
 

 

 

Universidad de San Andrés 

Departamento de Economía 

Maestría en Economía 

 

 

An Approach to Train Machine Leaning Algorithms 

 

 

Diego Hernán Álvarez  

31.662.212 

 

 

Mentor: Manuel Maurette 

 

 

 

 

 

Buenos Aires  

18 de Noviembre, 2020 



 

2 
 

Tesis de Maestría en Economía de 

Diego Hernán Álvarez 

 

“Un Enfoque para Entrenar Algoritmos de Aprendizaje” 

Resumen  

La Minería de Datos ha evolucionado y la tendencia se mueve hacia el entrenamiento de 

algoritmos de aprendizaje cada vez más complejos. Dichos algoritmos son utilizados en 

distintos campos para tomar decisiones importantes. Por ejemplo, en el mundo de la economía 

y las finanzas se entrenan modelos de puntuación de créditos, detección de fraudes, campañas 

de marketing, selección de candidatos en los trabajos, etc. Sin embargo, la elección del 

algoritmo de aprendizaje no necesariamente tiene que estar sesgada hacia lo complejo y 

sofisticado. Antes de entrenar un algoritmo de aprendizaje debería diseñarse un plan de 

trabajo. Una posible estrategia podría ser entrenar un modelo simple e interpretable como 

base, y luego entrenar algoritmos más sofisticados y testear cual es la mejora en el desempeño 

de estos últimos con respecto al modelo base. El objetivo de mi tesis es entrenar una regresión 

logística como modelo base y comparar su desempeño con los modelos de ensamble de árboles 

y testear si siempre vale la pena entrenar algoritmos sofisticados.   

Palabras clave: Sofisticación, Interpretación, Balance, Desafío, Plan de trabajo 

 

“An Approach to Train Machine Learning Algorithms” 

Abstract 

With the evolution of data mining the trend is to train more complex algorithms. Those 

sophisticated machine learning algorithms are being used in several fields to take important 

decisions. Examples in economics include credit scoring models, fraud detection, marketing 

campaigns, job applications, etc. However, modeling approach choices should not be biased 

towards complex machine learning algorithms necessarily. Before training machine learning 

algorithms a working plan should be designed. A strategy could be training a baseline, simple, 

and interpretable model and, then, rely on more complex ones to ascertain the extent of 



 

3 
 

performance improvements. The purpose of this thesis is to train a logistic regression as a 

baseline model and challenge it with tree-based ensemble machine learning algorithms to test 

how much those more complex models improve performance and determine whether it is 

always worth training complex machine learning algorithms. 

 

Keywords: Sophistication, Interpretability, Balance, Challenge, Working plan 

 

Códigos JEL: C49, C52, C55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 
 

I would like to thank Professor Enrique Kawamura. He always supported me, provided me with 

opportunities, encouraged me to write this thesis, and trusted myself with faith and affection.  

I would also like to thank Manuel Maurette and Yanina Gimenez. I could have not faced this 

challenge without them. Yanina has supported me with her knowledge and expertise during 

the whole process.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

Table of Contents 

Abstract ..................................................................................................................................................................................... 2 

1.0 – Introduction ......................................................................................................................................................... 6 

2.0 – Methodologies ..................................................................................................................................................... 9 

2.1 – Logistic Regression .......................................................................................................................................... 12 

2.2 – Decision Trees .................................................................................................................................................... 15 

2.3 – Random Forests ................................................................................................................................................. 18 

2.4 – Gradient Boosting ............................................................................................................................................. 19 

2.4.1 – AdaBoost (Adaptive Boosting) .......................................................................................................... 23 

3.0 – Performance measures ................................................................................................................................ 29 

4.0 – Data and inputs ................................................................................................................................................ 35 

5.0 – Model estimation and Performance Assessment ............................................................................ 52 

5.1 – Logistic Regression ................................................................................................................................... 52 

5.2 – Gradient Boosting ...................................................................................................................................... 56 

5.3 – AdaBoost ........................................................................................................................................................ 59 

5.4 – Random Forest ............................................................................................................................................ 62 

5.5 – Model Comparison .................................................................................................................................... 64 

6.0 – Concluding remarks ...................................................................................................................................... 69 

References ............................................................................................................................................................................ 70 

 

 

 

 

 

 

 

 

 



 

6 
 

1.0 – Introduction  

Supervised classification machine learning algorithms have evolved from simple and 

interpretable models to more sophisticated models that better represent complex 

relationships between the features and the target variable. However, modeling approach 

choices should not be biased towards complex machine learning algorithms necessarily. There 

are many aspects to choose a modeling approach. First, the purpose of the model should be 

clearly stated before training a machine learning algorithm. For example, is the aim of the 

model to be as accurate as possible even at the expense of simplicity and interpretability? Is 

the purpose of the model to provide recommendations as well as their justifications? Those 

questions can also lead to other important ones: is a linear relationship expected between the 

features and the target variable? Is training time an issue to be considered? If training a 

complex model is time-consuming, but a simpler and more interpretable one such as a logistic 

regression performs slightly worse than the complex model, should the complex model still be 

chosen?  

All these questions help design a working plan before training machine learning algorithms. A 

useful approach could be to start by training a baseline simple and interpretable model. The 

baseline model should not be time-consuming within the data preprocessing field. In addition, 

an empirical analysis of the dataset can lead to an expectation about the existence of linear 

relationships between the features and the target variable. Then, depending on the purpose of 

the model, the performance of its baseline, and the existence of training time constraints; the 

baseline model could be challenged by training more complex models. The purpose of this 

thesis is to train a logistic regression as a baseline model and challenge it with tree-based 

ensemble machine learning algorithms to ascertain the performance improvements and to 

answer the question if it is always worth training complex machine learning algorithms. I 

trained a set of models on the United States’ Census Income dataset (Kohav and Becker 1996), 

which consists of 48,842 instances and whose target is to predict whether a person earns more 

than $50 thousand per year. Before fitting the models, I clearly stated my purpose: I want to 

find the best classification model, while maintaining a balance between training and 

interpretability efforts. 

The performance of a machine learning algorithm must be evaluated considering the ‘bias-

variance trade-off’. On the one hand, a learning method presents variance issues when it is too 

specialized on the data it has been trained and fails to predict new observations. In this case, 



 

7 
 

the algorithm overfits the training data. On the other hand, a learning method has a bias 

problem when the modeling approach is not flexible enough to match the patterns in the data. 

For example, a Logistic Regression model has a bias issue when fitting data that has non-linear 

patterns even though its predictions are more stable on new observations. The ‘bias-variance 

trade-off’ implies that a machine learning algorithm with a bias or variance issue should be 

treated carefully to prevent solving one problem at the expense of the other. 

I have chosen a logistic regression as a baseline model because its training is not excessively 

time-consuming. Additionally, it is not a black-box model, since the estimated coefficients 

explain the drivers of the probability. If the challenger models improve the performance of the 

logistic regression, the baseline model may not necessarily be discarded. In such case, I would 

consider how much these models improved performance and the time required not only to 

train them but also to connect cause and effect.     

The challenger models I have trained in this thesis are tree-based ensemble algorithms. There 

are two branches of ensemble models that were developed in parallel: ‘Bagging’ and ‘Boosting.’ 

These machine learning algorithms improved the ‘Classification and Regression Trees’ (CART) 

approach developed by Breiman et al. (1984). This method produces hierarchical partitions 

using binary conditions over the feature space. The output is very easy to interpret and should 

not be used if the nature of the data is expected to be linear. In addition, this learning method 

has a variance issue. ‘Bagging’ or ‘Bootstrap aggregating’ was developed to address the 

variance of a learning method by bootstrapping the learning set multiple times, training the 

learning method on each of the bootstrapped sets, and producing an ‘aggregated predictor’ 

with the average of the outcomes when the target variable is numerical or with “a plurality 

vote when predicting a class” (Breiman 1994). Breiman (1994) concluded “what one loses, 

with the trees, is a simple and interpretable structure. What one gains is increased accuracy.”  

Ho from AT&T Bell Laboratories —concerned about accuracy losses, which resulted from 

limiting the complexity when training decision trees to gain accuracy on unseen data— 

proposed a method to build multiple trees using “randomly selected subspaces of the feature 

space” (Ho 1995) to improve the accuracy on unseen data without losing the accuracy of the 

classifier on the training data. Within the shape recognition field, Amit and Geman explored a 

tree-based approach that randomly selected a small sample of informative features at each 

node “on a virtually infinite family of binary features . . . of the image data” (Amit and Geman 

1997). Later, Breiman (2001) proposed the ‘Random Forests’ approach that combined the 

random selection of features to split each decision tree node with Bagging (Breiman 2001). On 



 

8 
 

the Boosting side, Kearns and Valiant introduced the famous question of whether a “weak” 

learning model, which is slightly better than random guessing, can be ‘boosted’ to produce a 

strong learning algorithm, in the distribution-free or probably approximately correct (PAC) 

model (Freund and Schapire 1999). In 1989, Schapire introduced a polynomial-time boosting 

algorithm and showed that “a model of learnability in which the learner is only required to 

perform slightly better than guessing is as strong as a model in which the learner’s error can be 

made arbitrarily small” (Schapire 1990). Freund (1990) developed a more efficient boosting 

algorithm that presented some practical weaknesses, and in 1995 Freund and Schapire 

developed the ‘AdaBoost’ algorithm, which overcame the practical weaknesses of the previous 

boosting algorithms (Freund and Schapire 1999). In 2001, Friedman developed a general 

gradient descent ‘boosting’ paradigm making a connection between stage-wise additive 

expansions and steepest-descent minimization in function space (Friedman 2001).   

I organized the rest of the thesis as follows: In Section 2, I further explain the ‘bias-variance’ 

trade-off and provide thorough details of the mathematics behind logistic regression and tree-

based ensemble models. In Section 3, I describe the ‘Receiver Operating Characteristic’ and 

‘Precision-Recall’ curves, which I have used to assess the performance of the models. In Section 

4, I analyze the dataset and describe the preprocessing I have conducted on the features and 

the target variable. In Section 5, I provide a description and a comparison of the estimation of 

each model. Finally, I provide my conclusions in Section 6.  

  



 

9 
 

 

2.0 – Methodologies  

In this section, I introduce the notation1 I used in this thesis, the bias-variance tradeoff, and two 

resampling approaches. In the subsections herein, I describe the methodologies of the learning 

methods trained.  

Let 𝑥𝑖𝑗  represent the value of the 𝑗𝑡ℎ variable for the 𝑖𝑡ℎ observation (James, Witten, et al. 

2013) where:  

 𝑖 = 1,2, … , 𝑛. 

 𝑗 = 1,2, … , 𝑝. 

Matrix 𝑿 has dimension 𝑛𝑥𝑝 and its (𝑖, 𝑗) element is 𝑥𝑖𝑗  (James, Witten, et al. 2013): 

𝑿 = (

𝑥11 … 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑛1 … 𝑥𝑛𝑝

) . 

 

[1] 

The rows from matrix 𝑿 are 𝑥1, 𝑥2, … , 𝑥𝑛 . Vector 𝒙𝑖 has the 𝑝 variable values for the 𝑖𝑡ℎ 

observation (James, Witten, et al. 2013):  

𝒙𝑖 = (

𝑥𝑖1

⋮
𝑥𝑖𝑝

). 

 

[2] 

The columns of 𝑿 are 𝒙1, 𝒙2, … , 𝒙𝑝. Each is a vector of length 𝑛 (James, Witten, et al. 2013): 

𝒙𝑗 = (

𝑥1𝑗

⋮
𝑥𝑛𝑗

). 

 

[3] 

The 𝑖𝑡ℎ observation of the target variable is 𝑦𝑖 . The vector of all 𝑛 observations is the following 

(James, Witten, et al. 2013): 

𝒚 = (

𝑦1

⋮
𝑦𝑛

). 

 

[4] 

                                                             
1 I used the notation from James, Witten, et al. 2013.  



 

10 
 

To further explain the bias-variance trade-off, 𝐷 = {(𝒙1, 𝑦1), … , (𝒙𝑛, 𝑦𝑛)} is the set of data 

points that are assumed to be 𝑖. 𝑖. 𝑑. drawn from an unknown distribution 𝑃(𝑿, 𝒀) and  𝒚 ∈ ℝ 

— I assumed, for the sake of simplicity, a regression setting that uses a squared loss function. 

There may not be a unique 𝑦 label associated to that vector for a given input vector of features 

𝒙. Therefore, there is a distribution over all possible 𝑦 values given vector 𝒙 (Weinberger 

2018). The expected value �̅�  given 𝒙 ∈ ℝ𝑝 is defined as (Weinberger 2018): 

�̅�(𝒙) = ∫ 𝑦 𝑃𝑟(𝑦|𝒙)𝑑𝑦. 

 

[5] 

The output of algorithm 𝒜 after trained on 𝐷 is denoted as (Weinberger 2018): 

ℎ𝐷 = 𝒜(𝐷). [6] 

 

The training error is the expected error of the learning method in the training set 𝐷. However, 

the aim of the algorithm is to accurately predict the label of new data points drawn from 

distribution 𝑃 —i.e., (𝒙, 𝑦)~𝑃. The test or generalization error is the expected error of the 

classifier (trained on 𝐷) over new data points (Weinberger 2018): 

𝐸𝑥,𝑦~𝑝[(ℎ𝐷(𝑥) − 𝑦)2] = ∬[ℎ𝐷(𝒙) − 𝑦]2 𝑃(𝒙, 𝑦) 𝑑𝒙 𝑑𝑦. 

 

[7] 

Each  𝒙 and 𝑦 from 𝐷 are random variables drawn 𝑛 times from distribution 𝑃. Therefore, 

dataset 𝐷, as well as ℎ𝐷, is also a random variable. This is because ℎ𝐷 is the output of algorithm 

𝒜  trained on 𝐷 (i.e., a function of a random variable). The expected classifier ℎ̅ is the weighted 

average of algorithm 𝒜’s output trained on datasets 𝐷 drawn n times from distribution 𝑃 

(Weinberger 2018): 

ℎ̅ = 𝐸𝐷~𝑃𝑛[𝒜(𝐷)] = ∫ ℎ𝐷𝑃(𝐷)𝑑𝐷. 

