters of each treatment and indicates the 

predicted share of contributors and the predicted profit if there are 10 players in each 

group and assuming that prior beliefs are uniformly distributed in the interval [૙,૚૙]. 

Table 1: Treatments and Predicted Share of Cooperators with a Uniform Prior 

Treatment N B C S 

Predicted Share  
of Cooperators  

(Priors Uniformly 
Distributed) 

Pr  (	݅	all	for	௜ܥ)	

Predicted Payoff (Priors 
Uniformly Distributed) 

 (1) (2) (3) (4) (5) (6) 

ଵܶ  10 1.25 1 0.00 0.000 1.000 

ଶܶ  10 1.25 1 1.25 0.333 1.500 

ଷܶ  10 3.00 1 1.25 0.490 2.625 

ସܶ 10 3.00 1 1.75 0.667 3.500 

 

4. Understanding of the Game and Randomization Balance 

In this section we show that subjects understood the game and the randomization was 

balanced. Table 2 shows that on average subjects understood the rules of the game. 

Indeed, 81% of them correctly answered question 1, 96% question 2, 80% question 3, 

and 90% question 4. It seems that subjects found that question 5 was more complicated 

and only 71% of them correctly answered it. 

Table 3 shows the randomization balance across treatments. Note that the same group 

of 20 subjects were randomly matched to play ଵܶ and ଷܶ in odd rounds and ଶܶ and 

ସܶ  in even rounds. Thus, we check whether subjects with some particular 
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characteristics were more frequently allocated to some treatment. In the comparisons 

among the four treatments, all characteristics and levels of understanding of the game 

were perfectly balanced between ଵܶ and ଶܶ and between ଷܶ and ସܶ. In some of the 

other cases, there is a slight imbalance in graduate studies and nationality, mostly at a 

5% significance level. Nevertheless, it was only in less than 10% of the tests that we 

rejected the null hypothesis at the 10% and 5% levels of statistical significance. 

Moreover, the imbalance in nationality and graduate students is probably due to the fact 

that there were very few foreigners (96.8% of the subjects were Argentines) and very 

few graduates in the sample (93.46% of the subjects were undergraduate). 

 

Table 2: Balance across Treatments (I) 

  All Subjects T1 T2 T3 T4 

  

Number 
of 

Subjects Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d. 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Characteristics of Subjects                       
Age 320 21.76 3.34 21.62 3.27 21.78 3.36 21.91 3.41 21.74 3.32 
Nationality (Argentine=1) 320 0.95 0.21 0.95 0.22 0.96 0.19 0.96 0.20 0.94 0.23 
Studied Game Theory (=1) 320 0.47 0.50 0.45 0.50 0.47 0.50 0.50 0.50 0.48 0.50 
Gender (male=1) 320 0.51 0.50 0.51 0.50 0.51 0.50 0.51 0.50 0.51 0.50 
Graduate Studies (=1) 320 0.06 0.23 0.05 0.21 0.07 0.25 0.07 0.25 0.04 0.20 
Spanish Language (=1) 320 0.97 0.16 0.97 0.16 0.98 0.14 0.98 0.15 0.97 0.17 
                        

                        
Understanding of the Experiment                     

Answered correctly: question 1 320 0.81 0.39 0.82 0.39 0.82 0.39 0.80 0.40 0.80 0.40 
Answered correctly: question 2 320 0.95 0.22 0.95 0.22 0.95 0.22 0.95 0.22 0.95 0.22 
Answered correctly: question 3 320 0.78 0.42 0.77 0.42 0.77 0.42 0.78 0.41 0.78 0.41 
Answered correctly: question 4 320 0.89 0.31 0.89 0.31 0.88 0.32 0.89 0.31 0.90 0.30 
Answered correctly: question 5 320 0.70 0.46 0.71 0.46 0.71 0.46 0.69 0.46 0.70 0.46 

Note: Mean is the sample mean and S.d. is the standard deviation for the corresponding variable in each line. Entries in columns 

(1)-(3) indicate the values for the complete sample, in columns (4)-(5) for the subjects that played treatment 1, in columns 

(6)-(7) for those that played treatment 2, in columns (8)-(9) for those that played treatment 3, and in columns (10)-(11) for 

those that played treatment 4.  

 

 
 

 
 



16 
 

Table 3: Balance across Treatments (II)  

    ଵܶ/ ଶܶ ଵܶ/ ଷܶ ଵܶ/ ସܶ ଶܶ/ ଷܶ ଶܶ/ ସܶ ଷܶ/ ସܶ 
     (1)  (2)  (3)  (4)  (5)  (6) 

Characteristics of Subjects               
Age   -0.164 -0.287* -0.123 -0.123 0.041 0.164 
Nationality (Argentine=1)   -0.017* -0.012 0.004 0.005 0.021** 0.016* 
Studied Game Theory (=1)   -0.021 -0.054** -0.033 -0.033 -0.012 0.021 
Gender (male=1)   0.004 0.003 -0.001 -0.001 -0.005 -0.004 
Graduate Studies (=1)   -0.023** -0.021** 0.002 0.002 0.025** 0.023** 

Spanish Language (=1)   -0.007 -0.006 0.001 0.001 0.008 0.007 
                

Understanding of the Experiment      
Answered correctly: question 1   0.001 0.017 0.016 0.016 0.015 -0.001 
Answered correctly: question 2   0.002 0.002 0.000 0.000 -0.002 -0.002 
Answered correctly: question 3   -0.002 -0.014 -0.012 -0.012 -0.010 0.002 
Answered correctly: question 4   0.008 0.002 -0.005 -0.006 -0.013 -0.007 
Answered correctly: question 5   0.002 0.014 0.012 0.012 0.010 -0.002 

Note: Each entry indicates the mean difference between the two treatments in the column for the corresponding variable 

in each line. * indicates that the difference of means test is significant at 10%; ** significant at 5%; *** significant at 1%. 

 

5. Descriptive Analysis 

In this section we first present descriptive statistics of the decisions taken by the 

subjects (share of cooperators and payoffs by treatment). Then, we study the 

distribution of the initial beliefs on the share of expected cooperators subjects reported. 

Finally, we show that the average share of cooperators and average payoffs do no differ 

in the sessions in which subjects were asked to report their initial beliefs from those in 

which they were not.  

 

5.1. Cooperation Decision. Table 4 shows descriptive statistics for the share of 

cooperators for all subjects (first panel), the subset of subjects who were asked to report 

their prior beliefs (second panel), and the subset of subjects who were not required to 

report their prior beliefs (third panel). For each treatment Table 4 indicates the total 

number of observations, sample mean and standard deviation for the share of 

cooperators, computed as the proportion of players out of the 10 participants who 

decided to invest their point in each round, treatment and session. In order to facilitate 

comparisons with theoretical predictions we also report the model prediction for the 

share of cooperators assuming that expected share of cooperators is uniformly 
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distributed and the model prediction for the share of cooperators when the empirical 

distribution for the expected share of cooperators is employed. As predicted by the 

model, the average share of cooperators increases from ௝ܶ to ௝ܶାଵ for ݆ = 1,2,3. 

However, for all treatments it exceeds the one predicted by the model either when 

priors beliefs are assumed uniformly distributed or when the empirically distribution of 

prior beliefs is employed. Note, however, that in the former the gap between the 

observed average share of cooperators and theoretical predictions significantly 

decreases for ଶܶ, ଷܶ, and ସܶ (by definition the distribution of prior beliefs does not 

affect theoretical predictions for ଵܶ). 

Table 4: Share of Cooperators (Descriptive Statistics) 

  

Number of 
Observations 

Model 
Prediction 

(Prior Beliefs 
Uniformly 

Distributed) 

Model 
Prediction 

(Prior Beliefs 
Empirically 
Distributed) 

Mean S.d. 

All Subjects           
ଵܶ  96 0.000 0.000 0.072 0.085 

ଶܶ  96 0.333 0.340 0.590 0.238 

ଷܶ  96 0.490 0.599 0.811 0.181 
ସܶ 96 0.667 0.910 0.927 0.103 

Subjects who  
Reported Priors       
ଵܶ  48 0.000 0.000 0.058 0.084 

ଶܶ  48 0.333 0.340 0.604 0.273 

ଷܶ  48 0.490 0.599 0.806 0.184 
ସܶ 48 0.667 0.910 0.925 0.101 

Subjects who Did  
Not Report Priors 

  
    

ଵܶ  48 0.000 0.000 0.085 0.084 

ଶܶ  48 0.333 0.340 0.575 0.197 

ଷܶ  48 0.490 0.599 0.817 0.179 
ସܶ 48 0.667 0.910 0.929 0.104 

Notes: For each treatment there are 6 observations per session of the share of cooperators. Because we 
conducted 16 sessions, the total number of observation per treatment is 96. 

