
Universidad de San Andrés

Departamento de Economía

Doctorado en Economía

Sampled Networks, Peer E�ects and Spatial

VAR model

Alumno:

Alejandro Izaguirre

DNI: 29945269

Director:

Gabriel Montes Rojas



Resumen:

La presente tesis está constituida por tres artículos diferentes cuyo contenido, en forma muy general,

pertenece al área de estudio de la estadística-econometría.

El primer trabajo, denominado, �Horvitz-Thompson estimator under partial information with an

application to network degree distribution�, es un trabajo metodológico donde se presenta una ex-

tensión del estimador de Horvitz-Thompson (H-T) cuya función es estimar el total de conjuntos de

un tamaño dado en una población pero utilizando una muestra, no de conjuntos, sino de los ele-

mentos que forman dichos conjuntos. Básicamente, lo que tenemos es un problema de información

parcial dado que no observamos las unidades que queremos estimar (conjuntos), sino una parte de

ellas (sus elementos).

Una vez adaptado el estimador de H-T al escenario de información incompleta lo que hacemos es

utilizarlo para estimar la network degree distribution que es una descripción de la frecuencia relativa

de los nodos de una red con diferentes números de links. El estimador propuesto se puede utilizar

bajo un amplio rango de muestreos de tipo probabilísticos. En el trabajo lo adaptamos a un tipo

particular de muestreo conocido como �induced subgraph sampling�.

Para �nalizar realizamos una simulación de tipo Monte Carlo para evaluar la performance del es-

timador propuesto y compararlo con una estimación de tipo �naive�.

El segundo trabajo, denominado �Regional and state heterogeneity of monetary shocks in Argentina�

analiza la heterogeneidad espacial del impacto de la política monetaria en Argentina. Se plantean

dos niveles de desagregación espacial, uno por provincias y otro por regiones, y se evalúa cómo los

cambios en la tasa de interés afectan la actividad económica (medida a través del empleo formal) en

las distintas áreas espaciales consideradas. El modelo utilizado es un modelo de vectores autorre-

gresivos espaciales (SpVAR) que tiene la particularidad de considerar la interacción de las unidades

espaciales (provincias o regiones según el caso).

Por último, el tercer trabajo, denominado �Exploring peer e�ects in education in Latin America and

the Caribbean es un trabajo aplicado cuyo objetivo es evaluar la existencia de peer e�ects en la

educación, es decir la existencia de interacciones o in�uencias dentro el aula que tengan impacto en

los resultados académicos. Para ello se utiliza la base de datos TERCE que reúne información sobre

el desempeño académico en matemática, ciencia y lengua, de los alumnos de tercer y sexto grado



para los países de América Latina.

El modelo utilizado para el análisis es el propuesto en (Lee, 2007) que permite identi�car dos de los

tres efectos que constituyen los peer e�ects, a saber, efectos endógenos y exógenos, controlando por

efectos correlacionados a nivel grupal.

A su vez se evalúa la existencia de posibles heterogeneidades en dichos efectos, especí�camente, se

divide la muestra en escuelas públicas, privadas y rurales y se estima el modelo para cada subcon-

junto de datos.



Capítulo I

Horvitz-Thompson estimator under partial information

with an application to network degree distribution1

Abstract

We present an extension of the Horvitz-Thompson estimator for estimating the total number

of sets of a given size within a population. We study the limitations of the Horvitz-Thompson

under partial information where we have a sample of population elements rather than of sets.

The developed estimator is the chained Horvitz-Thompson. We apply this estimator for estim-

ating the network degree distribution under probability sampling designs, in particular, induced

subgraph. Finally, we present Monte Carlo simulations to assess the accuracy of the proposed

estimator.

Key words: Horvitz-Thompson estimator, networks, network sampling designs, degree dis-

tribution, average degree.

JEL classi�cation: C13, C4.

1Una versión extendida de este artículo fue publicada en Communications in Statistics-Simulation and Computation

(2019): 1-24, en coautoria con Gabriel Montes Rojas.



1 Introduction

A growing literature related to social networks and their implications in economic outcomes emerged

during the last years (see Jackson et al., 2008). A network represents a set of connections (edges)

among a collection of agents (nodes). Most networks investigated today are parts of much larger

networks. Although many applied works speak of the network when presenting empirical results,

frequently it is only a sampled version of some larger underlying network. Sampling is of particular

interest in the context of online social networks because they are usually very large.

Although the �rst works on network sampling started in the late 1960s by the hand of Ove Frank

and his colleagues, the subject showed a growing interest in the last years in a number of �elds such

as economics, epidemiology, statistics, sociology and computer science, among others.

There are many papers in which the focus is on understanding the extent to which characteristics

of a sampled network correspond to the complete network (see Zhang et al., 2015, for a literature

review). Focusing on the analysis of the internet topology, this issue is studied in Lakhina et al.