 

[8] 

Since ℎ𝐷  is a random variable, the expected error (given 𝒜) over many drawn datasets is the 

following (Weinberger 2018): 

𝐸(𝑥,𝑦)~𝑃

𝐷~𝑃𝑛

[(ℎ𝐷(𝑥) − 𝑦)2] = ∭[(ℎ𝐷(𝒙) − 𝑦)2] 𝑃(𝒙, 𝑦) 𝑃(𝐷)𝑑𝑦 𝑑𝒙 𝑑𝐷. 

 

[9] 

The aim is to choose an algorithm with the lowest generalization error. Equation [9] can be 

broken down into the following three terms (Weinberger 2018): 



 

11 
 

𝐸𝒙,𝑦,𝐷[(ℎ𝐷(𝑥) − 𝑦)2]

= 𝐸𝒙 [(ℎ̅(𝒙) − �̅�(𝒙))
2

] + 𝐸𝒙,𝑦[(�̅�(𝒙) − 𝑦)2] + 𝐸𝒙,𝐷 [(ℎ𝐷(𝒙) − ℎ̅(𝒙))
2

]. 

 

[10] 

The variance of a classifier is 𝐸𝒙,𝐷 [(ℎ𝐷(𝒙) − ℎ̅(𝒙))
2

]. If different datasets are drawn, it 

measures (on average) how much the outputs of the classifier changes with respect to the 

mean classifier. If a learning method has a high variance, small changes with respect to the 

training dataset can result in large changes in the predictions (Weinberger 2018). The learning 

method is overfitting the training data when the expected training error is small but has a large 

test error.  

The noise is 𝐸𝒙,𝑦[(�̅�(𝒙) − 𝑦)2]. In the regression setting, the aim of the algorithm is to minimize 

the squared loss. The minimum of the squared loss is achieved with the expected label �̅�(𝒙). 

This error lies in �̅�(𝒙) not matching the actual label 𝑦 and, therefore, being irreducible 

(Weinberger 2018). 

The squared bias is 𝐸𝒙 [(ℎ̅(𝒙) − �̅�(𝒙))
2

]. If an infinite number of datasets allows obtaining the 

expected classifier, the term measures the degree of bias of the learning method towards some 

explanation that does not match the real patterns in the data (Weinberger 2018). For example, 

a linear regression is a simple model with less flexibility than smoothing splines or classifiers, 

such as Random Forests or Gradient Boosting (James, Witten, et al. 2013), and may have a bias 

problem fitted on data with nonlinear patterns. 

This involves a trade-off because when a learning method tries to bring one of the three terms 

down to zero, the other ones may go up. The bias-variance trade-off also holds when the 

response variable is qualitative.  

If a classifier is trained on 𝐷 = {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}  where the response variable is qualitative, 

the training error rate is the proportion of observations that are wrongly classified 

(Weinberger 2018): 

1

𝑛
∑ 𝐼(𝑦𝑖 ≠ ℎ𝐷(𝑥𝑖))

𝑛

𝑖=1

. 

 

[11] 

Where 



 

12 
 

 ℎ𝐷(𝑥𝑖) is the predicted label for the 𝑖𝑡ℎ observation 

 𝐼 is the indicator function that equals 1 if 𝑦𝑖 ≠ ℎ𝐷(𝑥𝑖) and 0 otherwise.  

In practice, it is not possible to draw infinite datasets. Resampling methods, such as validation 

set approach and 𝑘-fold cross validation, address these issues. The validation set approach 

randomly divides the available set of observations 𝐷 into training and validation sets (James, 

Witten, et al., An Introduction to Statistical Learning with Applications in R 2013). Algorithm 𝒜 

is fit on the training set, and this model is used to predict the target variable in the validation 

set. The validation error rate provides an estimation of the error rate when the algorithm is 

trained on new observations (James, Witten, et al. 2013). However, this estimation can be 

highly variable, because it depends on the splitting of 𝐷 (James, Witten, et al. 2013). With 𝑘-

fold cross-validation 𝐷 is randomly divided “into 𝑘 groups, or folds, of approximately equal 

size” (James, Witten, et al. 2013). The first fold is considered as a validation set, and 𝒜 is fit on 

the 𝑘 − 1 folds (James, Witten, et al. 2013). The error estimation is computed using the 

observations in the hold-out fold (James, Witten, et al. 2013). The k-fold cross-validation 

estimation is calculated by averaging the 𝑘 estimations of the test error (James, Witten, et al. 

2013). 

In practice, 𝐷 is split into training and test sets. The algorithm is fit in the training set. In 

addition, generally 𝑘-fold cross-validation is used over the training set to calibrate the specific 

parameters of the model. The test set is used to evaluate model performance.  

2.1 – Logistic Regression  

Let us denote 𝑌 as a binary-response variable that can only take two values (Sosa Escudero 

1999). Each value is associated with the occurrence of a specific event. Therefore,  

𝑌 = {
1 𝐼𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑜𝑐𝑐𝑢𝑟𝑠,
0 𝐼𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟.

 

 

[12] 

The realization of the random variable 𝑌  is 𝑦𝑖  and takes values 1 and 0 with probabilities 𝑝 and 

(1 − 𝑝), respectively. Therefore, 𝑌 follows a Bernoulli distribution with parameter 𝑝 and can be 

written in compact form as follows:  

𝑃𝑟(𝑌 = 𝑦𝑖) = 𝑝𝑦𝑖(1 − 𝑝)1−𝑦𝑖 . 

 

[13] 

The expected value and variance of  𝑌𝑖  are  



 

13 
 

𝐸(𝑌) = 𝑝. 

 

[14] 

𝑉𝑎𝑟(𝑌) = 𝑝 ∗ (1 − 𝑝). 

 

[15] 

Both mean and variance depend on the underlying probability (Murphy 2012). Therefore, any 

factor that affects the probability will alter the mean and the variance.  

Let us {𝑦1, … , 𝑦𝑛} denote a random sample of 𝑛 independent observations and 𝑥𝑖 , a vector of 𝑝 

observed covariates. The aim is to estimate the probability of occurrence of the event 

conditioned on the set of information 𝑥𝑖  (Sosa Escudero 1999): 

𝑝𝑖 = 𝑃𝑟(𝑦𝑖 = 1|𝑥𝑖). 

 

[16] 

The probability is also the expectation of 𝑦𝑖  conditioned on 𝑥𝑖  (Sosa Escudero 1999): 

𝐸(𝑦𝑖|𝑥𝑖) = 1 ∗ 𝑝𝑖 + 0 ∗ (1 − 𝑝𝑖) = 𝑝𝑖. 

 

[17] 

A simple modeling approach could assume the existence of a linear relationship between 𝑥𝑖  

and 𝑦𝑖  (Sosa Escudero 1999): 

𝑦𝑖 = 𝑥𝑖𝛽 + 𝑢𝑖          with 𝐸(𝑢𝑖|𝑥𝑖) = 0. 

 

[18] 

Therefore,  

𝐸(𝑦𝑖|𝑥𝑖) = 𝑝𝑖 = 𝑥𝑖𝛽. 

 

[19] 

Where 𝛽 is a vector of regression coefficients that is often estimated through the Ordinary 

Least Squares (OLS) approach. However, conditional probabilities estimated using the above 

specification present issues (Sosa Escudero 1999). These issues lie in 𝑝𝑖 ∈ [0,1], but the linear 

predictor 𝑥𝑖𝛽 can take any real value.  

A simple solution to this problem is to transform the probability and model such 

transformation as a linear function of the covariates. Such transformation consists of two steps.  

First, 𝑝𝑖  is transformed into odds:  

𝑜𝑑𝑑𝑠𝑖 =
𝑝𝑖

1 − 𝑝𝑖
. 

[20] 



 

14 
 

 

The odds are the ratio of favorable cases to unfavorable cases. For example, if 𝑝𝑖 =
1

2
,  the odds 

are one-to-one; or if 𝑝𝑖 =
1

3
,  the odds are one-to-two.  

Second, logits or log-odds are calculated by taking the logarithms of the odds ratio:  

𝜂𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑙𝑜𝑔 (
𝑝𝑖

1−𝑝𝑖
).   

 

[21] 

Logits map probabilities from range (0,1) to the entire real line on the following grounds:  

 The odds approach 0 and the logit tends to −∞, as 𝑝𝑖  goes to 0.  

 The odds tend to +∞ and the logit, as 𝑝𝑖  approaches 1.  

 The odds are one-to-one and the logit is 0 when 𝑝𝑖 =
1

2
. 

 Negative logits occur when 𝑝𝑖 <
1

2
 , and positive logits  occur when  𝑝𝑖 >

1

2
.  

The antilogit is the inverse transformation of the logit:  

𝑝𝑖 = 𝑙𝑜𝑔𝑖𝑡−1(𝜂𝑖) =
𝑒𝜂𝑖

1 + 𝑒𝜂𝑖
. 

 

[22] 

The logistic regression approach assumes that 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) is a linear function of the explanatory 

variables:  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑥𝑖𝛽. 

 

[23] 

So that  

𝑝𝑖 = 𝐹(𝑥𝑖𝛽) =
𝑒𝑥𝑖𝛽

1 + 𝑒𝑥𝑖𝛽
. 

 

[24] 

𝐹(. ) is the logistic distribution function that has the following properties (Sosa Escudero 

1999): 

 𝐹(−∞) = 0, 

 𝐹(∞) = 1, 

 𝑓(𝑥) =
𝑑𝐹(𝑥)

𝑑𝑥
> 0. 



 

15 
 

Therefore, 𝐹(. ) transforms the linear index 𝑥𝑖𝛽 into probability-consistent values (Sosa 

Escudero 1999). 

The coefficients measure the change in the conditional probability when any of the 𝑝 

explanatory variables experiences a marginal change (Sosa Escudero 1999): 

𝜕𝑝𝑖

𝜕𝑥𝑖𝑝
= 𝛽𝑝 ∗ 𝐹(𝑥𝑖𝛽). 

 

[25] 

Therefore, the marginal effect comprises two components (Sosa Escudero 1999): 

 𝛽𝑝 measures the impact of a marginal variation of 𝑥𝑖𝑝  on the linear index 𝑥𝑖𝛽. 

 𝐹(𝑥𝑖𝛽) quantifies the change in the conditional probability due to changes in the linear 

index 𝑥𝑖𝛽. 

Logistic regression models are often estimated through the maximum likelihood approach. The 

logarithm of the maximum likelihood function is the following (Sosa Escudero 1999): 

𝐿(𝒚, 𝛽) = ∑[𝑦𝑖 ∗ 𝑙𝑜𝑔(𝐹(𝑿𝛽)) + (1 − 𝑦𝑖) ∗ 𝑙𝑜𝑔(1 − 𝐹(𝑿𝛽))]

𝑛

𝑖=1

. 

 

[26] 

Since the likelihood function of logit models is strictly concave, the solution �̂� of the 

maximization, if it exists, defines a unique maximum (Sosa Escudero 1999).  

2.2 – Decision Trees  

Tree-based methods stratify or segment the predictor space into a set of rectangles and fit a 

simple model in each (James, Witten, et al. 2013). A tree consists of: 

 A root node at the top of the tree. 

 Terminal nodes or leaves that correspond to a set of regions 𝑅1, … , 𝑅𝑀. 

 Internal nodes (the points along the tree). 

 Branches, which are the segments of the tree that connect the nodes. 

A decision tree consists of a set of splitting rules that start in the root node and assign 

observations of the full dataset to different branches. Classification and Regression Trees 

(CART) is a supervised hierarchical method that partitions the feature space using binary 

conditions (Breiman, Friedman, et al. 1984). In this section, I focus on classification trees.  



 

16 
 

Decision Trees are algorithms that work iteratively. Let us denote (𝑌, 𝑿) as an aleatory vector 

with 𝑿 ∈ ℝ𝒑. Starting in the root node, the first step is to find a feature 𝑗 ∈ {1, … , 𝑝}  and a split 

point 𝑠 (𝑠 ∈ ℝ) for feature 𝑗. Feature 𝑗 and split point 𝑠 define the following pair of half-planes 

(James, Witten, et al. 2013):  

𝑅𝐿(𝑗, 𝑠) = {𝒙 ∈ ℝ𝑝: 𝑥𝑗 ≤ 𝑠}  and 𝑅𝑅(𝑗, 𝑠) = {𝒙 ∈ ℝ𝑝: 𝑥𝑗 > 𝑠}. 

 

[27] 

Given a training dataset 𝐷 = {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} and assuming that feature 𝑗 and 𝑠 have been 

chosen, 𝐷 can be divided into two subsets:  

𝑆𝐿 = {(𝑥𝑖 , 𝑦𝑖) ∈ 𝐷: 𝑥𝑖𝑗 ≤ 𝑠} and 𝑆𝑅 = {(𝑥𝑖 , 𝑦𝑖) ∈ 𝐷: 𝑥𝑖𝑗 > 𝑠}. 

 

[28] 

Assuming that the classes of the target variable are 𝑘 = 1, … , 𝐾, the following subsets are also 

defined (Weinberger 2018): 

𝑆𝑚𝑘 = {(𝑥𝑖 , 𝑦𝑖) ∈ 𝑆𝑚: 𝑦𝑖 = 𝑘}  with 𝑚 = 𝐿, 𝑅. 

 

[29] 

Therefore, the probability of label 𝑘 in subset 𝑆𝑚𝑘  is the following:  

𝑝𝑚𝑘 =
𝑁𝑚𝑘

𝑁𝑚
. 

 

[30] 

Where  

 𝑁𝑚𝑘  is the number of observations from 𝑆𝑚𝑘  with label 𝑘. 

 𝑁𝑚 is total number of observations in 𝑆𝑚𝑘 . 