 

5.2. Payoffs. Table 5 shows the sample mean and standard deviation of payoffs per 

treatment. As predicted by the model, the payoff is on average higher in ௝ܶାଵ than in ௝ܶ 

for ݆ = 1,2,3 (4.327 points in		 ସܶ, 3.294 points in ଷܶ, 1.710 points in ଶܶ and 1.019 

points in ଵܶ), but in all treatments the average payoff exceeds the one predicted by the 

model when prior beliefs are assumed to be uniformly distributed. Specifically, in ଵܶ all 
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players earned, on average, 1.9% more than what the model predicted, in ଶܶ 14% 

more, in ଷܶ 25.5% more, and in	 ସܶ 23.9% more. The average payoff is very close to 

theoretical predictions when the empirical distribution of prior beliefs is employed. 

Specifically, in ଵܶ all players earned, on average, 1.9% more than what the model 

predicted, in ଶܶ 13.3% more, in ଷܶ 12% more and in	 ସܶ 1.9% less than predicted by 

the model.  

Table 5: Payoffs (Descriptive Statistics)  

 
Number of 

Observations 

Model 
Prediction 

(Prior Beliefs 
Uniformly 

Distributed) 

Model 
Prediction 

(Prior Beliefs 
Empirically 
Distributed) 

Mean S.d. 

All Subjects      
ଵܶ  960 1.000 1.000 1.019 0.396 

ଶܶ  960 1.500 1.509 1.710 0.966 

ଷܶ  960 2.625 2.948 3.294 1.663 

ସܶ 960 3.500 4.414 4.327 1.266 
Subjects who 
Reported Priors    
ଵܶ  480 1.000 1.000 1.046 0.401 

ଶܶ 480 1.500 1.509 1.888 0.879 

ଷܶ  480 2.625 2.948 3.342 1.625 

ସܶ 480 3.500 4.414 4.426 1.095 
Subjects who Did 
Not Report Priors    
ଵܶ  480 1.000 1.000 0.993 0.390 

ଶܶ 480 1.500 1.509 1.532 1.017 

ଷܶ  480 2.625 2.948 3.246 1.701 

ସܶ 480 3.500 4.414 4.228 1.410 
Notes: For the payoffs in each treatment there are 60 observations per session. Because we conducted 
16 sessions, the total number of observation per treatment is 960.  

 

5.3. Prior Beliefs. For each treatment Table 6 show descriptive statistics for the prior 

beliefs on the expected share of cooperators reported by the subjects.11 Note that prior 

beliefs differ across treatments.12 In particular, the expected share of cooperators is 

higher in ௝ܶାଵ than in ௝ܶ for ݆ = 1,2,3.  

                                                   
11 Recall that in randomly selected sessions and, before they start playing, subjects were asked to report 
their assessments on the expected number of cooperators. 
12 In line with this finding, Palfrey and Rosenthal (1991) show that subjects’ prior beliefs of the 
probability that a subject contributes is biased up with respect to an unbiased Bayes-Nash equilibrium. In 
the same vein, Orbell and Dawes (1991) argue that cooperators expect significantly more cooperation 
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Table 6: Prior Belief (Descriptive Statistics) 

 Mean Median S.d. Min Max 

Prior Beliefs for ଵܶ  1.325 0 2.423 0 10 
Prior Beliefs for ଶܶ  5.713 5 2.993 0 10 
Prior Beliefs for ଷܶ  6.056 7 3.191 0 10 
Prior Beliefs for ସܶ 7.863 9 2.509 0 10 

 

Figure 1 shows the cumulative distribution function of prior beliefs on the expected 

share of cooperators across treatments. The horizontal axis measures the number of 

participants in a group of 10 that subjects believe will contribute their point in the each 

treatment. Let ܪ௝  denote the cumulative distribution function of prior beliefs for 

treatment ݆ = 1, 2, 3, 4. Note that ܪସ first order stochastically dominates ܪଷ and	ܪଶ 

and ܪଷ and 	ܪଶ first order stochastically dominates ܪଵ. 

Figure 1: Cumulative Distribution Function of Prior Beliefs 

 

In order to formally compare the distribution functions of prior beliefs we conduct the 

nonparametric Wilcoxon matched-pair sing-rank test. The null hypothesis of this test is 

that the distribution of the prior belief for ௝ܶ (denoted as ܪ௝) is equal to the 
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distribution of the prior belief for ௞ܶ (denoted as ܪ௞)	and the alternative hypothesis 

is that ܪ௝  is shifted to the left of ܪ௞ . Table 7 shows the results of this test. Note that in 

all cases, except ଶܶ vs ଷܶ, the null hypothesis of equal distributions can be rejected at 

0.17% of significance.13 Therefore, there is evidence that distribution of prior beliefs for 

ଵܶ is shifted to the left of ଶܶ, ଷܶ, ସܶ, while the distribution of prior beliefs for ଶܶ is 

shifted to the left of ସܶ as well as the distribution of prior beliefs for ଷܶ is shifted to 

the left of ସܶ. 

Table 7: Comparison of Distribution of Priors Beliefs 

 
Statistic ݌ −  ݁ݑ݈ܽݒ

ଵܪ:଴ܪ =  ଶ 385.0 0.000ܪ
ଵܪ:଴ܪ =  ଷ 239.5 0.000ܪ

ଵܪ:଴ܪ =  ସ 173.5 0.000ܪ
ଶܪ:଴ܪ =  ଷ 3247.0 0.098ܪ

ଶܪ:଴ܪ =  ସ 1447.5 0.000ܪ
ଷܪ:଴ܪ =  ସ 648.0 0.000ܪ

 

5.4. Reporting Prior Beliefs. The first panel (second panel) in Table 8 shows the results 

of the difference in means test of the share of cooperators (payoffs) between the sample 

composed by participants who reported their prior beliefs and those who did not report 

them. Standard errors are clustered by session. Note that it is not possible to reject the 

null hypothesis of equal means in the share of cooperators (payoff) in all treatments.  

Table 8: Difference in Means Test (Share of Cooperators and Payoffs) 

ݐ   − |ܶ|)ݎܲ ݁ݑ݈ܽݒ 	> 	  (|ݐ|

Share of Cooperators 
All Subjects -0.06 0.950 

ଵܶ -1.08 0.299 

ଶܶ 0.29 0.778 

ଷܶ -0.13 0.896 

ସܶ -0.1 0.921 

Payoff 

All Subjects 0.80 0.436 

ଵܶ 1.19 0.251 

ଶܶ 1.48 0.159 

                                                   
13  We use the Bonferroni correction to counteract the problem of ݀  multiple simultaneously 
comparisons. The Bonferroni correction tests each individual hypothesis at a significance level of ߙ/݀. 
Therefore, if we test six hypotheses with a desired ߙ	 = 	0.01, then the Bonferroni correction would test 
each individual hypothesis at ߙ	 = 	0.05/6	 = 	0.0017. 
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ଷܶ 0.20 0.848 

ସܶ 0.53 0.604 

 

Summing up, the descriptive analysis shows that: (i) The average share of cooperators 

increases from ௝ܶ to ௝ܶାଵ for ݆ = 1,2,3. (ii) The average share of cooperators in all 

treatments exceeds the one predicted by the model, but the gap is smaller once we 

compute theoretical predictions using reported prior beliefs rather than the uniform 

distribution. (iii) Payoffs are on average higher in ௝ܶାଵ than in ௝ܶ for ݆ = 1,2,3. (iv) 

Average payoffs exceed model predictions when prior beliefs are assumed to be 

uniformly distributed, but they are closer to theoretical predictions when the empirical 

distribution of prior beliefs is employed. (v) Prior beliefs differ across treatments. The 

average expected share of cooperators is higher in ௝ܶାଵ than in ௝ܶ for ݆ =  ସܪ .1,2,3

first order stochastically dominates ܪଷ  and ଶܪ	  and ܪଷ  and ଶܪ	  first order 

stochastically dominate ܪଵ . (vi) The average share of cooperators and the average 

payoffs are not statistically different in the sessions in which subjects were asked to 

report their prior beliefs and in sessions in which they were not. 

 

6. Results 

In this section we formally test the main comparative static results using regression 

analysis. Note that in the context of perfect experimental data, where no controls are 

needed for identification of the causal effects of interest, the analysis is completely 

non-parametric as it only entails to compare the mean outcome differences across 

treatment groups and inference also could be made non-parametric. In all cases robust 

and clustered standard errors are computed by session.  

 

6.1. Cooperation Decision. In order to formally test the hypothesis that the probability 

of a successful collective action increases with ܤ  and ܵ we use the following 

regression model: 

௜௣௦݌݋݋ܥ = ߙ + ܶܦଵߚ + ଶߚ ௜ܺ௣௦ + ෍ߚଷߠܦ௦

ଵ଺

௦ୀଵ

௜௣௦ߝ+  
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where ݅  indexes subjects, ݌ = 1, 2, 3, … ,12  indexes experimental rounds, and 

ݏ = 1, 2, 3, … ,16 indexes experimental sessions. ݌݋݋ܥ௜௣௦ is the dependent variable. It 

indicates whether player ݅ decided to invest his/her point in each session, round and 

treatment (݌݋݋ܥ௜௣௦ = 1  if he contributes and ݌݋݋ܥ௜௣௦ = 0 if he does not). The 

explanatory variable of interest is ܶܦ, a dummy variable indicating treatment status ( ௝ܶ 

for ݆ = 2, 3, 4). In some specifications we also include control variables. We control for 

individual characteristics ௜ܺ௣௦ (gender, age, nationality, university, whether the subject 

has ever taken a course in game theory, whether the subject is a graduate student and 

the subjects’ level of understanding of the game as measured by the his/her answers to 

the quiz questions) and for fixed effects by session (ߠܦ௦). According to our theoretical 

predictions, we should expect ߚመଵ to be positive when comparing ௝ܶାଵ with ௝ܶ for 

݆ = 1, 2, 3. 