(2003) and Achlioptas et al. (2009). Typical characteristics of interest include degree distribution,

density, diameter, clustering coe�cient, average path length, among others. In general, under many

sampling schemes, these measures are biased when we use sampled networks. One of the �rst

works in proposing an estimator for network characteristics (average degree and density) based on

a sampled network was Granovetter (1976).

Network models are widely used to represent information among interacting units and the struc-

tural implication of these relations, and the estimation of such models based on sampled networks

su�ers bias problems too. See, for instance, Handcock & Gile (2010), Santos & Barrett (2008) and

Chandrasekhar & Lewis (2011). In the latter, the authors not only show how the bias arise when we

use sampled data in the estimation of econometrics models, but also propose procedures to correct

such biases. One of them is based on a graphical reconstruction, that is, using sample information to

predict the full network. This approach requires a series of assumptions about the network formation

process.

In this paper we focus our attention on the network degree distribution. The degree distribution

of a network is a description of the relative frequencies of nodes that have di�erent degrees. This

measure is one of the most fundamental characteristic associated with a network and it is a�ected



by sampling, sometimes dramatically.

Network sampling is a highly relevant topic in the �eld of network science. Some references for

the sampling literature are Rothenberg (1995), Handcock & Gile (2010), (Kolaczyk, 2009, ch.5),

Ahmed et al. (2014), among many others. In this paper we restrict our attention to probability

sampling designs.

The main problem we face in this article is given by the lack of information. Brie�y, we are

interested in sets but we do not observe sets, we observe elements of those sets instead. Given this

issue, in the �rst part we extend the Horvitz-Thompson (HT) estimator (Horvitz & Thompson,

1952) to make it feasible under this setting. In the second part, we propose an estimator for the

network degree distribution to be used under any probability sampling designs, and then we apply

it for a widely used probability sampling design known as induced subgraph (i.e., nodes sampling).

A related work is Frank (1977), which presents an adaptation of the HT estimator to be used in

networks contexts, but under the same framework as the original HT estimator. Finally we do a

Monte Carlo simulation to assess the analytical results.

The paper is organized as follows. Section 2 presents the limitations of the Horvitz-Thompson

estimator under partial information and Section 3 the corrected estimators. Section 4 develops the

chained Horvitz-Thompson estimator. Section 5 applies the proposed estimators to the network

degree distribution. Section 6 presents Monte Carlo simulations. Section 7 concludes.

2 The Horvitz-Thompson estimator under partial information

The HT estimator is a well known estimator mostly used for estimating population totals under prob-

ability sampling designs (see Fuller, 2011). In this paper we are interested in estimating population

totals, but the HT estimator is unfeasible under the framework we work with.

The elements of the main population are grouped into sets and we want to know how many sets

of a given size there are into the population. The issue for using the HT estimator is because the

sample we have has only partial information about the sets. In particular, we have a sample of

elements of the population, which means that we do not have a sample of sets, rather a sample of

elements of the sets.

Consider a population and a collection of sets given by the following de�nitions.



De�nition 1. Let U = {u1, u2, . . . , uN} be a population of size N <∞ whose elements are grouped

into J <∞ sets (not necessarily exclusive).

De�nition 2. Let Θ =
{
θ1, . . . , θJ

}
be a collection of the J sets in which the elements of U are

grouped, with generic element θ = {uj , uh, . . . , ul}, 1 ≤ j, h, . . . , l ≤ N , θk is a generic element of

size k, with k = 1, 2, . . . , p and Tk is the total number of sets of size k in Θ.

Θ contains all the sets in which the elements of U are grouped into, such elements are not

necessarily exclusive.

The total number of sets of size k in Θ can be written as Tk =
∑

θ∈Θ I [#θ = k] , where #θ

denotes the cardinality of θ, that is, the number of elements in θ. We want to estimate how many

sets of size k there are into the population, that is, we want to estimate Tk. If we had a sample of

Θ we could use the HT estimator as follows,

T̂HTk =
∑
θ∈Θs

π−1
θ I [#θ = k] , (1)

where Θs ⊂ Θ is a sample of Θ and πθ is the probability of selection of θ. If we have a sample of U

instead of Θ the HT estimator is unfeasible because we do not know θ.

In this paper we propose an unbiased estimator for Tk (and its variance) based on the HT

estimator to be used when we have a sample of U instead of Θ. The only requirement is that the

sample has certain information about θ (see Assumption 1).

As an example suppose we want to know the total number of blocks in a city with di�erent

numbers of houses, that is, how many blocks are with, for example, 20 houses, how many with 25,

and so on. Under this setting our population U is given by the N houses of the city which are

grouped into J blocks, being θ a generic block and θk a generic block with k houses. Θ is a set

(or collection) that contains all θ, and Tk is the total number of blocks with k houses. If we have

a probability sample of Θ (a sample of blocks) we could use (1) for estimating Tk, but suppose we

have instead a probability sample of U (a sample of houses instead of a sample of blocks), if we do

not observe θ the estimator (1) is unfeasible.