𝑝𝑚𝑘  is calculated for each of the 𝑘 labels. The observations in node 𝑆𝑚 are classified as class 𝑘 

according to the majority class (Hastie, Tibshirani and Friedman 2013):  

𝑘(𝑆𝑚 ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘  𝑝𝑚𝑘 . 

 

[31] 

The distribution of the classes within node 𝑚 should not be equally-likely:  

𝑝𝑚1 = 𝑝𝑚2 = ⋯ = 𝑝𝑚𝐾. 

 

[32] 



 

17 
 

Therefore, the classification tree algorithm needs purity/impurity functions such as ‘Gini’ or 

‘Entropy’ (or ‘Deviance’) to measure the homogeneity within each node2:  

𝐺𝑖𝑛𝑖 = ∑ 𝑝𝑚𝑘

𝐾

𝑘=1

∗ (1 − 𝑝𝑚𝑘). 

 

[33] 

𝐷 = − ∑ 𝑝𝑚𝑘

𝐾

𝑘=1

∗ 𝑙𝑜𝑔(𝑝𝑚𝑘). 

 

[34] 

For example, Entropy is maximized when  𝑝𝑚1 = 𝑝𝑚2 = ⋯ = 𝑝𝑚𝐾, while it reaches its lowest 

when the set is biased to a particular class 𝑘 (Kuhn and Johnson 2013). Therefore, the 

algorithm will seek to minimize the purity within each node.  

Starting in the root node (given feature 𝑗 and split point 𝑠) the purity/impurity of 𝐷 is 

measured in the following way (Weinberger 2018): 

𝐻(𝐷) =
𝑁𝐿

𝑁𝐷
∗ 𝐻(𝑆𝐿) +

𝑁𝑅

𝑁𝐷
∗ 𝐻(𝑆𝑅). 

 

[35] 

Where  

 𝐻 could be Gini, Entropy, or any impurity measure. 

 𝑁𝐿  is the number of observations from the left set 𝑆𝐿. 

 𝑁𝑅  is the number of observations from the right set 𝑁𝑅 . 

 𝑁𝐷  is the total number of observations of the training set 𝐷 (since the algorithm starts 

in the root node). 

Therefore, the purity/impurity of 𝐷 is measured as a weighted average between the 

purity/impurity of the subsets 𝑆𝐿 and 𝑆𝑅.  

The algorithm works in a greedy-way. Given feature 𝑗, the algorithm finds the optimal split by 

trying out every single point. For each split, the algorithm calculates the purities of the two 

leafs. The optimal split 𝑠 is the one that outputs the lowest weighted average. The same process 

                                                             
2  Another impurity measure is “Misclassification Error,” but it is not differentiable. By contrast, Gini and 
Entropy are more sensitive to changes in the probabilities (Hastie, Tibshirani and Friedman 2013).  



 

18 
 

is repeated for every single feature among the 𝑝 predictors. The optimal feature, with optimal 

split 𝑠, is the one that outputs the lowest weighted average among all 𝑝 features. 

The tree grows recursively in the same way; that is, each node is split into two more regions. In 

order to do so, the optimal feature 𝑗 with optimal split point 𝑠 is the one with the lowest 

weighted average, after trying out every single split point for each feature among the 𝑝 

predictors. The tree is grown until some stopping rule is applied—e.g., limiting the depth of the 

tree— (Bishop 2006). 

2.3 – Random Forests 

Decision trees have a high variance problem, since splitting can be applied repeatedly until 

every single leaf is pure. In such case, the classifier memorizes the data leading to a high testing 

error. Limiting the depth of the tree or the number of terminal nodes (i.e., ‘Cost Complexity 

Pruning’) to overcome the variance issue can introduce bias in the model. ‘Bagging’ or 

‘Bootstrap Aggregating’ is a general procedure that addresses the high variance problem 

effectively (James, Witten, et al. 2013). 

Bagging consist in creating 𝑀 bootstrapped training samples out of the original dataset 𝐷 

(Breiman 1994). Each dataset 𝐷1, … 𝐷𝑀  contains the same number of observations as 𝐷. The 

resampling is made randomly with replacement so that one data point can be repeated in 

dataset 𝐷𝑚 many times. Then, an algorithm 𝒜 is trained in each dataset resulting in a sequence 

of outputs {ℎ𝐷1, … ℎ𝐷𝑀
}. In a regression setting the final prediction is the average of the 

sequence:  

ℎ̂(𝑥) =
1

𝑀
∑ ℎ𝐷𝑗

(𝑥)

𝑀

𝑗=1

. 

 

[36] 

Bagging is very useful for mitigating variance in decision trees (James, Witten, et al. 2013). This 

mitigation is done by fitting 𝑀 decision trees without pruning, so that each tree has low bias; 

the variance issue is addressed by averaging the outcomes of the 𝑀 trees. In a classification 

setting, each 𝑀 tree predicts a class, and the final prediction is the most frequent class. This 

procedure is called the ‘Majority vote.’ 

Random Forests combine bagging with a random selection of a subset of features 𝑚 ≪ 𝑝 

whenever a split is done in each of the 𝑀 trees. The random selection of a subset of features 

decorrelates the trees. Typically, in a classification setting the number of features to split each 



 

19 
 

node is approximately the square root of the total number of features (Hastie, Tibshirani and 

Friedman 2013). Consequently, decorrelating the trees allows Random Forests to improve the 

bagging procedure. It could be the case in which a particular feature has a high correlation with 

the target variable. By bagging the original dataset, each Decision Tree trained on the bagged 

data sets would be biased towards selecting the variable with a high correlation with the target 

variable (James, Witten, et al. 2013).  

In addition, Random Forests, as well as any learning method using Bagging, enables the 

estimation of the test error directly from the training dataset. On average, each bagged tree 

uses around 2/3 of the observations (James, Witten, et al. 2013). Therefore, the error in every 

single training point of the original dataset can be measured using the classifiers that were not 

trained with such point. Those errors are averaged to compute the so-called ‘Out-of-Bag 

error’(Weinberger 2018):  

∈𝑂𝑂𝐵=
1

𝑁
∑

1

𝑧𝑖

𝑁

𝑖=1

∑ 𝐼(ℎ𝑗(𝑥𝑖), 𝑦𝑖)

𝑗:(𝑥𝑖,𝑦𝑖)∉𝐷𝑗

. 

 

[37] 

Where 𝑧𝑖 is the number of classifiers that were not trained using 𝑥𝑖 .  

Bagging improves accuracy at the expense of interpretability. By bagging decision trees, the 

aggregated predictor cannot be represented using a single tree (James, Witten, et al. 2013).  

2.4 – Gradient Boosting  

In this subsection, I describe the general framework for Gradient Boosting Algorithms. 

Boosting is a procedure that combines weak learners; that is, classifiers whose error rate is 

“only slightly better than random guessing” (Hastie, Tibshirani and Friedman 2013) and 

outputs a stronger classifier that significantly reduces the bias issue. In 2001, Friedman made a 

connection “between stagewise and steepest descent minimization” (Friedman 2001). The 

following steps details the ‘Forward Stagewise Additive’ algorithm (Hastie, Tibshirani and 

Friedman 2013):  

1) Initialize ℎ0 = 0 

2) For 𝑡 = 1, … , 𝑀:  

2.1) Compute: 



 

20 
 

(𝛼𝑡 , 𝜼𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝜼 ∑ 𝐿(𝑦𝑖 , 𝐻𝑡−1(𝒙𝑖) + 𝛼ℎ(𝒙𝑖; 𝜼))

𝑁

𝑖−1

. 

 

 

[38] 

 

2.2) Set:   

𝐻𝑡(𝒙) = 𝐻𝑡−1(𝒙) + 𝛼𝑡ℎ(𝒙; 𝜼𝑡). 

 

[39] 

Where 𝜼 is the vector of parameters that characterizes the weak learners and 𝛼 is the weight 

that each weak learner has in the ensemble. For trees, 𝜼 “parameterizes the split variables and 

split points at the internal nodes, and the predictions at the terminal nodes” (Hastie, Tibshirani 

and Friedman 2013). The term ‘forward’ refers to the fact that when a new 𝛼𝑡ℎ(𝒙; 𝜼𝑡) is added 

to the ensemble 𝐻𝑡(𝒙), previous  𝛼 and 𝜼 (embedded in 𝐻𝑡−1(𝒙)) are not adjusted.  

To develop the ‘Forward Stagewise Additive’ strategy, Friedman stated a function estimation 

problem where the setting was (Friedman 2001): 

 A random response variable 𝑦 

 A set of random explanatory variables 𝒙 = {𝑥1, … , 𝑥𝑛} 

 A loss function 𝐿(𝑦, 𝐻(𝒙)) 

His goal was to find an approximation �̂�(𝒙) of 𝐻∗, where 

𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻𝐸𝑦,𝒙𝐿(𝑦, 𝐻(𝒙)) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻𝐸𝒙 [𝐸𝑦 (𝐿(𝑦, 𝐻(𝒙)))| 𝒙]. [40] 

 

Function 𝐻∗(𝒙) minimizes the expectation of the loss function over the joint distribution of all 

(𝑦, 𝒙)-values (Friedman 2001). He focused on the following parameterized form of ‘additive’ 

expansions (Friedman 2001):  

 

𝐻(𝒙, {𝛼𝑡 , 𝜼𝑡 }𝑡=1
𝑀 ) = ∑ 𝛼𝑡𝑀

𝑡=1 ℎ(𝒙; 𝜼𝑡). [41] 

 

Friedman wanted to find an approximation �̂�(𝒙) of 𝐻∗ using training observations. First, he 

formulated a parameterized model and chose ‘Steepest-descent’ as the numerical minimization 



 

21 
 

method. Then, he used a non-parametric approach and applied numerical optimization in 

function space to minimize the following expectation (Friedman 2001): 

 

𝜙(𝐻(𝒙)) = 𝐸𝑦[𝐿(𝑦, 𝐻(𝒙))|𝒙]. 

 

[42] 

Where 𝐻(𝒙) “evaluated at each point 𝒙” was considered to be a parameter (Friedman 2001). 

Friedman expressed the solution as follows:  

𝐻∗(𝒙) = ∑ ℎ𝑡(𝒙)

𝑀

𝑡=0

. 

 

[43] 

Where ℎ0(𝒙) “is an initial guess” and {ℎ𝑡(𝒙)}𝑡=1
𝑀  “are incremental functions (‘steps’ or 

‘boosts’)” (Friedman 2001). The steepest-descend approach consist in calculating the gradient 

of 𝜙(𝐻(𝒙)) evaluated at 𝐻𝑡−1(𝒙) = ∑ ℎ𝑡(𝒙)𝑡−1
𝑡=0 . The gradient 𝑔𝑡(𝒙) of the expected value of the 

loss function evaluated at  𝐻𝑡−1(𝒙) defines the direction in which the expected value of the loss 

function is minimized:  

𝑔𝑡(𝒙) = [
𝜕𝐸𝑦[𝐿(𝑦, 𝐻(𝒙))|𝒙]

𝜕𝐻(𝒙)
]

𝐻(𝒙)=𝐻𝑡−1(𝒙)

. 

 

[44] 

Then, 𝛼𝑡 determines the step that needs to be taken along that direction and is obtained using 

the line-search approach:  

𝛼𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼𝐸𝑦,𝒙𝐿(𝑦, 𝐻𝑡−1(𝒙) − 𝛼𝑔𝑡(𝒙)). 

 

[45] 

With 

ℎ𝑡(𝒙) = −𝛼𝑡𝑔𝑡(𝒙). 

 

[46] 

However, this nonparametric approach cannot be used with finite training data, and Friedman 

parameterized the optimization problem to minimize a data-based estimation of the expected 

loss (Friedman 2001): 

{𝛼𝑡 , 𝜼𝑡}𝑡=1
𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛

{𝛼′𝑡,𝜼′𝑡}
𝑡=1

𝑀 ∑ 𝐿 (𝑦𝑖 , ∑ 𝛼′𝑡ℎ(𝒙𝑖; 𝜼′𝑡)

𝑀

𝑡=1

)

𝑁

𝑖=1

. 
[47] 



 

22 
 

Then, Friedman proposed adopting the ‘greedy stagewise’ approach whenever the above 

minimization problem cannot be solved. The ‘greedy stagewise’ approach is the one described 

at the beginning of this section; that is, initialize ℎ0 and for  𝑡 = 1,2, … 𝑀 and solve for 

(Friedman 2001): 

(𝛼𝑡, 𝜼𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝜼 ∑ 𝐿(𝑦𝑖 , 𝐻𝑡−1(𝒙𝑖) + 𝛼ℎ(𝒙𝑖; 𝜼))

𝑁

𝑖−1

. 

 

[48] 

And then set:  

𝐻𝑡(𝒙) = 𝐻𝑡−1(𝒙) + 𝛼𝑡ℎ(𝒙; 𝜼𝑡). 

 

[49] 

Depending on the loss function or base learner ℎ(𝒙; 𝜼) the solution to the minimization 

problem can be broken into two parts. Given 𝐻𝑡−1(𝒙), the gradient using finite training data is 

the following:  

 

 𝑔𝑡(𝑥𝑖) = [
𝜕𝐿(𝑦𝑖,𝐻(𝑥𝑖))

𝜕𝐻(𝑥𝑖)
]

𝐻(𝑥𝑖)=𝐻𝑡−1(𝒙) 
. 

[50] 

 

Moreover, 𝛁𝑡 = {𝑔𝑡(𝑥𝑖)}𝑖=1
𝑁  determines the “best steepest-descent step direction … in the 

𝑁 −dimensional data space” (J. Friedman 2001).  The weak learner ℎ(𝒙; 𝜼) is the “most highly 

correlated” learner with the gradient of the loss function (Friedman 2001). Assuming 𝛼 is a 

small constant, the problem is solved in the same way as the gradient descent by taking a first 

order Taylor approximation (Weinberger 2018): 

 

𝐿(𝐻𝑡−1(𝒙) + 𝛼ℎ𝑡(𝒙; 𝜼)) ≈ 𝐿(𝐻𝑡−1(𝒙)) + 𝛼〈𝛁𝑡 , ℎ𝑡(𝒙; 𝜼)〉. 