Columns (1), (3) and (5) in Table 9 summarize the results of regressing ݌݋݋ܥ௜௣௥	in each 

of the treatments separately without controls for all the subjects in the sample, those 

subjects who reported their beliefs and those who did not report them, respectively. 

Robust standard errors are reported in regular brackets and standard errors clustered 

by session are shown in square brackets. In keeping with the model’s prediction, the 

probability of cooperators in each treatment is significantly different (at a confidence 

level of 99% in most cases) and the coefficient associated with each treatment is positive 

in all cases. Indeed, note that when we compare the probability of cooperation in ସܶ vs. 

ଵܶ the coefficient associated is the highest. 14 Thus, as predicted by the model, a higher 

value of ܤ and/or ݏ leads to a higher share of cooperators and, hence, to a higher 

probability of cooperation. Column (2), (4) and (6) in Table 9 report the results once the 

entire set of controls is included. As the table shows, the results do not change in any 

meaningful way. 

 

 

                                                   
14 Recall that ࢀ૚ 	represents a scenario of no cooperation opportunities (࡮ = ૚.૛૞ and ࢙ = ૙); in other 
words, this is the free rider Olsonian model with one Nash equilibrium in which nobody contributes, while  
࡮) ૝ represents a scenario where the incentives to cooperate are the highestࢀ = ૜ and ࢙ = ૚.ૠ૞). 
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Table 9: Cooperation Decision (Regression Analysis) 
 

  
All Sample Subjects Who Reported 

Prior Beliefs 

Subjects Who Did Not 
Report Prior 

Beliefs 
  (1) (2) (3) (4) (5) (6) 

ଵܶ = 0 vs ଶܶ = 1 
 

      

 ***መଵ 0.518*** 0.518*** 0.546*** 0.548*** 0.490*** 0.489ߚ

 
(0.018) (0.018) (0.025) (0.024) (0.026) (0.026) 

 
[0.044] [0.044] [0.080] [0.079] [0.040] [0.042] 

R-squared 0.303 0.315 0.336 0.362 0.271 0.288 

ଵܶ = 0 vs ଷܶ = 1             
 መଵߚ
 

0.740*** 0.742*** 0.748*** 0.743*** 0.731*** 0.736*** 

 
(0.015) (0.015) (0.021) (0.021) (0.022) (0.021) 

 
[0.039] [0.039] [0.053] [0.052] [0.061] [0.063] 

R-squared 0.555 0.562 0.570 0.596 0.540 0.557 
ଵܶ = 0 vs ସܶ = 1             

 መଵߚ
 

0.855*** 0.855*** 0.867*** 0.864*** 0.844*** 0.847*** 

 
(0.012) (0.012) (0.016) (0.016) (0.017) (0.017) 

 
[0.025] [0.025] [0.037] [0.037] [0.037] [0.037] 

R-squared 0.731 0.734 0.751 0.762 0.712 0.715 

ଶܶ = 0 vs ଷܶ = 1 
 

            

 ***መଵ 0.222*** 0.222*** 0.202** 0.197** 0.242*** 0.244ߚ

 
(0.020) (0.020) (0.029) (0.028) (0.029) (0.028) 

 
[0.045] [0.046] [0.065] [0.064] [0.066] [0.066] 

R-squared 0.059 0.077 0.049 0.115 0.069 0.100 

ଶܶ = 0 vs ସܶ = 1 
 

            

 ***መଵ 0.338*** 0.336*** 0.321*** 0.321*** 0.354*** 0.352ߚ

 
(0.018) (0.018) (0.025) (0.025) (0.025) (0.025) 

 
[0.050] [0.050] [0.087] [0.084] [0.054] [0.053] 

R-squared 0.155 0.169 0.143 0.193 0.168 0.183 

ଷܶ = 0 vs ସܶ = 1 
 

            

 **መଵ 0.116*** 0.115*** 0.119** 0.124** 0.113** 0.111ߚ

 
(0.015) (0.015) (0.022) (0.021) (0.021) (0.021) 

 
[0.025] [0.025] [0.034] [0.037] [0.037] [0.036] 

R-squared 0.029 0.043 0.030 0.108 0.029 0.093 
Controls No Yes No Yes No Yes 
Number of Observations 1920 1920 960 960 960 960 

Note: * significant at 10%; ** significant at 5%; *** significant at 1% (using standard errors clustered by 
session). Robust standard errors in regular bracket and standard errors clustered by sessions in square 
brackets. Controls: (i) Individual characteristics ܺ௜௣௥: gender, age, nationality, university, whether s/he has 
ever taken a course in game theory, whether s/he is a graduate or not; (ii) Level of understanding of the 
game measured by the subject’s correct answers to the quiz questions; and (iii) Fixed effects by session ߠܦ௥ . 

 

6.2. Payoffs. In order to formally test the hypothesis that the average payoff of a player 

increases with ܤ and/or ݏ we use the following regression model: 

݂݋ݕܽܲ ௜݂௣௦ = γ + ܶܦଵߜ + ଶߜ ௜ܺ௣௦ + ෍ߜଷߠܦ௦

ଵଵ

௦ୀଵ

௜௣௦ߝ+  
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The dependent variable ݂ܲܽ݋ݕ ௜݂௣௦ is payoff denominated in points obtained by subject 

݅ in round ݌ and session ݏ. The regressors are the same as in the model for the share 

of cooperators. The explanatory variable of interest is ܶܦ, a dummy variable indicating 

treatment status ( ௝ܶ for ݆ = 2, 3, 4). According to our theoretical predictions, we should 

expect ߜመଵ to be positive when comparing ௝ܶାଵ with ௝ܶ for ݆ = 1,2,3.  

Table 10: Payoffs (Regression Analysis) 

 All Sample 
Subjects Who 

Reported Prior 
Beliefs 

Subjects Who Did Not 
Report 

Prior Beliefs 
   (1)  (2)   (3)        (4) (5) (6) 

ଵܶ = 0 vs ଶܶ = 1 
 

            

 **መଵ 0.691*** 0.691*** 0.842*** 0.847*** 0.539** 0.539ߜ

 
(0.034) (0.033) (0.044) (0.044) (0.050) (0.049) 

 
[0.120] [0.120] [0.155] [0.153] [0.177] [0.175] 

R-squared 0.180 0.206 0.276 0.297 0.109 0.164 

ଵܶ = 0 vs ଷܶ = 1 
 

            

 ***መଵ 2.275*** 2.268*** 2.296*** 2.282*** 2.253*** 2.245ߜ

 
(0.055) (0.055) (0.076) (0.074) (0.080) (0.080) 

 
[0.251] [0.255] [0.419] [0.422] [0.306] [0.315] 

R-squared 0.470 0.482 0.485 0.534 0.455 0.475 
ଵܶ = 0 vs ସܶ = 1             

 መଵߜ
 

3.308*** 3.309*** 3.380*** 3.379*** 3.235*** 3.242*** 

 
(0.043) (0.042) (0.053) (0.051) (0.067) (0.065) 

 
[0.187] [0.186] [0.303] [0.304] [0.237] [0.236] 

R-squared 0.757 0.771 0.808 0.826 0.710 0.726 
ଶܶ = 0 vs ଷܶ = 1             
 መଵߜ
 

1.584*** 1.583*** 1.454*** 1.445*** 1.714*** 1.713*** 

 
(0.062) (0.061) (0.084) (0.080) (0.090) (0.091) 

 
[0.240] [0.241] [0.345] [0.348] [0.352] [0.351] 

R-squared 0.253 0.284 0.237 0.333 0.273 0.286 

ଶܶ = 0 vs ସܶ = 1             

 ***መଵ 2.617*** 2.619*** 2.538*** 2.542*** 2.696*** 2.706ߜ

 
(0.051) (0.050) (0.064) (0.060) (0.079) (0.080) 

 
[0.204] [0.203] [0.271] [0.264] [0.322] [0.322] 

R-squared 0.575 0.606 0.621 0.674 0.546 0.558 
ଷܶ = 0 vs ସܶ = 1             

 መଵߜ
 

1.033*** 1.036*** 1.084*** 1.099*** 0.982** 0.979** 

 
(0.067) (0.066) (0.089) (0.081) (0.101) (0.099) 

 
[0.203] [0.207] [0.257] [0.257] [0.331] [0.331] 

R-squared 0.109 0.174 0.133 0.307 0.090 0.147 
Controls No Yes No Yes No Yes 
Number of Observations 1920 1920 960 960 960 960 

Note: * significant at 10%; ** significant at 5%; *** significant at 1% (using standard errors clustered by session). 