3 Extending the HT estimator for partial information

We have a population whose elements are grouped into sets, and our main goal here is to estimate

how many sets of a given size there are in the population. The problem is that we partially observe

those sets, that is, we only observe subsets.

For an intuitive introduction to the methodology proposed here suppose we divide each set of

the population Θ into all possible combinations, that is, we generate all possible subsets from each

set of Θ, then suppose we arrange these subsets into a new population named Γ. In other words,

we create a new population given by all subsets we can get from each set of Θ.

The total number of subsets of a given size in Γ is a linear combination of the total number

of sets in Θ. This relation is the key for the estimator we propose here. Our proposal consists in

estimating the total number of subsets in Γ (since we observe them by assumptions), and then to

estimate the total number of sets in Θ based on the implied linear relationship.

Let Lc be the total number of subsets of size c in Γ, we have that Lc =
∑p

k=1 Tk

 k

c

. As

noted above, the total number of subsets of size c in Γ, that is Lc, is a linear combination of the

total number of sets in Θ, Tk.

As an example, suppose Θ contains 4 sets of size 5 and 3 sets of size 4, that is, T5 = 4 and

T4 = 3, so there are L4 = 4

 5

4

+ 3

 4

4

 subsets of size c = 4 in Γ.

Generalizing the previous statement we have the following equality

L = AT, (2)

where L = (L1, L2, . . . , Lp)
′
is a (p× 1) vector, A = [aij ], where aij =

 j

i

 with i, j = 1, . . . , p is

a (p× p) upper unitriangular matrix (the matrix A is a submatrix of the Pascal Matrix, we present

some properties about A in the Appendix), and T = (T1, T2, . . . , Tp)
′
is a (p× 1) vector.

The element Tk of T is the total number of sets of size k in Θ, the element Lc of L is the total

number of subsets of size c in Γ. The matrix A transforms the total number of sets in Θ into the

total number of subsets in Γ. The previous equation summarizes the linear relation between the

total number of sets (of di�erent sizes) and the total number of subsets (of di�erent sizes) we can



get from them.

Our methodology consists in estimating L and then replace it in T = A−1L to get an estimator

for T . Given that A is a non stochastic upper unitriangular matrix its inverse exists, furthermore,

A−1 =
[
ā−1
ij

]
where ā−1

ij = (−1)j+i

 j

i

.
3.1 The Horvitz-Thompson estimator for Lc

Consider the following de�nitions and assumptions.

De�nition 3. Let S be a probability sample of U . Let S = 2U be the σ-�eld of all possible samples

of U , and Π be a probability measure, Π : S 7→ [0, 1]. The triplet (U,S,Π) is a probability space.

Our raw material here are the subsets we can get from the sets of Θ, we construct an �arti�cial�

population of such subsets as follows:

De�nition 4. Let Γ = ∪θ∈Θ {P (θ)−Ø} be a collection of all possible subsets we can get from

each element of Θ where P (θ) is the power set of θ, γ is a generic element of Γ, and γc a generic

element of size c, with c = 1, 2, . . . , p. The total number of elements of size c in Γ is given by

Lc =
∑

γ∈Γ I [#γ = c] .

Although the elements of Γ (and Γs) are sets we call them subsets to highlight that they are

subsets of θ. To avoid confusions we refer to the elements of Θ as sets and to the elements of Γ (and

Γs) as subsets.

De�nition 5. Let Γs = {γ| ∀ γ ∈ S} be the collection of all subsets γ in sample S, Γs ⊆ Γ. Let

ps ≤ p be the maximum size of γ ∈ S.

To clarify, S is a sample of U , and γ ⊆ θ are subsets composed by elements of U . What we mean

by γ ∈ S is that all u ⊆ γ are in S.

De�nition 6. Let πγ = Prob (γ ∈ Γs) be the probability of selection of γ and πγγ′ = Prob (γ ∪ γ′ ∈ Γs)

be the joint probability of selection of γ and γ′. Given de�nition 5, πγ = Prob (γ ∈ S) and

πγγ′ = Prob (γ ∪ γ′ ∈ S).

Consider now the following assumptions.



Assumption 1. For all u ∈ S we can identify every θ in Θ such that u ∈ θ.

Assumption 2. πγ > 0 ∀ [#γ ≤ p] ∈ Γ. The probability of selection of any element in Γ has to be

positive.

Assumption 3. πγγ′ > 0 ∀ [#γ ≤ p] ∨ [#γ′ ≤ p] ∈ Γ. The joint probability of selection of any pair

of elements in Γ has to be positive.