 

[51] 

Where 〈𝛁𝑡, ℎ𝑡(𝒙; 𝜼)〉 is the inner product between the gradient of the loss function and ℎ𝑡(𝒙; 𝜼). 

The linear approximation of the loss linear function only holds for small 𝛼 values and within a 

small region around 𝐿(𝐻𝑡−1(𝒙)) (Weinberger 2018). Since 𝐿(𝐻𝑡−1(𝒙)) is a constant that is not 

affected by ℎ𝑡(𝒙; 𝜼), the minimization problem approximately becomes 

 



 

23 
 

ℎ𝑡(𝒙; 𝜼𝒕) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜼 𝛼 ∑
𝜕𝐿(𝑦𝑖 , 𝐻𝑡−1(𝑥𝑖))

𝜕𝐻𝑡−1(𝑥𝑖)
∗ ℎ𝑡(𝒙; 𝜼)

𝑛

𝑖=1

. 

 

[52] 

Then, the line search is performed, as follows:  

𝛼𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼 ∑ 𝐿(𝑦𝑖, 𝐻𝑡−1(𝒙) + 𝛼ℎ𝑡(𝒙; 𝜼𝒕))

𝑁

𝑖=1

. 

 

[53] 

The approximation is updated (Friedman 2001), as follows:  

𝐻𝑡(𝒙) = 𝐻𝑡−1(𝒙) + 𝛼𝑡ℎ𝑡(𝒙; 𝜼𝒕). 

 

[54] 

2.4.1 – AdaBoost (Adaptive Boosting) 

In this section, I describe the ‘AdaBoost’ algorithm. The general setting is the following:  

 

 𝐷 = {(𝑥1, 𝑦1), … , (𝑥1, 𝑦𝑛)} is the set of samples.  

 The classification setting is binary:  𝑦𝑖 ∈ {+1, −1}. 

 𝛼𝑡 is an adaptive parameter that is optimized in every iteration 𝑡. 

 ℎ𝑡(𝒙) is a binary weak learner that outputs {−1, +1}. 

 The loss function is exponential: 𝑙(𝐻𝑡) = ∑ 𝑒−𝑦𝑖𝐻𝑡(𝑥𝑖)𝑛
𝑖=1 . 

The algorithm works in an iterative-way and the ensemble classifier is a linear combination of 

the weak learners. The final classification, after performing 𝑇 iterations, is (Hastie, Tibshirani 

and Friedman 2013):   

𝐻𝑇(𝑥) = 𝑠𝑖𝑔𝑛[𝛼1ℎ1(𝑥) + 𝛼2ℎ2(𝑥) + ⋯ + 𝛼𝑇ℎ𝑇(𝑥)]. 

 

[55] 

Where 𝛼𝑡 represents the weight assigned to weak learner ℎ𝑡(𝒙). The weights gives higher 

influence in the final prediction to the more accurate weak learners in the sequence.  

The exponential loss function yields higher values than the correctly classified ones for the 

misclassified samples. After iteration 𝑡:   

 𝐻𝑡 classifies the 𝑖𝑡ℎ  observation correctly if  𝑦𝑖 = 𝐻𝑡(𝑥𝑖), which is equivalent to   

𝑦𝑖𝐻𝑡(𝑥𝑖) = 1. In this case, the loss function outputs a negative value 𝑙[𝐻𝑡(𝑥𝑖), 𝑦𝑖] = 𝑒−1. 



 

24 
 

 𝐻𝑡 classifies the 𝑖𝑡ℎ  observation incorrectly if 𝑦𝑖 ≠ 𝐻𝑡(𝑥𝑖), which is equivalent to   

𝑦𝑖𝐻𝑡(𝑥𝑖) = −1, and the loss function output a positive value 𝑙[𝐻𝑡(𝑥𝑖), 𝑦𝑖] = 𝑒1. 

At each boosting step 𝑡, the algorithm assigns a weight 𝑤𝑖
𝑡 to each sample observation. The 

weights of all the observations that have been incorrectly classified by 𝐻𝑡−1(𝑥) = ∑ 𝛼𝑡ℎ𝑡(𝑥)𝑡−1
𝑡=1  

increase, whereas the weights decrease for those that were correctly classified. Therefore, the 

algorithm spots the next weak learner in the observations that have been incorrectly classified 

(Hastie, Tibshirani and Friedman 2013).  

First, all the samples 𝑖 = 1,2, … 𝑁 are assumed to have the same weight (Hastie, Tibshirani and 

Friedman 2013):  

𝑤𝑖 =
1

𝑁
. 

 

[56] 

When the weights are updated, the following constraint must hold in order to enforce a 

distribution:  

∑ 𝑤𝑖
𝑡

𝑁

𝑖=1

= 1. 

 

[57] 

This constraint holds at the beginning, since all the samples are equally weighted.  

Assuming that 𝑡 − 1 iterations have been performed, the next weak learner ℎ𝑡(𝑥) and 𝛼𝑡 are 

the result of the following minimization problem (Hastie, Tibshirani and Friedman 2013):  

(𝛼𝑡, ℎ𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,ℎ ∑ 𝑒[−𝑦𝑖(𝐻𝑡−1(𝑥𝑖)+𝛼𝑡ℎ𝑡(𝑥𝑖))]

𝑁

𝑖=1

. 
[58] 

This can be solved through gradient descent in function space by fixing a small 𝛼 > 0 and using 

a first order Taylor approximation of the loss function with respect to vector 𝐻𝑡−1(𝒙) 

(Weinberger 2018): 

𝑙(𝐻𝑡−1(𝒙) + 𝛼ℎ𝑡(𝒙)) ≈ 𝑙(𝐻𝑡−1(𝒙)) + 𝛼〈∇𝑙(𝐻𝑡−1(𝒙)), ℎ𝑡〉. 

 

[59] 

Using training data to find the next weak learner the minimization problem becomes 

(Weinberger 2018): 



 

25 
 

ℎ𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ ∑
𝜕𝑙(𝑦𝑖, 𝐻𝑡−1(𝑥𝑖))

𝜕[𝐻𝑡−1(𝑥𝑖)]
ℎ𝑡

(𝑥𝑖)

𝑁

𝑖=1

. 
[60] 

ℎ𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ ∑ −𝑦𝑖𝑒−𝑦𝑖𝐻𝑡−1(𝑥𝑖) ℎ𝑡
(𝑥𝑖)

𝑁

𝑖=1

. 
[61] 

In the expression above,  𝑒−𝑦𝑖𝐻
𝑡−1(𝑥𝑖) shows the extent to which a particular data point 𝑖 

contributes to the loss function (Weinberger 2018). To enforce a distribution of weights, the 

following normalization factor is defined (Weinberger 2018): 

𝑍 = ∑ 𝑒−𝑦𝑖𝐻𝑡−1(𝑥𝑖)

𝑁

𝑖=1

. 

 

[62] 

The minimization problem becomes 

ℎ𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ ∑ −𝑦𝑖

𝑒−𝑦𝑖𝐻𝑡−1(𝑥𝑖)

𝑍
 ℎ

𝑡
(𝑥𝑖)

𝑁

𝑖=1

, 
[63] 

denoting 𝑤𝑖
𝑡(𝑥𝑖) =

𝑒−𝑦𝑖𝐻𝑡−1(𝑥𝑖)

𝑍
 

ℎ𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ ∑ −𝑦𝑖

𝑛

𝑖=1

ℎ𝑡(𝑥𝑖) 𝑤𝑖
𝑡(𝑥𝑖).  

 

[64] 

As mentioned above:  

 ℎ𝑡(𝑥𝑖) 𝑦𝑖 = 1 ↔ ℎ𝑡(𝑥𝑖) = 𝑦𝑖 , which means that ℎ𝑡(𝑥𝑖) classifies 𝑦𝑖  correctly. 

 ℎ𝑡(𝑥𝑖) 𝑦𝑖 = −1 ↔ ℎ𝑡(𝑥𝑖)  ≠ 𝑦𝑖 , which means that ℎ𝑡(𝑥𝑖) classifies 𝑦𝑖  incorrectly. 

Therefore, the summation can be divided between the correctly and incorrectly classified 

observations:  

ℎ𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ ∑  𝑤𝑖
𝑡

𝑖:ℎ𝑡(𝑥𝑖)≠𝑦𝑖

− ∑  𝑤𝑖
𝑡

𝑖:ℎ𝑡(𝑥𝑖)=𝑦𝑖

. 

 

[65] 

Since 1 − 𝜖𝑡 = ∑  𝑤𝑖
𝑡

𝑖:ℎ𝑡(𝑥𝑖)≠𝑦𝑖
 is the weighted accuracy, and 𝜖𝑡 = ∑  𝑤𝑖

𝑡
𝑖:ℎ𝑡(𝑥𝑖)=𝑦𝑖

 is the weighted 

error, the next weak learner ℎ𝑡(𝑥𝑖) is the one that minimizes the error rate (Weinberger 

2018): 



 

26 
 

ℎ𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ ∑ 𝑤𝑖
𝑡

𝑖:ℎ𝑡(𝑥𝑖)≠𝑦𝑖

. 

 

[66] 

After finding ℎ𝑡, in AdaBoost the weight 𝛼𝑡 associated with weak learner ℎ𝑡 is adaptive. The 

optimal weight is the one that minimizes the exponential loss function:  

𝛼𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼 ∑ 𝑒−𝑦𝑖[𝐻𝑡−1(𝑥𝑖)+𝛼𝑡 ℎ𝑡(𝑥𝑖)]

𝑛

𝑖=1

. 

 

[67] 

To find the optimal weight the expression above is differentiated with respect to 𝛼 and equated 

to 0:  

∑ −𝑦𝑖ℎ𝑡(𝑥𝑖)𝑒−𝑦𝑖[𝐻𝑡−1(𝑥𝑖)+𝛼𝑡 ℎ𝑡(𝑥𝑖)]

𝑛

𝑖=1

= 0. 

 

[68] 

Given ℎ𝑡(𝑥𝑖), the sum over 𝑛 observations can be again split between the ones that were 

correctly ( ℎ𝑡(𝑥𝑖) 𝑦𝑖 = 1) and incorrectly classified( ℎ𝑡(𝑥𝑖)𝑦𝑖 ≠ 1) (Weinberger 2018):  

∑ −𝑦𝑖ℎ𝑡(𝑥𝑖) 𝑒−[𝑦𝑖𝐻𝑡−1(𝑥𝑖)+𝛼𝑡ℎ𝑡(𝑥𝑖)𝑦𝑖]

𝑖:ℎ𝑡(𝑥𝑖)𝑦𝑖=1

+ ∑ −𝑦𝑖ℎ
𝑡(𝑥𝑖) 𝑒−[𝑦𝑖𝐻𝑡−1(𝑥𝑖)+𝛼𝑡ℎ𝑡(𝑥𝑖)𝑦𝑖]

𝑖:ℎ𝑡(𝑥𝑖)𝑦𝑖≠1

= 0, 

 

[69] 

  

dividing by the normalizing factor 𝑍:  

−𝑒−𝛼𝑡
∑ 𝑤𝑖

𝑡 

𝑖:ℎ𝑡(𝑥𝑖)𝑦𝑖=1

+ 𝑒𝛼𝑡
∑ 𝑤𝑖

𝑡 

𝑖:ℎ𝑡(𝑥𝑖)𝑦𝑖≠1

= 0, 

 

[70] 

−(1 − 𝜖𝑡) 𝑒−𝛼𝑡
+ 𝜖𝑡 𝑒𝛼𝑡

= 0. 

 

[71] 

Therefore, the optimal alpha for iteration 𝑡 is 

𝛼𝑡 =
1

2
𝑙𝑛 (

1 − 𝜖𝑡

𝜖𝑡
), 

 

[72] 



 

27 
 

With ℎ𝑡 and 𝛼𝑡 , the weights for each sample must be updated to find in the next iteration 

another weak learner and 𝛼:  

𝑤𝑖
𝑡+1(𝑥𝑖) =

𝑤𝑖
𝑡

𝑍
 𝑒−𝛼𝑡ℎ𝑡(𝑥𝑖)𝑦𝑖 . 

 

[73] 

Replacing 𝛼𝑡 , the updated weight for each of the samples that have been correctly classified by  

ℎ𝑡(𝑥) is:  

𝑤𝑖
𝑡+1(𝑥𝑖) =

𝑤𝑖
𝑡

𝑍
 √

𝜖𝑡

1 − 𝜖𝑡 , 

 

[74] 

while the updated weight for each of the incorrectly classified samples is 

𝑤𝑖
𝑡+1(𝑥𝑖) =

𝑤𝑖
𝑡

𝑍
 √

1 − 𝜖𝑡

𝜖𝑡 . 

 

[75] 

𝑍 is the normalizing factor that makes the sum of the updated weights total 1:  

√
𝜖𝑡

1 − 𝜖𝑡  ∑ 𝑤𝑖
𝑡

𝑖:ℎ𝑖
𝑡=𝑦𝑖

+ √
1 − 𝜖𝑡

𝜖𝑡 ∑ 𝑤𝑖
𝑡

𝑖:ℎ𝑖
𝑡≠𝑦𝑖

= 𝑍, 

 

[76] 

 

 recalling that (1 − 𝜖𝑡) = ∑ 𝑤𝑖
𝑡

𝑖:ℎ𝑖
𝑡=𝑦𝑖

 and 𝜖𝑡 = ∑ 𝑤𝑖
𝑡

𝑖:ℎ𝑖
𝑡≠𝑦𝑖

:  

𝑍 = 2√𝜖𝑡 (1 − 𝜖𝑡), 

 

[77] 

therefore, replacing the normalizing factor by the updated weights for the correctly classified 

observations yields: 

𝑤𝑖
𝑡+1 =

𝑤𝑖
𝑡

2
 

1

1 − 𝜖𝑡 , 

 

[78] 

while doing the same for the incorrectly classified observation:  



 

28 
 

𝑤𝑖
𝑡+1 =

𝑤𝑖
𝑡

2
 

1

𝜖𝑡 . 