Robust standard errors in regular brackets and standard errors clustered by sessions in square brackets. Controls: 

see note in Table 9.  
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Table 10 summarizes the results. The corresponding clustered standard errors are 

shown in square brackets. As predicted by our model, the payoff in each treatment is 

significantly different and the coefficient associated with each treatment is positive. 

Hence, operating under the parameters in ௝ܶାଵ rather than in ௝ܶ  for ݆ = 1, 2, 3 

induces a positive and statistically significant effect on the payoff. 

As a robustness check, we repeated the estimations in Tables 9 and 10 introducing two 

new explanatory variables, namely ܴܦ and ܴܦ .ܫ is a dummy variable that indicates 

whether in the previous round the collective action was successful or not, and ܫ is the 

number of players in the same group that decided to invest in the previous round. These 

variables capture the possibility that subjects decide to cooperate in a treatment just 

because either in the previous round the collective action was successful or the number 

of investors was relatively high. The results do not change in any meaningful way. The 

coefficients associated with each treatment are still significantly different and positive 

 

6.3. Prior Beliefs. In order to test if asking subjects to reveal their prior beliefs biased 

their decisions during the game, we performed a test of equality of the regression 

coefficients. Table 11 panel 1 summarizes the results of a test whose null hypothesis is 

that the effects of each treatment on the share of cooperators are the same for the 

subjects who reported their prior beliefs (ߚଵ) and those who did not report them (ߚଵ∗). 

Standard errors are clustered by sessions. In all cases the null hypothesis of equal 

coefficients cannot be rejected. Analogously, Table 11 panel 2 summarizes the results of 

a test whose null hypothesis is that effects of each treatment on the payoffs are identical 

for subjects who reported their prior beliefs (ߜଵ) and subjects who did not report them 

 Standard errors are clustered by sessions. In all cases the null hypothesis of equal .(∗ଵߜ)

coefficients cannot be rejected15. Thus, it is possible to confirm that asking subjects to 

reveal their prior beliefs before the game started did not introduce any bias in their 

decisions during the game.  

 

 

 
                                                   
15 The results of the tests hold when we add controls in the regression of the share of cooperators (and 
payoffs) in each of the treatments. We do not report the corresponding ܨ statistics for sake of simplicity.  
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Table 11: Reporting versus Not Reporting Prior Beliefs  

(Difference in Average Treatment Effects)  
ݎܲ (1,7)	ܨ   >  ܨ

Share of Cooperators (ܪ଴:ߚଵ =  (∗ଵߚ

ଵܶ = 0 vs ଶܶ = 1  1.99 0.201 
ଵܶ = 0 vs ଷܶ = 1  0.08 0.791 
ଵܶ = 0 vs ସܶ = 1  0.39 0.551 
ଶܶ = 0 vs ଷܶ = 1  0.36 0.568 
ଶܶ = 0 vs ସܶ = 1  0.38 0.558 
ଷܶ = 0 vs ସܶ = 1  0.03 0.871 

Profit (ܪ଴:ߜଵ =  (∗ଵߜ

ଵܶ = 0 vs ଶܶ = 1 2.92 0.131 
ଵܶ = 0 vs ଷܶ = 1 0.02 0.892 
ଵܶ = 0 vs ସܶ = 1 0.37 0.56 
ଶܶ = 0 vs ଷܶ = 1 0.55 0.484 
ଶܶ = 0 vs ସܶ = 1 0.24 0.639 
ଷܶ = 0 vs ସܶ = 1 0.09 0.767 

Note: (1,7)ܨ indicates the ܨ statistic with 1 degree of freedom in the 
numerator and 7 degrees of freedom in the denominator. ܲݎ >  indicates ܨ
the significance level of each test. 

Summing up, the regression analysis produces robust support for the main comparative 

statics theoretical predictions. Increases in	ܤ and/or ݏ have a significant positive 

effect on the share of cooperators and, hence, on the probability of a successful collective 

action, as well as on the payoffs of the players.16 The effects are statistically significant 

whether or not we include controls for individual characteristics, level of understanding 

of the game and fixed effects by session. Asking subjects to report their prior beliefs 

before the game started did not introduce any significant effect on their decisions. 

Introducing into the control variables whether in the previous round the collective 

action was successful or not and the number of players in the same group that decided to 

invest in the previous round does not change the results in any meaningful way.  

 

7. Exploring a Decomposition of Changes in ߙො 

In this section we decompose a change in ࢻෝ in a ‘belief effect’ and a ‘range of 

cooperation effect’. The idea is to learn about the mechanism that induce more 

cooperation when ࢻෝ decreases. 
                                                   
16 More cooperative prior beliefs with the same ܤ and/or ݏ (i.e., within a treatment), however, do not 
induce more cooperation. 
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Table 12 shows the average share of cooperators as well as the predicted share of 

cooperators for each treatment, both using a uniform distribution for all treatments, and 

the empirical distribution of prior beliefs for each treatment.  

Table 12: Model Prediction of the Share of Cooperators 

  

Empirical 
Probability of 
Cooperation 

Model Prediction 
(Prior Beliefs 

Uniformly 
Distributed) 

Model Prediction 
(Prior Beliefs 
(Empirically 

Distributed for 
T1) 

Model Prediction 
(Prior Beliefs 
(Empirically 

Distributed for 
T2) 

Model Prediction 
(Prior Beliefs 
(Empirically 

Distributed for 
T3) 

Model Prediction 
(Prior Beliefs 
(Empirically 

Distributed for 
T4) 

ଵܶ  0.072 0.000 0.000 0.000 0.000 0.000 

ଶܶ  0.590 0.333 0.054 0.340 0.448 0.687 

ଷܶ  0.811 0.490 0.079 0.424 0.599 0.819 

ସܶ 0.927 0.667 0.121 0.742 0.717 0.910 

 

As we showed in section 5.3., the distribution of prior beliefs is not the same in every 

treatment. As the benefit of cooperation augments, subjects tend to increase their 

assessments on the share of cooperators. The effect of these changes in theoretical 

predictions can be observed in Table 12. Except for ࢀ૚ , for which theoretical 

predictions do not change with the distribution of prior beliefs, for the rest of the 

treatments, the predicted share of cooperators increases as we employ the prior beliefs 

associated with a treatment with a lower ࢻෝ.17 For example, for ࢀ૛ if we use the priors 

of ࢀ૚ the predicted share of cooperators is 0.054, it is 0.340 with the priors of ࢀ૛, 

0.448 with the priors of ࢀ૜ and 0.687 with the priors of ࢀ૝. This suggests that we can 

decompose a change in the predicted share of cooperators in two analytically different 

effects. A ‘belief effect’ that captures the change in prior beliefs and a ‘range of 

cooperation effect’ that captures the change in the range of prior beliefs that induced 

cooperation. 

More technically, the distribution of the expected share of cooperators ࡴ is not 

independent of ࢻෝ. Although this does not affect the sign of the comparative statics of the 

model, it is interesting to explore what fraction of the change in predicted share of 

cooperators can be attributed to a change in prior beliefs, and what fraction to a change 

in the range of prior beliefs that induce cooperation. Thus, we are now interested in 

                                                   
17 Recall from section 2.2 that a lower ߙො is associated with higher ܤ and/or ݏ; in other words డఈෝ

డ஻
< 0, 

డఈෝ
డ௦

< 0. 
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distinguishing the mechanism through which a decrease in ࢻෝ leads to a higher 

probability of a successful collective action. 

Let ܪ௝  denote the cumulative distribution function of the expected share of 

cooperators for treatment ௝ܶ and ܲݎ௝  the probability of a successful collective action 

in treatment ௝ܶ. Then   

൫ݎܲ ௝ܶ൯ − )ݎܲ ௞ܶ) = (ො௞ߙ)௞ܪ ො௝൯ߙ௝൫ܪ− = (ො௞ߙ)௞ܪൣ − ൧(ො௞ߙ)௝ܪ + −(ො௞ߙ)௝ܪൣ  ො௝൯൧ߙ௝൫ܪ

Define ∆ூ൫ ௞ܶ → ௝ܶ൯ = ுೖ(ఈෝೖ)ିுೕ(ఈෝೖ)
ுೖ(ఈෝೖ)ିுೕ൫ఈෝೕ൯

. ∆ூ൫ ௞ܶ → ௝ܶ൯  is the proportion of the change 

attributed to a change in the distribution of expected cooperators. Naturally, 

1 − ∆ூ൫ ௞ܶ → ௝ܶ൯ is the proportion of the change in the probability of a successful 

collective action due to a change in the range prior beliefs that induce cooperation. Table 

13 shows the decomposition of a change in the predicted share of cooperators into the 

belief and range of cooperation effects. 

Table 13: Decomposition of Changes in ߙො: I 

ො௝൯ ∆ூ൫ߙ௝൫ܪ−(ො௞ߙ)௞ܪ  ௞ܶ → ௝ܶ൯ 1− ∆ூ൫ ௞ܶ → ௝ܶ൯ 

ଵܶ → ଶܶ 0.340 0.00 1.00 

ଵܶ → ଷܶ 0.599 0.00 1.00 

ଵܶ → ସܶ 0.910 0.00 1.00 

ଶܶ → ଷܶ 0.259 0.42 0.58 

ଶܶ → ସܶ 0.570 0.61 0.49 

ଷܶ → ସܶ 0.311 0.71 0.29 

 

To some extent, this decomposition is arbitrary, in the sense that we can vary first ܪ 

and then ߙො or the other way round. Formally, we can also decompose ܲݎ൫ ௝ܶ൯ − )ݎܲ ௞ܶ) 

as follows: 

൫ݎܲ ௝ܶ൯ − )ݎܲ ௞ܶ) = (ො௞ߙ)௞ܪ ො௝൯ߙ௝൫ܪ− = (ො௞ߙ)௞ܪൣ ො௝൯൧ߙ௞൫ܪ− + ො௝൯ߙ௞൫ܪൣ −  ො௝൯൧ߙ௝൫ܪ

and define the proportion of the change attributed to a change in the distribution of 

expected cooperators by ∆ூூ൫ ௞ܶ → ௝ܶ൯ = ுೖ൫ఈෝೕ൯ିுೕ൫ఈෝೕ൯

ுೖ(ఈෝೖ)ିுೕ൫ఈෝೕ൯
. Table 13 shows this 

decomposition. 
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Table 14: Decomposition of Changes in ߙො: II 

ො௝൯ ∆ூூ൫ߙ௝൫ܪ−(ො௞ߙ)௞ܪ  ௞ܶ → ௝ܶ൯ 1− ∆ூூ൫ ௞ܶ → ௝ܶ൯ 

ଵܶ → ଶܶ 0.340 0.159 0.841 

ଵܶ → ଷܶ 0.599 0.132 0.868 

ଵܶ → ସܶ 0.910 0.133 0.867 

ଶܶ → ଷܶ 0.259 0.324 0.676 

ଶܶ → ସܶ 0.570 0.705 0.295 

ଷܶ → ସܶ 0.311 0.379 0.621 

 

Except when we move from ଷܶ to ସܶ both decompositions assign similar proportions 

to both effects. When the starting point is ଵܶ both decompositions assign a very high 

proportion of the change to the range of cooperation effect (at least 84%). When the 

starting point is ଶܶ and we move to ଷܶ ( ସܶ), the first and second decomposition 

attribute 42% and 32.4% (61% and 70%) of the change to a switch in beliefs, 

respectively.  

A potential concern about these decompositions is that they rely on the empirical 

distribution of prior beliefs reported by the subjects before the rounds began. It is 

possible that these prior beliefs evolve as the experiment proceeds and subjects learn 

from pervious rounds. However, we do not observe any temporal pattern in the data. 

For example, Figure 2 shows the mean share of cooperators per round across treatments 

for all the subjects in the sample (first panel), the subjects who reported their beliefs 

(second panel), and subjects who were not required to report their beliefs (third panel). 

The mean share of cooperators fluctuates without any clear pattern. 

Summing up, there are two mechanisms operating simultaneously that induce a higher 

predicted share of cooperators. First, as ߙො  decreases subjects increase their 

assessments on the expected share of cooperators (the belief effect). Second, given any 

distribution of the assessments, a lower ߙො increases the assessments that induce 

subjects to contribute (the range of cooperation effect). Except when we move from ଷܶ 

to ସܶ both decompositions lead to similar results. 
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Figure 2: Share of Cooperators 

All Subjects 

 
Subjects Who Reported Prior Beliefs 
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Subjects Who Did Not Report Prior Beliefs 

 

Note: Red diamonds denote average value of the variable per treatment/round within 
treatment. Blue bars indicate one standard deviation from the mean, calculated in 
standard form. 

 

8. Conclusions 

We have conducted a laboratory experiment in order to test the main implications of the 

stability sets methods applied to collective action games. We have found strong support 

for the key comparative static predictions of the theory. As we increase the payoff of a 

successful collective action accruing to all players (ܤ) and only to those that contribute 

 the share of cooperators and payoffs increase. As in many other laboratory (ݏ)

experiments we found that subjects have a more cooperative behavior than predicted by 

the theory. But we have also shown that the gap between theoretical predictions and 

observed behavior significantly decrease when we refine the theory allowing for a 

distribution of prior beliefs that varies with the parameters of the model. Overall, the 

experiment indicates that the stability sets method could be a very useful tool to study 

games with multiple equilibria. 

0
.2

.4
.6

.8
1

Sh
ar

e 
of

 C
oo

pe
ra

to
rs

0 2 4 6 8 10 12
Treatment 1

0
.2

.4
.6

.8
1

Sh
ar

e 
of

 C
oo

pe
ra

to
rs

0 2 4 6 8 10 12
Treatment 2

0
.2

.4
.6

.8
1

S
ha

re
 o

f C
oo

pe
ra

to
rs

0 2 4 6 8 10 12
Treatment 3

0
.2

.4
.6

.8
1

S
ha

re
 o

f C
oo

pe
ra

to
rs

0 2 4 6 8 10 12
Treatment 4

Rounds by Treatment



32 
 

The experiment also suggests a refinement of the theory. We found that as the range of 

cooperation increases subjects upgrade their prior beliefs on the expected share of 

cooperators. We have shown that if the new distribution of prior beliefs first order 

stochastically dominates the old one, the signs of the comparative static derivatives are 

not affected, but all effects are magnified. For practical purposes, this refinement 

improves the power of the theory to predict the observed behavior. Analytically, it 

allows us to decompose the mechanism that produces cooperation in a ‘belief effect’ and 

a ‘range of cooperation effect’. Using our experiment, we have computed these 

decompositions and found evidence of the presence of both effects. This might have 

interesting implications for political economy. For example, a policy change that affects 

the payoffs of a collect action game can produce a bigger change in the likelihood of 

cooperation than the one we would expect if we do not take into account that agents 

update the distribution of prior beliefs.  

 

Understanding the logic of collective action is crucial in political economy. Explicit or 

implicitly, collective action is in the core of many models of political influence, political 

representation and coalition formation. A new approach to collective action can produce 

significant impacts on the way we attack those topics. To illustrate this point, consider 

the following examples. In the standard common agency model of lobbying (Dixit, 

Grossman and Helpman, 1997 and Grossman and Helpman 2000) groups are assumed 

either organized (meaning the group have solved the collective action problem and they 

can lobby to advance their common interest) or unorganized. The stability sets approach 

can provide an assessment of the likelihood that a group is organized as a function of 

structural parameters that characterize the collective action problem of group 

organization. Thus, combining the common agency model of lobbying with the stability 

sets approach to collective action we can build a more accurate theory of political 

influence. Another interesting example is Acemoglu and Robinson’s model of political 

regime determination (Acemoglu and Robinson 2006). This is a dynamic model in which 

in every period with some exogenous probability a group with no de-jure political power 

can get organized and obtain de-facto political power. Again, combining this model with 

the stability sets approach to collective action can help us improving the theory of 

political transitions. 
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Online Appendix 1: Proposition 1 

In this Appendix we present the proof of proposition 1. 

Olson’s Model: The expected payoff of player’s i is given by: 

௜ܷ(ߙ௜ (௜ିߙ, = ௜ߙ ෍ ൤ܤ൬
݇ + 1
ܰ ൰ − ܿ൨

ேିଵ

௞ୀ଴

ܲ(݇, ݅) + (1− (௜ିߙ ෍ܤ൬
݇
ܰ൰ −

ேିଵ

௞ୀ଴

ܲ(݇, ݅) 

= ෍൤ߙ௜ܤ ൬
݇ + 1
ܰ ൰ − ௜ܿߙ + (1 − ൬ܤ(௜ିߙ

݇
ܰ൰൨

ேିଵ

௞ୀ଴

ܲ(݇, ݅) 

	= ௜ߙ ൬
ܤ
ܰ − ܿ൰෍ ܲ(݇, ݅) + ෍ܤ൬

݇
ܰ൰ܲ

(݇, ݅)
ேିଵ

௞ୀ଴

ேିଵ

௞ୀ଴

 

The second term does not depend on ߙ௜ . When ஻
ே

> ܿ	 ቀ஻
ே

< ܿቁ the first term adopts a 

maximum for ߙ௜ = ௜ߙ)	1 = 0). Therefore, if ܰ < ஻
௖

 the unique Nash equilibrium is ܥ௜  

for all i, while if ܰ > ஻
௖
 the unique Nash equilibrium is ܦ௜ for all i. ∎ 

Schelling’s Model: A Nash equilibrium is a profile ߙ such that for all ݅ = 1, … ,ܰ one 

of the following conditions must hold: 

෍ ቈ
ܤ + ݇)ݏ + 1)

ܰ − ܿ቉ ܲ(݇, ݅) ≥ 0					and				ߙ௜ = 1
ேିଵ

௞ୀ଴

 (3) 

෍ ቈ
ܤ + ݇)ݏ + 1)

ܰ − ܿ቉ ܲ(݇, ݅) ≤ 0					and				ߙ௜ = 0
ேିଵ

௞ୀ଴

 (4) 

෍ቈ
ܤ + ݇)ݏ + 1)

ܰ − ܿ቉ ܲ(݇, ݅) = 0					and				ߙ௜ 	߳	(0,1)
ேିଵ

௞ୀ଴

 (5) 

where ܲ(݇, ݅) = ∑ ∏ ௝ߙ
௔ೕ(1− ௌ(௞,௜)	ఢ	௝)ଵି௔ೕ௝ஷ௜௔ష೔ߙ  and ܵ(݇, ݅) = ൛ܽି௜:∑ ௝ܽ = ݇௝ஷ௜ ൟ. 