 

[79] 

The weights will be higher for the samples that have been incorrectly classified in the previous 

round and lower for the correctly classified ones. The new weak learners are found iteratively 

by taking into account the mistakes from the previous round. Therefore, AdaBoost recursively 

corrects the bias problem (Freund and Schapire 1996).   

  



 

29 
 

 

3.0 – Performance measures   

In this section, I describe the ‘Receiver Operating Characteristics’ (ROC) and ‘Precision-Recall’ 

graphs that I used in section 5 to evaluate the performance of the models estimated. “A 

receiver operating characteristics (ROC) graph is a technique for visualizing, organizing and 

selecting classifiers based on their performance.” (Fawcett 2005). 

Let us assume a classification problem with only two possible classes 𝑦𝑖 ∈ {0,1} and denote the 

actual classes (Fawcett 2005) as:  

 ‘Positive’ (𝑝) when  𝑦𝑖 = 1, 

 ‘Negative’ (𝑛) when 𝑦𝑖 = 0. 

For example, if a classifier ℎ(𝒙) wants to predict whether a client from a financial institution 

will default, the positive class is default (i.e., 𝑦𝑖 = 1) if the client actually defaulted, and 𝑦𝑖 = 0 

if the client did not default.  

Let us also assume the predicted classes are denoted as (Fawcett 2005):   

 ‘Yes’ (𝑌) when �̂�𝑖 = ℎ(𝑥𝑖) = 1, 

 ‘No’ (𝑁) when �̂�𝑖 = ℎ(𝑥𝑖) = 0. 

Given a classifier and a test set, a 2𝑥2 confusion matrix (or contingency table) can be built 

(Fawcett 2005). A confusion matrix is a squared matrix, whose dimensions reflect the number 

of classes.   

Figure 3.0.1 – Confusion matrix 

 

Source: Table prepared based on Fawcett, 2005 

 

The following bullet points detail the metrics displayed in the confusion matrix (Sosa Escudero 

2020):  

P N

1 0

P 1 TP FP

N 0 FN TN

P N

Predicted

Actual 

Total actual



 

30 
 

 𝑃 = ∑  𝑦𝑖
𝑛
𝑖=1  is the total number of observations with actual positive class from the test, 

where 𝑛 is the total number of observations. 

 𝑁 = ∑  (1 − 𝑦𝑖)𝑛
𝑖=1  is the total number of observations with actual negative class.  

 True positives (𝑇𝑃) is the total number of observations whose predicted classes 

coincide with their actual positive ones. Therefore, 𝑇𝑃 = ∑ �̂�𝑖  𝑦𝑖
𝑛
𝑖=1  because  �̂�𝑖  𝑦𝑖 = 1 

when �̂�𝑖 = 𝑦𝑖 = 1; and �̂�𝑖 𝑦𝑖 = 0 when 𝑦𝑖 = 1 and the predicted class is �̂�𝑖 = 0. 

 True negatives 𝑇𝑁 is the total number of observations whose predicted classes 

coincide with their actual negative ones. Therefore, 𝑇𝑁 = ∑ (1 − �̂�𝑖) (1 − 𝑦𝑖)𝑛
𝑖=1 . 

 False positives 𝐹𝑃 is the total number of observations with actual class 𝑦𝑖 = 0, and 

predicted class �̂�𝑖 = 1 (i.e., (1 − 𝑦𝑖) = 1). Therefore, 𝐹𝑃 = ∑ �̂�𝑖  (1 − 𝑦𝑖)
𝑛
𝑖=1 . 

 False negatives 𝐹𝑁 is the total number of observations with actual class 𝑦𝑖 = 1 and 

predicted class �̂�𝑖 = 0. Therefore, 𝐹𝑁 = ∑ (1 − �̂�𝑖) 𝑦𝑖
𝑛
𝑖=1 . 

The numbers along the major diagonal of the matrix represent the observations that were 

correctly classified (Fawcett 2005). Those numbers are the inputs to compute the accuracy of a 

classifier:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
. 

 

[80] 

The true positive rate, recall, or sensitivity is the ratio between the number of true positives 

and the total number of positives:  

𝑇𝑃 𝑟𝑎𝑡𝑒 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑃
. 

 

[81] 

The false positive rate is 

𝐹𝑃 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝑁
. 

 

[82] 

The precision of a classifier is the ratio between true positives and the total number of 

predicted positive labels, and it is used to measure the ability of a model to predict the positive 

class:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. 

[83] 

 



 

31 
 

And the F1-score is the harmonic mean between precision and recall:  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
. 

[84] 

 

Decision trees (among others) are discrete classifiers because they output a class decision (i.e., 

a 𝑌 or 𝑁) for each observation. When discrete classifiers are trained on the test set, they output 

a single confusion matrix (Fawcett 2005).  

Classifiers such as logistic regressions yield a probability for each observation (Fawcett 2005). 

In such case, a threshold 𝑐 ∈ [0,1] must be set to produce a discrete classifier and output a 

single confusion matrix. Therefore, when  𝑝𝑖 > 𝑐, then �̂�𝑖 = 1. The extreme cases are the 

following (Sosa Escudero 2020): 

 When 𝑐 = 1, none of the observations are predicted as positive, but all of them are 

predicted as negative (i.e., �̂�𝑖 = 0). In that event, 𝑇𝑃 𝑟𝑎𝑡𝑒 = 𝐹𝑃 𝑟𝑎𝑡𝑒 = 0. This strategy 

never outputs false positives, because it never predicts positives. 

 When 𝑐 = 0, all of the observations in the test set are classified as positives. In that 

event, all the actual positives are classified as positives, but all the actual negatives are 

classified as positives as well. Therefore,  𝑇𝑃 𝑟𝑎𝑡𝑒 = 𝐹𝑃 𝑟𝑎𝑡𝑒 = 1.  

 A threshold set to 𝑐 = 1 − 𝜀 allows the classifier to predict positive classes (i.e., 

𝑇𝑃 𝑟𝑎𝑡𝑒 > 0) and also enables the prediction of false positives (i.e., 𝐹𝑃 𝑟𝑎𝑡𝑒 > 0.  

A ROC curve plots the relationship between the true positive and the false positive rates for 

every single threshold 𝑐 ∈ [0,1] (Sosa Escudero 2020). The number of true positives and false 

negatives depend on the threshold 𝑐, as well as on the total predicted positives ∑ �̂�𝑖
𝑛
𝑖=1  (𝑐):  

∑ �̂�𝑖  𝑦𝑖
𝑛
𝑖=1 (𝑐) + ∑ �̂�𝑖 (1 − 𝑦𝑖)𝑛

𝑖=1  (𝑐) = ∑ �̂�𝑖
𝑛
𝑖=1  (𝑐), 

 

[85] 

∑ �̂�𝑖  𝑦𝑖
𝑛
𝑖=1 (𝑐)

𝑃
+

∑ �̂�𝑖 (1 − 𝑦𝑖)𝑛
𝑖=1  (𝑐)

𝑃
=

∑ �̂�𝑖
𝑛
𝑖=1  (𝑐)

𝑃
. 

 

[86] 

Re-arranging:  

∑ �̂�𝑖  𝑦𝑖
𝑛
𝑖=1 (𝑐)

𝑃
=

∑ �̂�𝑖
𝑛
𝑖=1  (𝑐)

𝑃
−

𝑁

𝑁

∑ �̂�𝑖 (1 − 𝑦𝑖)𝑛
𝑖=1  (𝑐)

𝑃
, 

 

[87] 



 

32 
 

∑ �̂�𝑖  𝑦𝑖
𝑛
𝑖=1 (𝑐)

𝑃
=

∑ �̂�𝑖
𝑛
𝑖=1  (𝑐)

𝑃
−

𝑁

𝑃

∑ �̂�𝑖 (1 − 𝑦𝑖)𝑛
𝑖=1  (𝑐)

𝑁
. 

 

[88] 

Therefore,  

𝑇𝑃 𝑟𝑎𝑡𝑒 (𝑐) =
∑ �̂�𝑖

𝑛
𝑖=1  (𝑐)

𝑃
−

𝑁

𝑃
 𝐹𝑃 𝑟𝑎𝑡𝑒 (𝑐). 

 

[89] 

ROC plots the true positive rates on the y-axis and the false positive rates on the x-axis 

(Fawcett 2005). The point (0,0) corresponds to a threshold 𝑐 = 1, while (1,1) corresponds to 

𝑐 = 0.  

Figure 3.0.2 – Illustration of a ROC Curve 

 

Source:  (James, Witten, et al., An Introduction to Statistical Learning with Applications in R 2013) 

 

A perfect classifier would be one with 𝑇𝑃 𝑟𝑎𝑡𝑒 (𝑐) = 1 and  𝑟𝑎𝑡𝑒 (𝑐) = 0 . This classifier would 

represent point (0,1) in the ROC space.  Therefore, the most desirable point in the ROC space is 

the closest to (0,1). The diagonal line 𝑦 = 𝑥 represents a classifier that randomly guesses the 

class (Fawcett 2005). Any classifier that outputs a ROC curve below the diagonal line performs 

worse than a random guessing classifier because it reverses the classifications (Fawcett 2005). 

The true positive and false positive rates of the reverse classifier (𝑇𝑃 𝑟𝑎𝑡𝑒𝑅 and 𝐹𝑃 𝑟𝑎𝑡𝑒𝑅, 

respectively) are (Sosa Escudero 2020)  

𝑇𝑃 𝑟𝑎𝑡𝑒𝑅 =
∑ (1 − �̂�𝑖) 𝑦𝑖

𝑛
𝑖=1

𝑃
. 

[90] 



 

33 
 

 

𝐹𝑃 𝑟𝑎𝑡𝑒𝑅 =
∑ (1 − �̂�𝑖) (1 − 𝑦𝑖)𝑛

𝑖=1  

𝑁
. 

 

[91] 

In addition, 𝐹𝑃 𝑟𝑎𝑡𝑒 − 𝑇𝑃 𝑟𝑎𝑡𝑒 = 𝑇𝑃 𝑟𝑎𝑡𝑒𝑅 − 𝐹𝑃 𝑟𝑎𝑡𝑒𝑅   (Sosa Escudero, Análisis ROC 2020). 

On the one hand, 𝐹𝑃 𝑟𝑎𝑡𝑒 − 𝑇𝑃 𝑟𝑎𝑡𝑒 equals to:  

∑ �̂�𝑖  (1 − 𝑦𝑖)𝑛
𝑖=1  

𝑁
−

∑ �̂�𝑖 𝑦𝑖
𝑛
𝑖=1

𝑃
= − [

∑ �̂�𝑖  𝑦𝑖
𝑛
𝑖=1

𝑃
−

∑ �̂�𝑖  (1 − 𝑦𝑖)
𝑛
𝑖=1  

𝑁
]. 

 

[92] 

On the other hand, 𝑇𝑃 𝑟𝑎𝑡𝑒𝑅 − 𝐹𝑃 𝑟𝑎𝑡𝑒𝑅:  

∑ (1 − �̂�𝑖) 𝑦𝑖
𝑛
𝑖=1

𝑃
−

∑ (1 − �̂�𝑖) (1 − 𝑦𝑖)𝑛
𝑖=1  

𝑁
. 

 

[93] 

Rearranging the equation above:  

∑  𝑦𝑖
𝑛
𝑖=1

𝑃
−

∑ �̂�𝑖  𝑦𝑖
𝑛
𝑖=1

𝑃
−

∑  (1 − 𝑦𝑖)𝑛
𝑖=1  

𝑁
+

∑ �̂�𝑖  (1 − 𝑦𝑖)
𝑛
𝑖=1  

𝑁
. 

 

[94] 

− [
∑ �̂�𝑖  𝑦𝑖

𝑛
𝑖=1

𝑃
−

∑ �̂�𝑖  (1 − 𝑦𝑖)𝑛
𝑖=1  

𝑁
] +

∑  𝑦𝑖
𝑛
𝑖=1

𝑃
−

∑  (1 − 𝑦𝑖)𝑛
𝑖=1  

𝑁
. 

 

[95] 

Since ∑  𝑦𝑖
𝑛
𝑖=1  represents the number of positives 𝑃, and ∑  (1 − 𝑦𝑖)

𝑛
𝑖=1 , the number of negatives 

𝑁:  

− [
∑ �̂�𝑖  𝑦𝑖

𝑛
𝑖=1

𝑃
−

∑ �̂�𝑖  (1 − 𝑦𝑖)𝑛
𝑖=1  

𝑁
] +

𝑃

𝑃
−

𝑁 

𝑁
. 

 

[96] 

Therefore, 

𝐹𝑃 𝑟𝑎𝑡𝑒 − 𝑇𝑃 𝑟𝑎𝑡𝑒 = − [
∑ �̂�𝑖  𝑦𝑖

𝑛
𝑖=1

𝑃
−

∑ �̂�𝑖  (1 − 𝑦𝑖)𝑛
𝑖=1  

𝑁
]. 

[97] 

Consequently, the ROC of a classifier is under the diagonal line when 𝐹𝑃 𝑟𝑎𝑡𝑒 > 𝑇𝑃 𝑟𝑎𝑡𝑒 (Sosa 

Escudero 2020).  

The ROC curve of a perfect classifier connects points (0,0), (0,1), and (1,1) in the ROC space. 

The ROC curve can also be used to set a classification threshold. This depends on the 

classification setting. For example, if the purpose of the classifier is to predict whether new 



 

34 
 

observations might have a serious health disease, then a threshold lower than 0.5 could be 

chosen even at the expense of increasing the 𝐹𝑃 𝑟𝑎𝑡𝑒(𝑐).  