Lemma 1: If ߙ௜ = 1 and ߙ௛ = 0, then ܲ(݇, ݅) = ܲ(݇ + 1,ℎ). Proof: Since players’ 

strategies are not correlated, the probability that ݇ + 1 players cooperate when we 

exclude ℎ is equal to the probability that ݇ players cooperate when we exclude ݅ 

and ℎ times the probability that i cooperates plus the probability that ݇ + 1 players 

cooperate excluding ݅ and ℎ times the probability that i does not cooperate. Formally, 
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ܲ(݇ + 1,ℎ) = Prቆ෍ ௝ܽ = ݇ + 1
௝ஷ௛

ቇ 

= Prቆ෍ ௝ܽ = ݇
௝ஷ௜ ,௛

ቇߙ௜ + Prቆ෍ ௝ܽ = ݇ + 1
௝ஷ௜,௛

ቇ (1 −  (௜ߙ

= Prቆ෍ ௝ܽ = ݇
௝ஷ௜ ,௛

ቇ 

= Prቆ෍ ௝ܽ = ݇ − 1
௝ஷ௜

ቇߙ௛ + Prቆ෍ ௝ܽ = ݇
௝ஷ௜

ቇ (1 −  (௛ߙ

= Prቆ෍ ௝ܽ = ݇
௝ஷ௜

ቇ 

The third line uses	ߙ௜ = 1. Again, since strategies are not correlated, the probability that 

k players cooperate when we exclude i and h is equal to the probability that ݇ − 1 

players cooperate when we exclude i times the probability that h cooperates plus the 

probability that k players cooperate excluding i and h times the probability that h does 

not cooperate. This justifies the fourth line. Finally, the last line is due to ߙ௛ = 0. ∎ 

Lemma 2: If ߙ௜ > ݇ ௛ andߙ ≥ 1, then ܲ(݇, ℎ) ≥ ܲ(݇, ݅). Moreover, if there exist 

݇ − 1 players different from ݅, ℎ for which ߙ௝ > 0, then ܲ(݇, ℎ) > ܲ(݇, ݅). Proof: 

Using the same argument we employed in Lemma 1 we have:  

ܲ(݇, ݅) = Prቆ෍ ௝ܽ = ݇
௝ஷ௜

ቇ 

= Prቆ෍ ௝ܽ = ݇
௝ஷ௜ ,௛

− 1ቇߙ௛ + Prቆ෍ ௝ܽ = ݇
௝ஷ௜,௛

ቇ (1 −  (௛ߙ

Analogously, 

ܲ(݇, ℎ) = Prቆ෍ ௝ܽ = ݇
௝ஷ௛

ቇ 

= Prቆ෍ ௝ܽ = ݇
௝ஷ௜ ,௛

− 1ቇߙ௜ + Prቆ෍ ௝ܽ = ݇
௝ஷ௜,௛

ቇ (1 −  (௜ߙ

Therefore, 

ܲ(݇, ℎ)− ܲ(݇, ݅) = ௜ߙ) − (௛ߙ ቈPrቆ෍ ௝ܽ = ݇
௝ஷ௜,௛

− 1ቇ −Prቆ෍ ௝ܽ = ݇
௝ஷ௜,௛

ቇ቉ 
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= ௜ߙ) − (௛ߙ Prቆ෍ ௝ܽ = ݇
௝ஷ௜,௛

− 1ቇ [1 − ௜(1ߙ − (௛ߙ − ௛(1ߙ −  [(௜ߙ

= ௜ߙ) − (௛ߙ Prቆ෍ ௝ܽ = ݇
௝ஷ௜,௛

− 1ቇ [(1− −௜)(1ߙ (௛ߙ +  [௛ߙ௜ߙ

The second line uses the fact that Pr	൫∑ ௝ܽ = ݇௝ஷ௜,௛ ൯ = Pr 	൫∑ ௝ܽ = ݇௝ஷ௜,௛ − 1൯[ߙ௜(1 −

(௛ߙ + ௛(1ߙ − [(௜ߙ . By assumption (ߙ௜ − (௛ߙ > 0, Pr 	൫∑ ௝ܽ = ݇௝ஷ௜,௛ − 1൯ ≥ 0 , and 

1 − (1 − ௜)(1ߙ − (௛ߙ + ௛ߙ௜ߙ > 0. Moreover, if there exist ݇ − 1 players different from 

݅, ℎ for which ߙ௝ > 0, then Pr 	(∑ ௝ܽ = ݇ − 1௝ஷ௜,௛ ) > 0 and, hence, ܲ(݇, ℎ) > ܲ(݇, ݅). 

∎ 

Case 1 (all cooperate): Suppose that ߙ௜ = 1 for ݅ = 1, … ,ܰ. Then, ܲ(݇, ݅) ≠ 0 if and 

only if ݇ = ܰ − 1 and, hence, the Nash conditions become:  

൤
ܤ + ܰݏ
ܰ − ܿ൨ܲ(ܰ − 1, ݅) ≥ 0 

Since ݏ > ܿ these conditions always hold. Therefore, ߙ௜ = 1	for ݅ = 1, … ,ܰ is always 

a Nash equilibrium. 

Case 2 (nobody cooperate): Suppose that  ߙ௜ = 0 for ݅ = 1, … ,ܰ. Then, ܲ(݇, ݅) ≠ 0 

if and only if ݇ = 0 and, hence, the Nash conditions become:  

൤
ܤ + ݏ
ܰ − ܿ൨ܲ(0, ݅) ≤ 0 

These conditions hold if and only if ܰ ≥ ஻ା௦
௖

. Thus, if ܰ ≥ ஻ା௦
௖

௜ߙ , = 0 for all i is a Nash 

equilibrium. 

Case 3 (some cooperate, some do not cooperate and some play a mixed strategy): 

Suppose that there is a Nash equilibrium in which ݊ଵ players are cooperating, ݊ଶ are 

playing a complete mixed strategy and ܰ − ݊ଵ − ݊ଶ are not cooperating. Without loss 

of generality assume that ߙ௜ = 1	for ݅ = 1, … ,݊ଵ, ௜ߙ	 	߳	(0,1) for ݅ = ݊ଵ + 1, … , ݊ଶ, and 

௜ߙ = 0 for ݅ = ݊ଶ + 1, … ,ܰ. Then, for ݅ = 1, … , ݊ଵ we have ܲ(݇, ݅) ≠ 0 if and only if 

݊ଵ − 1 ≤ ݇ ≤ ݊ଶ − 1. Thus, the Nash conditions become: 

෍ ൤
ܤ + ݇)	ݏ + 1)

ܰ − ܿ൨
௡మିଵ

௞ୀ௡భିଵ

ܲ(݇, ݅) ≥ 0 
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For ݅ = ݊ଵ + 1, … , ݊ଶ we have ܲ(݇, ݅) ≠ 0if and only if ݊ଵ ≤ ݇ ≤ ݊ଶ − 1. Thus, the 

Nash conditions become:  

෍ ቈ
ܤ + ݇)	ݏ + 1)

ܰ − ܿ቉
௡మିଵ

௞ୀ௡భ

ܲ(݇, ݅) = 0 

Finally, for ݅ = ݊ଶ + 1, … ,ܰ we have ܲ(݇, ݅) ≠ 0if and only if ݊ଵ ≤ ݇ ≤ ݊ଶ . Thus, the 

Nash conditions become:  

෍ ቈ
ܤ + ݇)	ݏ + 1)

ܰ − ܿ቉
௡మ

௞ୀ௡భ

ܲ(݇, ݅) ≤ 0 

Arbitrarily select ݅ < ݊ଵ and ݊ଵ + 1 ≤ ℎ ≤ ݊ଶ. Then, ߙ௜ = 1 and ߙ௛ = 0, and Lemma 

1 implies that ܲ(݇, ݅) = ܲ(݇ + 1, ℎ). Therefore:  

෍ ቈ
ܤ + ݇)	ݏ + 1)

ܰ − ܿ቉
௡మିଵ

௞ୀ௡భିଵ

ܲ(݇, ݅) = ෍ ቈ
ܤ + ݇)	ݏ + 1)

ܰ − ܿ቉
௡మିଵ

௞ୀ௡భషభ

ܲ(݇ + 1,ℎ) 

= ෍ ൤
ܤ + ݇ݏ
ܰ − ܿ൨

௡మ

௞ୀ௡భ

ܲ(݇, ℎ) 

But, this leads to a contradiction because the Nash condition for i implies that 

∑ ቂ஻ା௦௞
ே

− ܿቃ ܲ(݇, ℎ) ≥ 0௡మ
௞ୀ௡భ , while the Nash condition for h implies ∑ ቂ஻ା௦(௞ାଵ)

ே
−௡మ

௞ୀ௡భ

ܿቃ ܲ(݇,ℎ) ≤ 0. Note that the argument does not depend on the existence of a group of 

players that are playing a complete mixed strategy. In other words, if ݊ଶ = ݊ଵ, the same 

argument holds. Hence, there cannot be a Nash equilibrium in which some players 

cooperate with probability 1 and other players do not cooperate at all. 