Calculating the area under the ROC curve (AUC) can help measure how far the ROC is from the 

ideal. The AUC is used to compare classifiers, since it reduces the ROC performance to a single 

scalar value (Fawcett 2005). The AUC values of classifiers that are better than random 

guessing are between 0.5 and 1.  

AUCs can be used to compare the performance of different classifiers and choose the one with 

the highest AUC. However, this depends on whether the sample is balanced. A sample is 

balanced when the proportion of positive observations is approximately 50%. When the 

sample is unbalanced and there are more negative observations relative to positive ones, 

‘Precision-Recall’ curves can also be used to evaluate the performance of machine learning 

models. Since the calculation of precision does not require the number of true negatives 

observations, it is not affected by the unbalanced sample.  

  



 

35 
 

 

4.0 – Data and inputs 

The dataset used in this thesis is the United States Census Income. It was extracted by Barry 

Becker from the 1994 Census database (Kohav and Becker 1996). It consists of 48,842 

observations, each representing an individual taking part in the census. Table 4.0.1 shows the 

variables from the dataset and its description. 

Table 4.0.1.1 – Variables description3

  

Source: Table prepared on Census Income dataset 

 

The target variable is ‘income’. This classification problem aims to predict whether a person 

earns more or less than $50 thousand per year.  

To analyze the dataset, I transformed ‘income’ into a dummy variable. I assigned 0 values to 

samples totaling $50 thousand or amounting to less than that sum (i.e., the negative class or 

                                                             
3  There is a feature named ´fnlwgt´ which I did not use in the analysis. 

Feature Description Type of feature
age The age of the census person Continuous

workclass

Shows whether the census person is self-employed, 

works in the private sector, in any stage of the 

government, or receives no payment

Categorical

education
Contains the educational level:  high school, bachelor, 

doctorade, etc.
Categorical

educational-num
Shows the number of years the census person received a 

formal education 
Continuous

marital-status
Denotes the marital status condition: married, not-

married, widowed, etc.
Categorical

occupation
Details the job of the census person: protective services, 

farming, machine operator, etc.
Categorical

relationship
Describes the family role of the census person: husband, 

wife,  unmarried, etc. 
Categorical

race Denotes the race: black, white, etc. Categorical

gender Shows whether the census person is male or female Categorical

capital-gain The amount of profits received from an investment Continuous

capital-loss The amount of losses resulted from an investment Continuous

hours-per-week The number of hours worked per week Continuous

native-country
Shows the native country of the census person: USA, 

England, Cuba, etc.
Categorical

income
Denotes whether the census person earns less or more 

than $50K per year 
Binary target



 

36 
 

low income class) and 1 to the rest of the samples (i.e., the positive class or high income). Next, 

I classified samples according to ‘gender’: I assigned 1 to females and 0 to males.  

Before preprocessing the features, I used Python’s library 

‘sklearn.model_selection.train_test_split’ (setting a random seed of 7) to divide the samples 

into train and test sets. I set the train set to 70% of the total samples (totaling 34,189 

observations out of 48,842). I split the set at this stage to prevent overfitting because I imputed 

missing values and grouped some categories using the target variable from the training set. 

With respect to categorical variables, I only created categories, whose proportion of 

observation was (approximately) less than 1% over the total number of samples from the 

training set. At this stage, I conducted the transformations on the features I used to estimate all 

the models. The dataset is moderately unbalanced with approximately 25% of the individuals 

earning more than $50 thousand per year.  

Table 4.0.1.2 displays ‘marital-status’ before grouping categories. To read the table, e.g., 

‘Married-AF-spouse’ proportion over the total number of samples (from the train set) was 

0,1%. Within such category 63% of the observations (i.e., 17 out of 27) represent individuals 

earning $50thousand per year or less (i.e., ‘Low income’). I grouped that category with 

‘Married-civ-spouse’ into ‘Married’. I grouped that category with ‘Married-civ-spouse’, since 

both categories are characterized by a similar income distribution, and ‘Married-AF-spouse’ 

would have comprised only 27 observations.  

 Table 4.0.1.2 – Number and proportion of low and high income observations (before grouping) 

 

Source: Table prepared on Census Income dataset 

  

Low income High income Total Low income High income

Divorced 4.226 465 4.691 13,7% 90,1% 9,9%

Married-AF-spouse 17 10 27 0,1% 63,0% 37,0%

Married-civ-spouse 8.634 6.986 15.620 45,7% 55,3% 44,7%

Married-spouse-absent 396 40 436 1,3% 90,8% 9,2%

Never-married 10.758 514 11.272 33,0% 95,4% 4,6%

Separated 1.000 69 1.069 3,1% 93,5% 6,5%

Widowed 977 97 1.074 3,1% 91,0% 9,0%

Total 26.008 8.181 34.189 100,0% 76,1% 23,9%

Number of observations
Marital status

Proportion of observations 

of each category over total 

number of samples 

Proportion of low and high income 

observations over total 

observations within each category

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html


 

37 
 

Figure 4.0.1.1 – Number low and high income observations from each category  

 

Source: Figure prepared on Census Income dataset 

 

I renamed some of the categories of all of the categorical features. The following table shows 

the ‘mapping’ between the original and renamed categories.  

 

Table 4.0.1.3 – Mapping of ‘marital-status’ categories 

 

Source: Table prepared on Census Income dataset 

 

In terms of ‘relationship’, I only grouped ‘Husband’ and ‘Wife’ into ‘Hus_Wif’. Although the 

proportion of ‘Wife’ over total number of samples based on the income distribution is 4.8%, I 

considered it logical to group it into ‘Husband.’ 

Before grouping After Grouping

Divorced Divorced

Married-AF-spouse Married

Married-civ-spouse Married

Married-spouse-absent Married-sa

Never-married Never_married

Separated Separated

Widowed Widowed

Category



 

38 
 

Table 4.0.1.4 – Number and proportion of low and high income observations (before grouping) 

 

Source: Table prepared on Census Income dataset 

Figure 4.0.1.2 – Number low and high income observations from each category 

 

Source: Figure prepared on Census Income dataset 

Table 4.0.1.5 – Mapping of ‘relationship’ categories 

 

Source: Table prepared on Census Income dataset 

In terms of “race”, ‘White’ represents 85.5% of the total number of samples.   

Low income High income Total Low income High income

Husband 7.574 6.205 13.779 40,3% 55,0% 45,0%

Not-in-family 7.987 895 8.882 26,0% 89,9% 10,1%

Other-relative 1.027 34 1.061 3,1% 96,8% 3,2%

Own-child 5.189 85 5.274 15,4% 98,4% 1,6%

Unmarried 3.365 211 3.576 10,5% 94,1% 5,9%

Wife 866 751 1.617 4,7% 53,6% 46,4%

Total 26.008 8.181 34.189 100,0% 76,1% 23,9%

Relationship
Number of observations

Proportion of 

observations of each 

category over total 

number of samples 

Proportion of low and high income 

observations over total observations 

within each category

Before grouping After Grouping

Husband Hus_Wif

Not-in-family NIF (not in family)

Other-relative Other

Own-child Own_ch

Unmarried Unmarried

Wife Hus_Wif

Category



 

39 
 

Table 4.0.1.6 – Number and proportion of low and high income observations (before grouping) 

 

Source: Table prepared on Census Income dataset 

Figure 4.0.1.3 – Number low and high income observations from each category 

 

Source: Figure prepared on Census Income dataset 

 

Therefore, ‘White’ remained a single category, and the rest of the races were grouped into 

‘Other’. Next, I assigned 1 values to ‘White’ and 0 values to ‘Other’.  

For ‘workclass’ feature, I renamed missing values ‘?’ as ‘Other’. I also grouped ‘Without-pay’ 

and ‘Never-worked’ into ‘Other’, as both categories had a very small proportion of 

observations. I do not reckon this grouping decision can distort the information because most 

of the times missing values might represent a mix of categories.  

Low income High income Total Low income High income

Amer-Indian-Eskimo 289 43 332 1,0% 87,0% 13,0%

Asian-Pac-Islander 765 286 1.051 3,1% 72,8% 27,2%

Black 2.899 397 3.296 9,6% 88,0% 12,0%

Other 249 35 284 0,8% 87,7% 12,3%

White 21.806 7.420 29.226 85,5% 74,6% 25,4%

Total 26.008 8.181 34.189 100,0% 76,1% 23,9%

Race
Number of observations

Proportion of 

observations of each 

category over total 

number of samples 

Proportion of low and high income 

observations over total 

observations within each category



 

40 
 

Table 4.0.1.7 – Number and Proportion of Low and High Income Observations (before grouping) 

 

Source: Table prepared on Census Income dataset 

Figure 4.0.1.4 – Number low and high income observations from each category

 

Source: Figure prepared on Census Income dataset 

 

Low 

income

High 

income
Total Low income High income

? 1.783 193 1.976 5,8% 90,2% 9,8%

Federal-gov 622 380 1.002 2,9% 62,1% 37,9%

Local-gov 1.550 658 2.208 6,5% 70,2% 29,8%

Never-worked 2 0 2 0,0% 100,0% 0,0%

Private 18.528 5.184 23.712 69,4% 78,1% 21,9%

Self-emp-inc 540 661 1.201 3,5% 45,0% 55,0%

Self-emp-not-inc 1.968 735 2.703 7,9% 72,8% 27,2%

State-gov 999 368 1.367 4,0% 73,1% 26,9%

Without-pay 16 2 18 0,1% 88,9% 11,1%

Total 26.008 8.181 34.189 100,0% 76,1% 23,9%

Workclass

Number of observations Proportion of 

observations of each 

category over total 

number of samples 

Proportion of low and high income 

observations over total observations 

within each category



 

41 
 

Table 4.0.1.8 – Mapping of ‘workclass’ categories 

 

Source: Table prepared on Census Income dataset 

The categorical feature ‘education’ comprises the same information as the continuous feature 

‘educational-num’. For example, people whose education category is ‘Preschool’ studied one 

year. Therefore, I dropped ‘educational-num’ and used ‘education’.  

Table 4.0.1.9 –‘education’ against ‘educational-num’ 

 

Source: Table prepared on Census Income dataset 

I only grouped ‘Preschool’ with ‘1st-4st’ given its small number of observations.  

Before grouping After Grouping

? Other

Federal-gov F_GOV

Local-gov L_GOV

Never-worked Other

Private Priv

Self-emp-inc SEI

Self-emp-not-inc SENI

State-gov S_GOV

Without-pay Other

Category

educational-num education

1 Preschool

2 1st-4th

3 5th-6th

4 7th-8th

5 9th

6 10th

7 11th

8 12th

9 HS-grad

10 Some-college

11 Assoc-voc

12 Assoc-acdm

13 Bachelors

14 Masters

15 Prof-school

16 Doctorate



 

42 
 

Table 4.0.1.10 – Number and proportion of low and high income observations (before grouping)

 

Source: Table prepared on Census Income dataset 

Figure 4.0.1.5 – Number low and high income observations from each category

 

Source: Figure prepared on Census Income dataset 

Groupings into “occupation” were based on the income distribution and logical criteria:   

  ‘Other-service’ with ‘Priv-house-serv’ into ‘Other_Serv’ because ‘Other-service’ 

comprised a small number of observations. 

 ‘Protective-serv’ with ‘Armed-Forces’ into ‘Security’ because of the small number of 

observations of ‘Armed-Forces’ category  

Low 

income

High 

income
Total Low income High income

10th 900 69 969 2,8% 92,9% 7,1%

11th 1.199 60 1.259 3,7% 95,2% 4,8%

12th 436 33 469 1,4% 93,0% 7,0%

1st-4th 167 5 172 0,5% 97,1% 2,9%

5th-6th 347 16 363 1,1% 95,6% 4,4%

7th-8th 643 40 683 2,0% 94,1% 5,9%

9th 493 29 522 1,5% 94,4% 5,6%

Assoc-acdm 855 289 1.144 3,3% 74,7% 25,3%

Assoc-voc 1.081 361 1.442 4,2% 75,0% 25,0%

Bachelors 3.300 2.318 5.618 16,4% 58,7% 41,3%

Doctorate 109 297 406 1,2% 26,8% 73,2%

HS-grad 9.251 1.731 10.982 32,1% 84,2% 15,8%

Masters 838 1.044 1.882 5,5% 44,5% 55,5%

Preschool 59 1 60 0,2% 98,3% 1,7%

Prof-school 155 456 611 1,8% 25,4% 74,6%

Some-college 6.175 1.432 7.607 22,2% 81,2% 18,8%

Total 26.008 8.181 34.189 100,0% 76,1% 23,9%

Education

Number of observations
Proportion of 

observations of each 

category over total 

number of samples 

Proportion of low and high income 

observations over total observations 

within each category



 

43 
 

Then, I renamed missing values ‘?’ as ‘Other’. 

Table 4.0.1.11– Number and Proportion of Low and High Income Observations (before grouping)

 

Source: Table prepared on Census Income dataset 

Figure 4.0.1.6 – Number low and high income observations from each category 

 

Source: Figure prepared on Census Income dataset 

Low income
High 

income
Total Low income High income

? 1.785,00 193,00 1.978,00 5,8% 90,2% 9,8%

Adm-clerical 3.442,00 544,00 3.986,00 11,7% 86,4% 13,6%

Armed-Forces 8,00 4,00 12,00 0,0% 66,7% 33,3%

Craft-repair 3.327,00 966,00 4.293,00 12,6% 77,5% 22,5%

Exec-managerial 2.226,00 2.039,00 4.265,00 12,5% 52,2% 47,8%

Farming-fishing 944,00 124,00 1.068,00 3,1% 88,4% 11,6%

Handlers-cleaners 1.313,00 88,00 1.401,00 4,1% 93,7% 6,3%

Machine-op-inspct 1.845,00 264,00 2.109,00 6,2% 87,5% 12,5%

Other-service 3.318,00 129,00 3.447,00 10,1% 96,3% 3,7%

Priv-house-serv 162,00 3,00 165,00 0,5% 98,2% 1,8%

Prof-specialty 2.360,00 1.952,00 4.312,00 12,6% 54,7% 45,3%

Protective-serv 472,00 224,00 696,00 2,0% 67,8% 32,2%

Sales 2.781,00 1.026,00 3.807,00 11,1% 73,0% 27,0%

Tech-support 709,00 283,00 992,00 2,9% 71,5% 28,5%

Transport-moving 1.316,00 342,00 1.658,00 4,8% 79,4% 20,6%

Total 26.008 8.181 34.189,00 100,0% 76,1% 23,9%

Occupation
Number of observations

Proportion of 

observations of each 

category over total 

number of samples 

Proportion of low and high income 

observations over total observations 

within each category



 

44 
 

Table 4.0.1.12 – Mapping of ‘occupation’ categories 

 

Source: Table prepared on Census Income dataset 

The ‘native_country’ feature comprises individuals, whose countries represent a small 

proportion of the total samples.  