Case 4 (all play a mixed strategy): Suppose that ߙ௜ 	߳	(0,1) for ݅ = 1, … ,ܰ. Then 

ܲ(݇, ݅) ≠ 0 for all ݇. Thus, the Nash conditions become: 

෍ቈ
ܤ + ݇)	ݏ + 1)

ܰ − ܿ቉
ேିଵ

௞ୀ଴

ܲ(݇, ݅) = 0 

Since ∑ 	ܲ(݇, ݅) = 1ேିଵ
௞ୀ଴ , these conditions are equivalent to: 

෍݇
ேିଵ

௞ୀ଴

ܲ(݇, ݅) = ෍݇
ேିଵ

௞ୀଵ

ܲ(݇, ݅) =
ܿܰ − ܤ − ݏ

ݏ  
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Arbitrarily select ݅	and ℎ and without loss of generality assume that ߙ௜ > ௛ߙ . Then, 

from Lemma 2, it must be the case that ܲ(݇,ℎ) > ܲ(݇, ݅) for all ݇ ≥ 1. But this leads to 

a contradiction because ∑ ݇ேିଵ
௞ୀଵ ܲ(݇, ݅) = ௖ேି஻ି௦

௦
 and ∑ ݇ேିଵ

௞ୀଵ ܲ(݇,ℎ) = ௖ேି஻ି௦
௦

 cannot 

simultaneously hold. Thus, in a Nash equilibrium in which all players are playing a 

complete mixed strategy, it must be the case that ߙ௜ = ݅ (0,1) for	߳	ොߙ = 1, … ,ܰ. In this 

case ܲ(݇, ݅) = ቀܰ − 1
݇ ቁߙො௞(1 − ܰ)	݈ܽ݅݉݋ܾ݊݅~݇ .ො)ேିଵି௞, i.eߙ −  ,). Therefore	ොߙ,1

෍൤
ܤ + ݇)ݏ + 1)

ܰ ൨
ேିଵ

௞ୀ଴

ቀܰ − 1
݇ ቁ ො௞(1ߙ − ො)ேିଵି௞ߙ = ܿ 

෍݇ቀܰ − 1
݇ ቁ

ேିଵ

௞ୀ଴

ො௞(1ߙ − ො)ேିଵି௞ߙ =
ܿܰ − ܤ − ݏ

ݏ  

ܰ)ොߙ − 1) =
ܿܰ − ܤ − ݏ

ݏ  

The last line uses the fact that the expected value of ݇~ܾ݈݅݊ܽ݅݉݋	(ܰ −  ) is	ොߙ,1

ܰ)ොߙ − 1). Therefore		ߙො = ௖ேି஻ି௦
௦(ேିଵ)

. Note that ݏ > ܿ		implies that ߙො < 1, while ߙො > 0	if 

and only if ܰ > ஻ା௦
௖

. Thus, ߙ௜ = ොߙ = ௖ேି஻ି௦
௦(ேିଵ)

 for ݅ = 1, … ,ܰ is a Nash equilibrium if 

and only if ܰ > ஻ା௦
௖

. 

Case 5 (some cooperate and some play a mixed strategy): Suppose that there is a 

Nash equilibrium in which ݊ଵ players are cooperating and ܰ − ݊ଵ are playing a 

complete mixed strategy. Without loss of generality assume that ߙ௜ = 1  for 

݅ = 1, … ,݊ଵ  and ߙ௜ 	߳	(0,1)  for ݅ = ݊ଵ + 1, … ,ܰ . Then, for ݅ = 1, … , ݊ଵ , the Nash 

conditions become ∑ ቂ஻ା௦(௞ାଵ)
ே

− ܿቃܲ(݇, ݅) ≥ 0ேିଵ
௞ୀ௡భିଵ  or, which is equivalent: 

෍ ݇
ேିଵ

௞ୀ௡భିଵ

ܲ(݇, ݅) ≥
ܿܰ − ܤ − ݏ

ݏ  

For ݅ = ݊ଵ + 1, … ,ܰ, the conditions become ∑ ቂ஻ା௦(௞ାଵ)
ே

− ܿቃܲ(݇, ℎ) = 0ேିଵ
௞ୀ௡భ  or, which 

is equivalent: 

෍ ݇
ேିଵ

௞ୀ௡భ

ܲ(݇,ℎ) =
ܿܰ − ܤ − ݏ

ݏ  
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Using the same argument that we employed to prove that if in a Nash equilibrium all 

player are playing a mixed strategy, they must play the same strategy, we can prove that 

in a Nash equilibrium ߙ௜ = ෤ߙ  for all ݅ = 1, … ,݊ଵ . As a consequence ܲ(݇, ݅) =

൬ܰ − ݊ଵ − 1
݇ − ݊ଵ

൰ߙ෤௞ି௡భ(1 − ෤)ேିଵି௞ߙ  and, therefore: 

෍ ൬ܰ − ݊ଵ − 1
݇ − ݊ଵ

൰ ෤௞ି௡భ(1ߙ − ෤)ேିଵି௞ߙ =
ேିଵ

௞ୀ௡భ

ܿܰ − ܤ − ݏ
ݏ  

This implies that: 

෤ߙ =
ܿܰ − ܤ − (1 + ݊ଵ)ݏ
ܰ)ݏ − 1 − ݊ଵ)  

For ݅ = ݊ଵ + 1, … ,ܰ  we have that ܲ(݇, ݅) = ൬ ܰ − ݊ଵ
݇ − ݊ଵ + 1൰ߙ෤

௞ି௡భାଵ(1 − ෤)ேି௞ିଵߙ . 

Therefore: 

෍ ݇൬ ܰ − ݊ଵ
݇ − ݊ଵ + 1൰ ොߙ

௞ି௡భାଵ(1 − ො)ேି௞ିଵߙ
ேିଵ

௞ୀ௡భିଵ

≥
ܿܰ − ܤ − ݏ

ݏ  

This implies: 

෤ߙ ≥
ܿܰ − ܤ − ݊ଵݏ
ܰ)ݏ − ݊ଵ)  

Since ݏ > ෤ߙ ,ܿ = ௖ேି஻ି(ଵା௡భ)௦
௦(ேିଵି௡భ)

 and ߙ෤ ≥ ௖ேି஻ି௡భ௦
௦(ேି௡భ)

 never hold simultaneously. 

Case 6 (some do not cooperate and some play a mixed strategy): Suppose that there 

is a Nash equilibrium in which ݊ଶ are playing a complete mixed strategy and ܰ −݊ଶ 

are not cooperating. Without loss of generality assume ߙ௜ 	߳	(0,1) for ݅ = 1, … , ݊ଶ , and 

௜ߙ = 0  for ݅ = ݊ଶ + 1, … ,ܰ . Then, for ݅ = 1, … , ݊ଶ  we have ܲ(݇, ݅) ≠ 0  for 

0 ≤ ݇ ≤ ݊ଶ − 1. Thus, the Nash conditions become: 

෍ ቈ
ܤ + ݇)	ݏ + 1)

ܰ − ܿ቉ܲ(݇, ݅)
௡మିଵ

௞ୀ଴

= 0 

Since ∑ ܲ(݇, ݅) = 1ேିଵ
௞ୀ଴ , these conditions are equivalent to: 
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෍ ݇ܲ(݇, ݅)
௡మିଵ

௞ୀ଴

= ෍ ݇ܲ(݇, ݅)
௡మିଵ

௞ୀଵ

=
ܿܰ − ܤ − ݏ

ݏ  

For ݅ = ݊ଶ + 1, … ,ܰ we have ܲ(݇, ݅) ≠ 0 for 0 ≤ ݇ ≤ ݊ଶ. Thus, the Nash conditions 

become: 

෍ቈ
ܤ + ݇)	ݏ + 1)

ܰ − ܿ቉ ܲ(݇, ݅)
௡మ

௞ୀ଴

≤ 0 

Since ∑ ܲ(݇, ݅) = 1ேିଵ
௞ୀ଴ , these conditions are equivalent to: 

෍݇ܲ(݇, ݅)
௡మ

௞ୀ଴

= ෍݇ܲ(݇, ݅)
௡మ

௞ୀଵ

≤
ܿܰ − ܤ − ݏ

ݏ  

Arbitrarily select ݅ ≤ ݊ଶ and ℎ > ݊ଶ. Then, from Lemma 2 we have ܲ(݇,ℎ) > ܲ(݇, ݅) 

for all ݇ ≥ 1, which implies ∑ ݇ܲ(݇,ℎ) ≥௡మିଵ
௞ୀଵ

௖ேି஻ି௦
௦

. But, this leads to a contradiction 

because ∑ ݇ܲ(݇, ℎ) ≥௡మିଵ
௞ୀଵ

௖ேି஻ି௦
௦

 and ∑ ݇ܲ(݇, ℎ) ≤	௡మ
௞ୀଵ

௖ேି஻ି௦
௦

 cannot hold 

simultaneoulsy. ∎ 
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Only Appendix 2. Description of the Experiment 

In this appendix we present the script for the general instructions, the instructions given 

to the participants, the quiz, and the questionnaire. 

 

Appendix 2.1. Script for General Instructions 

We would like to welcome everyone to this experiment. This is an experiment in 

decision making, and you will be paid for your participation in cash, at the end of the 

experiment. Different subjects may earn different amounts. What you earn depends 

partly on your decisions, partly on the decisions of others, and partly on chance. 

The entire experiment will be conducted through computer terminals, and all 

interaction between participants will take place through the computers. It is highly 

important for you not to talk or to try in any way to communicate with other subjects 

during the experiment. 

In your workstation you will find a pencil, a paper with instructions, and scratch paper. 

During the experiment you can use the scratch paper to make calculations.  

We will now start with a brief instruction period. During the instruction period, you will 

be given a complete description of the experiment. If you have any questions during the 

instruction period, please raise your hand and your question will be answered so 

everyone can hear it. If any difficulties arise after the experiment has begun, raise your 

hand, and one of the persons conducting the experiment will come and assist you.  

You are one of 20 students who have been called to this experiment. In each round you 

will be randomly assigned to one of two groups, consisting of 10 persons each. Then, you 

will play the computer game, which will appear on the screen, with the members of the 

same group. At the beginning of the each round, the parameters of the game will appear 

on the screen, as the timing. At the end of the round, you will be informed of the result of 

the game, the points you have earned as well as the points you have accumulated so far. 

In the next round, all players will again be randomly assigned to one of the two new 

groups of 10 people each. 

The experiment you are participating in is broken down into four unpaid practice 

rounds and twelve separate paid rounds. At the end of the last round, you will be paid 
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the total amount you have accumulated during the course of the last twelve rounds. Your 

profit is denominated in POINTS. Your PESO profit is determined by multiplying your 

earnings in points by a conversion rate. In this experiment, the conversion rate is 2 

pesos to 1 point.18 Everyone will be paid in private and you are under no obligation to 

tell others how much you earned. 

Please read carefully the instructions that you will find in your desktop. You have 10 

minutes. Please, remember that if you have any question, you should ask it aloud. 

 

Appendix 2.2. Instructions 

1. In each round you receive ONE point. You can keep it for yourself or invest it in a 

common fund. You have 90 seconds to make your decision. When you select an option, 

please press the "Next" button. If after 90 seconds you do not select an option, the 

computer will randomly do it for you. 

2. Once all players have taken a decision, the outcome of the game will appear on the 

screen: if the investment is successful, each of the ten players will receive ܤ points, and 

those who have decided to invest their point will receive ݏ additional points. If the 

investment fails, nobody gets a profit, and those who have decided to invest thier point, 

will lose the point they initially have invested.  

Therefore:  

 If you have decided to invest your point in the common fund and the investment 

is successful, you will accumulate ܤ +  ;points ݏ

 If you have decided to maintain your point and the investment is successful, you 

will accumulate ܤ + 1 points;  

 If you have decided to invest your point in the common fund and the investment 

fails, you will earn 0 points;  

 If you have decided to maintain your point and the investment fails, you will earn 

1 point. 

                                                   
18 The conversion rate was adjusted by inflation (20% since August). Hence, from August the rate was 
adjusted to 2.4 pesos for 1 point. 2 and 2.4 Argentine pesos were equivalent to approximately 0.25 and 
0.28 dollars, respectively. 



46 
 

3. The probability of success of the investment depends on the proportion of players in 

your group who have decided to invest:  

Successful	Investment	Probability =
(Number	of	players	who	invested	their	Point)	

10
 

Thus, the greater the number of players who have decided to invest their point, the 

greater is the probability that the investment will be successful. 

For example, if six of ten participants choose to invest their point in the common fund, 

the chances of success are 60%. If the investment is successful, those six participants get 

+	ܤ 	ܤ and the remaining four obtain ,ݏ	 + 	1. However, if the investment fails, the six 

participants who decided to invest their point get 0 units, while the remaining four get 1 

point.  

Suppose another case in which from ten players only two decide to invest their points in 

the common fund. Therefore, the chances of success are 20%. If the investment is 

successful, those two participants get ܤ	+ +	ܤ and the remaining eight obtain ,ݏ	 	1. 

However, if the investment fails, the two participants who decided to invest their point 

get 0 units, while the remaining eight get 1 point. 

At the end of each round you will be informed how many players have decided to invest 

their point in the common fund, if the investment was successful or not, the gain in this 

round, and the total amount of points accumulated from the 5th round. To end this 

round, please press the "Next" button.  

At the beginning of the next round, you will be randomly assigned to a new group. Pay 

attention because the parameters of the game may have changed. That is, in each round, 

  .may vary ݏ and / or ܤ

After the 16th round you will be asked to answer a few questions about you. Finally, by 

clicking "Finish", the screen will display a WORD. It is IMPORTANT to remember this 

word because you have to present this password to the person who was running the 

experiment in order to receive your payoff. 

 

Appendix 2.3. Belief Questions 

The following depiction provides a sample of the questions about the beliefs of the 

subjects as seen by them in the screen. 
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Screen: Before you begin to play, we want to ask you some questions about the 

experiment. These questions are only for information purposes and there is no right or 

wrong answers. You will not be paid for answering them. 

1. Suppose that ܤ	 = 	1.25 and ݏ	 = 	0, how many players, in group of ten 10 subjects, 

do you believe that will invest their point in the common fund? [11 options]. 

2. Suppose that ܤ	 = 	1.25 and ݏ	 = 	1.25, how many players, in group of ten 10 

subjects, do you believe that will invest their point in the common fund? [11 options]. 

3. Suppose that ܤ	 = 	3 and ݏ	 = 	1.25, how many players, in group of ten 10 subjects, 

do you believe that will invest their point in the common fund? [11 options]. 

4. Suppose that ܤ	 = 	3 and ݏ	 = 	1.75, how many players, in group of ten 10 subjects, 

do you believe that will invest their point in the common fund? [11 options]. 

 

Appendix 2.4. The Quiz 

After a general explanation of the rules of the game, subjects took the following quiz:  

1. Suppose the following parameters of the game: ܤ	 = 	2 and ݏ	 = 	0. If all players, 

including you, decide NOT to invest their point in the common fund and the investment 

fails. How many points do you obtain at the end of this round? [5 options] 

2. Suppose the following parameters of the game: ܤ	 = 2 and ݏ	 = 	1. If all players, 

including you, decide to invest their point in the common fund and the investment is 

successful. How many points do you get at the end of this round? [5 options] 

3. Consider the following two possible games:  

 First game: ܤ	 = 	3	and ݏ	 = 	1; 

 Second game: ܤ	 = 	4 and ݏ = 	1; 

If you decide NOT to invest your point and the investment fails, in which of the two 

games do you accumulate more points? [3 options] 

4. If there are 10 players and 8 of them decide to invest their point, what is your best 

option if the parameters of the game are: ܤ	 = 	0.5 and ݏ	 = 	2? [3 options] 

5. If there are 10 players and 4 of them decide to invest their point, what is your best 

option if the parameters of the game are:	ܤ	 = 	1 and ݏ	 = 	1? [3 options]  
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Appendix 2.5. Sample Screen 

At the end of each round subjects visualized a summary of the decisions taken in the 

round, whether the investment was successful or not and the payoff obtained in the 

round as well as their own accumulated payoffs for paid rounds. 

 Screen:  

You have decided (not) to invest your point. 

(1, 2, 3, 4, 5, 6, 7, 8, 9 or all) subjects in your group have decided to invest their 

point. 

The investment was (not) successful. 

Your earning in this round was ____ points. 

You have accumulated ____ points since the start of the game. 

 

Appendix 2.6. The Questionnaire 

Thank you for participating in this experiment! Please complete the following 

questionnaire before leaving. 

Question 1: Gender (male/female) 

Question 2: Age (in years) 

Question 3: Nationality 

Question 4: Fluent in English 

Question 5: Have you ever taken a course in game theory? (Yes/No) 

Question 6: Current Studies (Graduate/Undergraduate) 

Question 7: Degree in: a) Economy; b) Business Administration or Accountant; c) 

Finance; d) Political Science, International Affairs, Humanities, or Law; e) Marketing or 

Human Resources; f) Other (specify). 

Question 8: Number of approved courses over total courses in your degree program. 