Before grouping After Grouping

? Others

Adm-clerical A_Cler

Armed-Forces Security

Craft-repair Craft

Exec-managerial Exec

Farming-fishing Farming

Handlers-cleaners Cleaners

Machine-op-inspct Mach_insp

Other-service Other_Serv

Priv-house-serv Other_Serv

Prof-specialty Prof

Protective-serv Security

Sales Sales

Tech-support Tech

Transport-moving Transp

Category



 

45 
 

Table 4.0.1.13– Number and proportion of low and high income observations (before grouping)

 

Source: Table prepared on Census Income dataset 

Thus, I assigned missing values based on the mode ‘United-States.’ Then, I grouped the 

categories based on a geographical location:  

 ‘North’: ‘United-States,’ ‘Mexico,’ ‘Puerto-Rico,’ ‘El-Salvador,’ ‘Cuba,’ ‘Jamaica,’ 

‘Dominican-Republic,’ ‘Guatemala,’ ‘Haiti,’ ‘Nicaragua,’ ‘Trinidad&Tobago,’ ‘Outlying-

US(Guam-USVI-etc),’ and ‘Honduras’ 

Low income High income Total Low income High income

? 447,00 150,00 597,00 1,7% 74,9% 25,1%

Cambodia 16,00 6,00 22,00 0,1% 72,7% 27,3%

Canada 83,00 45,00 128,00 0,4% 64,8% 35,2%

China 60,00 27,00 87,00 0,3% 69,0% 31,0%

Columbia 53,00 4,00 57,00 0,2% 93,0% 7,0%

Cuba 67,00 23,00 90,00 0,3% 74,4% 25,6%

Dominican-Republic 67,00 3,00 70,00 0,2% 95,7% 4,3%

Ecuador 25,00 1,00 26,00 0,1% 96,2% 3,8%

El-Salvador 106,00 7,00 113,00 0,3% 93,8% 6,2%

England 55,00 35,00 90,00 0,3% 61,1% 38,9%

France 19,00 9,00 28,00 0,1% 67,9% 32,1%

Germany 113,00 40,00 153,00 0,4% 73,9% 26,1%

Greece 18,00 9,00 27,00 0,1% 66,7% 33,3%

Guatemala 68,00 2,00 70,00 0,2% 97,1% 2,9%

Haiti 45,00 5,00 50,00 0,1% 90,0% 10,0%

Holand-Netherlands 1,00 0,00 1,00 0,0% 100,0% 0,0%

Honduras 14,00 0,00 14,00 0,0% 100,0% 0,0%

Hong 16,00 6,00 22,00 0,1% 72,7% 27,3%

Hungary 8,00 5,00 13,00 0,0% 61,5% 38,5%

India 59,00 44,00 103,00 0,3% 57,3% 42,7%

Iran 23,00 15,00 38,00 0,1% 60,5% 39,5%

Ireland 21,00 11,00 32,00 0,1% 65,6% 34,4%

Italy 52,00 26,00 78,00 0,2% 66,7% 33,3%

Jamaica 59,00 7,00 66,00 0,2% 89,4% 10,6%

Japan 42,00 23,00 65,00 0,2% 64,6% 35,4%

Laos 13,00 2,00 15,00 0,0% 86,7% 13,3%

Mexico 643,00 31,00 674,00 2,0% 95,4% 4,6%

Nicaragua 28,00 2,00 30,00 0,1% 93,3% 6,7%

Outlying-US(Guam-USVI-etc) 17,00 1,00 18,00 0,1% 94,4% 5,6%

Peru 36,00 3,00 39,00 0,1% 92,3% 7,7%

Philippines 150,00 61,00 211,00 0,6% 71,1% 28,9%

Poland 46,00 12,00 58,00 0,2% 79,3% 20,7%

Portugal 41,00 11,00 52,00 0,2% 78,8% 21,2%

Puerto-Rico 118,00 13,00 131,00 0,4% 90,1% 9,9%

Scotland 12,00 3,00 15,00 0,0% 80,0% 20,0%

South 69,00 11,00 80,00 0,2% 86,3% 13,8%

Taiwan 27,00 15,00 42,00 0,1% 64,3% 35,7%

Thailand 16,00 3,00 19,00 0,1% 84,2% 15,8%

Trinadad&Tobago 16,00 2,00 18,00 0,1% 88,9% 11,1%

United-States 23.181,00 7.497,00 30.678,00 89,7% 75,6% 24,4%

Vietnam 47,00 4,00 51,00 0,1% 92,2% 7,8%

Yugoslavia 11,00 7,00 18,00 0,1% 61,1% 38,9%

Total 26.008 8.181 34.189,00 100,0% 76,1% 23,9%

Native country

Number of observations Proportion of 

observations of each 

category over total 

number of samples 

Proportion of low and high income 

observations over total observations 

within each category



 

46 
 

 ‘Europe’: ‘Germany,’ ‘England,’ ‘Italy,’ ‘Poland,’ ‘Portugal,’ ‘Greece,’ ‘France,’ ‘Ireland,’ 

‘Yugoslavia,’ ‘Laos,’ ‘Scotland,’ ‘Hungary,’ and ‘Holand-Netherlands’ 

 ‘Asia’: ‘Philippines,’ ‘India,’ ‘China,’ ‘Japan,’ ‘Vietnam,’ ‘Taiwan,’ ‘Iran,’ ‘Hong,’ ‘Thailand,’ 

and ‘Cambodia’ 

 ‘South’: ‘South,’4 ‘Columbia,’5 ‘Peru,’ and ‘Ecuador’ 

In the final dataset, the categorical features are represented by 0/1 dummy variables coded by 

a 1-of-K scheme.  

Then, I continued analyzing the numerical features. The ‘age’ boxplots show that  

 50% of the low income samples age is approximately between 25 and 45 years old. The 

median is 35 years, and the distribution is skewed. 

 50% of the high income samples age is approximately between 35 and 55 years old. 

The median is 45 years, and the distribution is moderately skewed.  

Figure 4.0.1.7 – The ‘age’ boxplots of low and high income samples 

 

Source: Figure prepared on Census Income dataset 

                                                             
4 This is not a country by I assumed it should be grouped within ‘South’ category. 
5 Based on the income distribution I assumed it referred to ‘Colombia’. 



 

47 
 

Figure 4.0.1.8 – The ‘age’ Histograms for Low and High Income Samples (before standardization)

 

Source: Figure prepared on Census Income dataset 

 

Figure 4.0.1.9 – The ‘age’ Histograms for Low (blue) and High Income (purple) Samples (after 

standardization) 

 

Source: Figure prepared on Census Income dataset 

The following two figures show the ‘hours-per-week’ histograms before and after 

standardization.  



 

48 
 

Figure 4.0.1.10 – The ‘hours-per-week’ Histograms for Low (blue) and High Income (purple) Samples 

(before standardization) 

 

Source: Figure prepared on Census Income dataset 

Figure 4.0.1.11 – The ‘hours-per-week’ Histograms for Low (blue) and High Income (purple) Samples 

(after standardization) 

 

Source: Figure prepared on Census Income dataset 



 

49 
 

In terms of ‘capital-gain’ and ‘capital-loss,’ the following histograms shows that most of the 

observations has 0 capital loss and gains. In addition, ‘capital-gain’ contains approximately 200 

observations with capital gains around $100 thousand, which could be considered outliers.  

 

Figure 4.0.1.12 – The ‘capital-gain’ Histograms for Low (blue) and High Income (purple)

 

Source: Figure prepared on Census Income dataset 



 

50 
 

Figure 4.0.1.13 – The ‘capital-loss’ Histograms for Low (blue) and High Income (purple)

 

Source: Figure prepared on Census Income dataset 

 

I did not want to discard these variables and I wanted to minimize the distortion they could 

produce in the Logistic Regression model. Therefore, I created a variable named ‘net_gain,’ 

which reflects the difference between capital gains and losses. Nevertheless, before creating 

the variable, I imputed the second highest gain (approximately $41 thousand) to the samples 

that earned $100 thousand. Then, I standardized ‘net_gain’ and dropped the capital gain and 

loss features.  

 



 

51 
 

Figure 4.0.1.11 – The ‘net_gain’ histograms for low (blue) and high income (purple) samples (after 

standardization) 

 

Source: Figure prepared on Census Income dataset 

  



 

52 
 

5.0 – Model estimation and Performance Assessment  

As I described in Section 4, I used Python’s package ‘sklearn.model_selection.train_test_split’ to 

split the samples into training and test sets. I specified a random seed equal to 7 and used 30% 

of the observations for testing purposes and 70% for the training of the models.  

To choose each of the parameters of the model and the shrinkage methods, I used Python’s 

package ‘sklearn.model_selection.GridSearchCV’. This library performs k-fold cross-validation 

on the training data. I have built grids, set 5 folds, and used ‘roc_auc’ as a scoring metric for 

each parameter and shrinkage method. The algorithm chooses the best combination in the 

following way:  

1) The specified model uses 80% of the training data (since I chose 5 folds) and computes 

the AUC in the remaining  20% of the training data for each combination it fits. 

2) The algorithm repeats step 1 five times. 

3) It computes the mean AUC (i.e., the mean of the five AUCs). 

4) The best combination is the one that outputs the highest mean AUC. 

5.1 – Logistic Regression 

To estimate the logistic regression, I have used ‘sklearn.linear_model.LogisticRegression’ 

Python’s library. To choose the parameters and regularization method, I included in the 

following terms in the grid-search: 

 Both Lasso (‘l1’) and Ridge (‘l2’) penalties  

 𝐶 =[1/10000, 1/5000, 1/1000, 1/500, 1/100, 1/50, 1/10, 1, 5, 10, 50, 100, 500, 1000, 

5000, 10000] 

 Maximum number of iterations: [100, 200, 300, 400, 500, 600, 700] 

The algorithm I chose for the optimization problem was ‘saga’, which is a variant of the ‘sag’ 

solver and stands for Stochastic Average Gradient Descent. The solver ‘saga’ can handle both 

Lasso and Ridge penalties and is a time-efficient solver with large datasets. I fit the logistic 

regression with an intercept.  

The grid search yielded the following results:  

 Penalty: Lasso (L1)  

 𝐶 = 1 (which coincided with the default value of the Python’s library)  

 300 maximum number of iterations  

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


 

53 
 

The Lasso shrinkage parameter 𝜆 equals  
1

𝐶
 . As 𝜆 approaches 0, the regularization effect 

weakens. The grid search output was 𝜆 = 1.  Thus, the coefficients of some variables were 

nulled with this shrinkage parameter. The following two figures show the ROC curves for both 

the train and test sets.  

Figure 5.1.1 – ROC for train set

   

Source: Figure prepared on Census Income dataset 



 

54 
 

 

Figure 5.1.2 – ROC for test set 

  

Source: Figure prepared on Census Income dataset 

 

The train and test AUCs are approximately the same. As expected, the Logistic Regression 

model does not experience variance. Based on the area under the ROC curve, the room for 

improvement of the challenger models is quite limited, as the value of the high test AUC is 

approximately 0.90. However, based on each class F1-score, the model accurately predicts low 

income observations, but it performs poorly when classifying high income observations. The 

following figure shows the classification report using the 0.5 default threshold.  

Figure 5.1.3 – Classification report on test set  

  

Source: Table prepared on Census Income dataset 

Since the sample is moderately unbalanced, the performance of the model can also be 

evaluated with a ‘Precision-Recall’ curve. With an AUC of 0.74, the performance of the model is 

less optimistic, but the challenger models might improve performance.  



 

55 
 

Figure 5.1.4 – Precision-recall curve on test set

    

Source: Figure prepared on Census Income dataset 

The following figure displays the estimated coefficients.   

Figure 5.1.5 – Logistic Regression Coefficients 

 

Source: Figure prepared on Census Income dataset 

The Lasso penalty nulled the coefficients of ‘relat_Unmarried’, ‘educ_HS-grad’, ‘nat_count_Asia’, 

‘work_L_GOV’, ‘marital_Separated’, ‘marital_Widowed’, and ‘occup_A_Cler’ features. I consider 

that the signs and values of the coefficients that were not nulled are appropriate. For example, 



 

56 
 

‘age’ and ‘hours’ have positive effects on the probability of earning more than $50 thousand per 

year. On the one hand, a higher level of education, being married, and professional skills 

increases the probability of earning more than $50 thousand per year. On the other hand, 

lower levels of education, being unmarried, and having low-skilled occupations decreases the 

probability.  

5.2 – Gradient Boosting   

To estimate the Gradient Boosting model, I have used Python’s library 

‘sklearn.ensemble.GradientBoostingClassifier’. First, I describe the tree-specific parameters: 

 ‘min_samples_split’: it is the minimum number of samples that the algorithm will 

require for splitting a node. 

 ‘min_samples_leaf’: it is the minimum number of samples that the algorithm will 

include in the terminal nodes.  

 ‘max_depth’: it is the maximum depth of each boosting tree. 

 ‘max_features’: it is the maximum number of features that the tree will consider to look 

for the best split. 

The gradient boosting specific parameters are the following:  

 ‘learning_rate’: it is the rate that shrinks the contribution of the weak learners in the 

ensemble.  

 ‘n_estimators’: it is the number of trees that are included in the ensemble. There is a 

trade-off between this parameter and the learning rate: lowering learning rates 

requires a larger number of trees for increasing the scoring metric. 

These parameters are used to control overfitting.  

Table 5.2.1 – Relation between parameters and overfitting  

 

Source: Table prepared on Gradient Boosting model research 

To estimate the model, I used the following approach:  

Controls for overfitting with: 

min_samples_split High values

min_samples_leaf High values

max_depth low values

max_features low values

learning_rate low values

n_estimators low values

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html


 

57 
 

1) I set initial tree-specific parameters.  

2) I chose a high learning rate of 0.1 and found the optimal number of trees for that 

learning rate and the initial tree-specific parameters from step 1.  

3) I recalibrated the tree-specific parameters.  

4) I lowered the learning rate 0.01 and increased the number of trees.  

I used a high learning rate to choose a conservative (with respect to overfitting) tree-specific 

parameters. If I had chosen the tree parameters using the 0.01 learning rate, they would have 

been higher than the ones I used in the final model estimation.     

I set the following initial tree-specific parameters (step 1): 

 ‘min_samples_split’ = 500 (approximately 1.5% of the total number of training 

observations). 

 ‘min_samples_leaf’ = 100.  

 ‘max_depth’ =  9. 

 ‘max_features’ = ‘sqrt’ (which is the square root of the total number of features in the 

dataset). 

Using these initial values, I performed a grid search to determine the initial optimal number of 

trees (please refer to step 2). I tested values from 200 to 1000 taking steps of 20. The 

‘n_estimators’ output was 460.  

Next, I recalibrated the tree-specific parameters (step 3). I started with ‘max_depth’ and 

‘min_samples_split’, since these are the most sensitive (tree-specific) parameters for the model. 

For ‘max_depth’ I tested values from 5 to 25 taking steps of 2. I applied the same procedure to 

‘min_samples_split’ with values from 3000 to 6000 taking steps of 200. The output values were 

13 and 4800 for ‘max_depth’ and ‘min_samples_split’, respectively.  

Then, I tuned ‘min_samples_leaf’ testing values from 60 to 151 taking steps of 10. The output 

value was 70. I also checked ‘max_features’ from  7 to 21 taking steps of 2. The output was 15.  

Regarding the Gradient Boosting parameters, I decreased the learning rate to 0.01. To choose 

the number of trees with the updated learning rate, I built a grid to try with different numbers 

of trees [500, 2500, 3500, 4500, 5500, 6500, 7500]. The output value was 4500.  

The following two figures show the ROC curves for both the train and test sets.  



 

58 
 

Figure 5.2.1 – ROC for train set

 

Source: Figure prepared on Census Income dataset 

Figure 5.2.2 – ROC for test set 

 

Source: Figure prepared on Census Income dataset 

The AUCs between train and test datasets are similar and I do not consider the model has a 

variance issue. Based on the ‘F1-score,’ the Gradient Boosting model is better than the Logistic 



 

59 
 

Regression model in terms of predicting new high-income observations. However, as in the 

baseline model, the gap between precision and recall in both classes is significant.   

Table 5.2.2 – Classification report on test set

 

Source: Table prepared on Census Income dataset 

The area under the ‘Precision-Recall’ curve reflects the improvement with respect to the 

baseline model (0.82 against 0.74).    

Figure 5.2.3 – ‘Precision-Recall’ curve on test set

 

Source: Figure prepared on Census Income dataset 

5.3 – AdaBoost 

To estimate the AdaBoost model, I have used Python’s library ‘CatBoost’. I set the following 

parameters:  

 ‘min_data_in_leaf’= 4800 

 ‘Loss_function’= ‘Logloss’ 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html


 

60 
 

 ‘Learning_rate’= 0.1 

 ‘depth’ = 5 

I performed grid search to determine the initial optimal number of trees. I tested values from 

100 to 1500 taking steps of 50. The ‘n_estimators’ output was 700.  

Next, I recalibrated ‘depth’. I tested values from 1 to 10 taking steps of 2 and the output was 5. 

Finally, I decreased the learning rate to 0.01 and performed grid search to determine the 

optimal number of trees. I tested values from 5000 to 10000 taking steps of 500 and the output 

was 7000. 

The following two figures show the ROC curves for both the train and test sets.  

Figure 5.3.1 – ROC for train set

 

Source: Figure prepared on Census Income dataset 



 

61 
 

Figure 5.3.2 – ROC for test set 

 

Source: Figure prepared on Census Income dataset 

The AUCs between train and test datasets are similar and I do not consider the model has a 

variance issue. Based on the ‘F1-score,’ the AdaBoost and Gradient Boosting model results are 

similar.   

Table 5.3.1 – Classification report on test set 

 

Source: Table prepared on Census Income dataset 

The area under the ‘Precision-Recall’ curve reflects a slight improvement with respect to the 

Gradient Boosting model (0.83 against 0.82).    



 

62 
 

Figure 5.2.3 – ‘Precision-Recall’ curve on test set 

 

Source: Figure prepared on Census Income dataset 

5.4 – Random Forest  

To estimate the Random Forest model, I have used Python’s library 

‘sklearn.ensemble.RandomForestClassifier’. I set the following initial parameters:  

 ‘criterion’: ‘Gini’ as the impurity function to measure the quality of a split  

 ‘bootstrap’: ‘True’ for the algorithm to build the bootstrap samples with replacement  

 ‘n_estimators’: 500 trees  

 ‘min_samples_split’: 500 

 ‘max_leaf_nodes’: 100 

Next, I calibrated ‘max_depth’ and ‘max_features’. Regarding ‘max_depth’ I tested values from 

10 to 70 taking steps of 5, and the output was 45. I followed the same procedure for 

‘max_features’ with values from 7 to 21 taking steps of 2, and the output value was 17.  

Then, I calibrated ‘max_leaf_nodes’ testing values from 10 to 400 taking steps of 10 and the 

output was 130. Finally, I recalibrated the number of trees using the following grid 

[100, 200, 300, 500, 1000, 2000]. The output value was 500.  

The following two figures show the ROC curves for both the train and test sets. 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html


 

63 
 

Figure 5.4.1 – ROC for train set

 

Source: Figure prepared on Census Income dataset 

Figure 5.4.2 – ROC for test set  

 

Source: Figure prepared on Census Income dataset 

The AUCs between train and test datasets are similar. As in the Logistic Regression and the 

Gradient Boosting, the performance of the Random Forest model is less optimistic when 

assessing the ‘Precision-Recall’ curve.    



 

64 
 

Table 5.1.1 – Classification Report   

  

Source: Table prepared on Census Income dataset 

Figure 5.4.3 – Precision-recall curve 

    

Source: Figure prepared on Census Income dataset 

5.5 – Model Comparison   

Based on the ROC AUC, the baseline Logistic Regression model I have estimated shows a 

satisfactory performance (with test AUC of 0.9). The challenger models improved the 

performance with the Gradient Boosting model showing the highest AUC. The following figure 

shows the ROC curves of the three models. The Baseline model set a high AUC floor so I did not 

expect a significant increase on the challenger model6.   

                                                             
6 I did not include the AdaBoost model because the results were similar to the Gradient Boosting model 



 

65 
 

Figure 5.5.1 – ROC curve comparison

 

Source: Figure prepared on Census Income dataset 

Analyzing the ‘Precision-Recall’ curves and F1-scores, all the models predict low income 

samples satisfactorily, but their performance is poor when predicting high income 

observations. The following figure shows the ‘Precision-Recall’ curves of the three models. In 

this case, the Gradient Boosting model outperforms the Logistic Regression.   



 

66 
 

Figure 5.5.2 – ‘Precision-Recall’ curves comparison 

 

Source: Figure prepared on Census Income dataset 

The coefficients of the logistic regression model are aligned with the empirical patterns 

observed. The following two figures show the importance of the feature I estimated using 

‘SHAP’ Python’s Library for the Gradient Boosting Model (I only included the thirstiest and 

most important features).    



 

67 
 

Figure 5.5.3 – Average impact on Gradient Boosting model output 

 

Source: Figure prepared on Census Income dataset 

Figure 5.5.4 – SHAP value impact on Gradient Boosting model output 

 

Source: Figure prepared on Census Income dataset 

The most important features of the Gradient Boosting model are age, hours, net gain, marital 

status, professional skills, and gender. The logistic regression coefficient for gender was low, 

but this lies in the fact that there are other features correlated with gender. In fact, this dataset 

is very famous in the ‘Fair Lending’ field in which females are the unfavorable class (since most 

of the high income people are males) and the correlation between gender with other features 

is known as ‘red-lining effect’ (Toshihiro Kamishima 2012). Figure 5.5.4 shows that a higher 

level of education (e.g., Bachelors’, Masters’, PhD, and professional schools), and skilled 



 

68 
 

professions (e.g., executives, professionals) are important drivers in determining if incomes 

exceed $50 thousand per year.     



 

69 
 

6.0 – Concluding remarks   

Before training machine learning algorithms, a working plan should be designed. I used the 

United States Census Income dataset and clearly stated my purpose before fitting the models: I 

wanted to find the best classification model while maintaining a balance between training and 

interpretability efforts. In the data preprocessing field, I could find clear and intuitive patterns 

in the categorical features:  the incomes of individuals with high educational levels or skilled 

professions who are married exceed $50 thousand per year. Regarding numerical features, the 

wealthiest people were over 30 years and worked over 40 hours per week. Performing a 

deeply feature engineering process and adopting the approaches required to deal with 

unbalanced samples (the Census Income was moderately unbalanced) was out of the scope of 

my thesis. I imputed missing values, grouped categories for some of the categorical features, 

rescaled age and hour-per-week continuous variables, and transformed capital gain and loss 

features into a single variable. I fitted a baseline Logistic Regression model. Based on the area 

under the ROC curve the performance of the model was acceptable, leaving the challenger 

models little room for improvement. However, the Logistic Regression model performance was 

less optimal to classify high income observations. Then, I trained tree-ensemble challenger 

models, which slightly improved the area under the ROC curve but were more appropriate for 

classifying high income observations. In general, the feature importance of the Gradient 

Boosting model was in line with the coefficients of the Logistic Regression.  

The trend in data mining is to train more sophisticated algorithms. However, even if training 

time (or computational requirements) was not an issue, I would still start by fitting a relatively 

simple model and then move to a more complex one, but not to the most complicated one. The 

working plan might not be linear. After fitting a baseline model or even a relatively more 

sophisticated one, new insights may suggest moving a step back to the feature engineering 

field. Considering the balance between training and interpretability efforts and the patterns I 

have observed in the data, I would choose and improve the Logistic Regression model for the 

Census Income dataset.      

  



 

70 
 

References 

Amit, Yali, and Geman, Donald. "Shape Quantization and Recognition with Randomized Trees." 

Massachusetts Institute of Technology, 1997. 

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Springer. 

Breiman, Leo. "Bagging Predictors." University of California, September 1994. 

—. "Random Forests." University of California, January 2001. 

Breiman, Leo, Friedman, Jerome, Olshen, Richard, and Stone, Charles. 1984. Classification and 

Regression Trees. Taylor & Francis Group, LLC.  

Fawcett, Tom. "An introduction to ROC analysis." Palo Alto: Institute for the Study of Learning 

and Expertise, ELSEVIER, December 19, 2005. 

Freund, Yoav, and Schapire, Robert E. “Experiments with a New Boosting Algorithm.”AT&T 

Laboratories, 1996. 

Freund, Yoav, and Schapire, Robert E. "A Short Introduction to Boosting." AT&T Labs - 

Research, September 1999. 

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert. “Additive Logistic Regression: A 

Statistical View of Boosting.” The Annals of Statistics, 2000. 

Friedman, Jerome. "Greedy Function Approximation: A Gradient Boosting Machine." The 

Annals of Statistics, Vol. 29, No. 5, 1189–1232, 2001. 

Gareth, James, Witten, Daniela, Hastie, Trevor, and Tibshirani, Robert. 2013. An Introduction to 

Statistical Learning with Applications in R. New York: Springer.  

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome. 2013. The Elements of Statistical 

Learning: Data Mining, Inference, and Prediction. Springer. 

Ho, Tin Kam. "Random Decision Forests ." AT&T Bell Laboratories, 1995. 

Kohav, Ronny, and Becker, Barry. UCI Machine Learning Repository (California: University of 

California). May 1, 1996. https://archive.ics.uci.edu/ml/datasets/adult (accessed 2020). 

Kuhn, Max, and Johnson, Kjell. 2013. Applied Predictive Modeling. Springer. 

Mason, L., J. Baxter, P. Bartlett, and M. Frean. Boosting Algorithms as Gradient Descent. MIT 

Press, 2000. 

Murphy, Kevin. 2012. Machine Learning: A Probabilistic Perspective. Cambridge, MA: MIT 

Press. 

Schapire, Robert E. "The Strength of Weak Learnability." Kluwer Academic Publishers, Boston, 

1990. 



 

71 
 

Sosa Escudero, Walter. Análisis ROC. August 24, 2020. 

https://www.youtube.com/watch?v=_yzJQ-vp5uI (accessed 2020). 

—. "Tópicos de Econometría Aplicada (Notas de Clase) Trabajo Docente Nro. 2 Universidad 

Nacional de La Plata." Septiembre 1999. 

Kamishima, Toshihiro, Okaho, Shotaro, Asoh, Hideki, and Sakuma, Jun. "Fairness-aware 

Classifier with Prejudice Remover Regularizer." 2012. 

Weinberger, Kilian. 17: Decision Trees. July 2018. 

http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote17.html (accessed 

2020). 

—. 19: Boosting. July 2018. 

http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote19.html (accessed 

2020). 

—. Lecture 12: Bias-Variance Tradeoff. July 2018. 

http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html (accessed 

2020). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 