Assumption 1 is the key assumption for the proposed estimator. It does not imply that we know

all the elements in θ, it only assumes we know to which set (or sets) each element of the sample

belongs. In other words, we can match every u ∈ S with any θ ∈ Θ such that u ∈ θ. The idea

behind this assumption is that we can group the elements in S as they are grouped in Θ, and thus

we have a sample of subsets of θ. These subsets could indeed be θ, but we do not know it a priori.

Consider the following example. Let U = {u1, u2, u3, u4, u5} be a population of individual

elements, let Θ =
{
θ1, θ2, θ3

}
be a population of sets, where θ1 = (u1, u3), θ2 = (u2, u3, u5),

θ3 = (u4, u5), and let S = {u1, u2, u5} be a sample of U . Assumption 1 assumes we know that u1

belongs to θ1, u2 belongs to θ2, and u5 belongs to θ2 and θ3.

Assumption 1 allows to create Θ′ =
{
θ′1, θ′2, θ′3

}
, where θ′1 = (u1), θ′2 = (u2, u5) and θ′3 = (u5).

We do not necessarily recover θ in S but we recover a subset θ′ instead.

Assumption 1 guarantees that we can identify all γ in S, this is because γ is no more than a

combination of elements of θ, and if we can identify the elements of θ into the sample then we can

identify any combination of them. Following with the previous example, let

Γ =
{
γ11, γ12, γ13, γ21, γ22, γ23, γ24, γ25, γ26, γ27, γ31, γ32, γ33

}
be the population of all possible subsets from each element of Θ, where γ11 = (u1), γ12 = (u3),

γ13 = (u1, u3), γ21 = (u2), γ22 = (u3), γ23 = (u5), γ24 = (u2, u3), γ25 = (u2, u5), γ26 = (u3, u5),

γ27 = (u2, u3, u5), γ31 = (u4), γ32 = (u5) and γ33 = (u4, u5). Let Γs =
{
γ11, γ21, γ23, γ25, γ32

}
be

the collection of all subsets γ in S.

The elements of Γs are identi�able into S because they are subsets of the elements of Θ′, that

is, Γs = ∪θ′∈Θ′ {P (θ′)−Ø}. The identi�ability of Γs by S is the reason why we create the arti�cial

population Γ.



Assumptions 2 and 3 impose standard restrictions on the sampling designs.

Table 1 summarizes the concepts and assumptions presented above.

Table 1: Populations and samples, summary
Population De�nition Example Parameter

U = {u1, u2, . . . , uN} Population of individual

elements.

Population of

houses.

-

Θ =
{
θ1, . . . , θJ

}
Population of sets in which

the elements of U are

grouped.

Population of

blocks.

Tk =Total

number of sets of

size k in Θ.

Γ = ∪θ∈Θ {P (θ)−Ø} Population of all possible

subsets we can get from each

element of Θ. It is an

�arti�cial� population.

All possible

combinations of

houses we can get

from each block.

Lc = Total

number of subsets

of size c in Γ.

S = {u1, u2, . . . , un} Sample of U . Sample of houses. -

Γs = {γ| ∀ γ ∈ S} Sample of Γ built from S. Sample of houses

grouped as they

are in Θ and all

possible

combinations of

such groups.

-

Brie�y, we do not have a sample of the population whose parameters we are interested in, that

is, we do not have a sample of Θ, but under Assumption 1 we have a sample of an �alternative�

population Γ and we can estimate certain parameters of Γ which are linearly related with the

parameters we are interested in.

We can summarize the proposed methodology in the following steps.

1. Transform the population of sets Θ into an arti�cial population of subsets, Γ. We know the

total number of elements of a given size in both populations are linearly related.

2. Use S (a sample of U) to construct Γs (a sample of Γ). Assumption 1 allows to transform the

sample S into the sample Γs.

3. Based on Γs estimate L estimating Lc for all c (see section below).

4. Once we estimate L, estimate Tk based on T = A−1L .

3.2 Estimator for Lc

We can estimate Lc using the HT estimator as follows,



L̂HTc =
∑
γ∈Γs

π−1
γ I [#γ = c] , (3)

whereI[·] is the indicator function.

Lemma 1. Under Assumptions 1 and 2, we have that E
(
L̂HTc

)
= Lc.

Proof. Let Iγ be an indicator function which takes the value one if γ ∈ Γs and zero otherwise, then

we have that E (Iγ) = πγ . The estimator (3) can be expressed as L̂HTc =
∑

γ∈Γ π
−1
γ I [#γ = c] Iγ ,

thus we have E
(
L̂HTc

)
=
∑

γ∈Γ π
−1
γ I [#γ = c]E (Iγ), and given that E (Iγ) = πγ , we have that

L̂HTc is an unbiased estimator of Lc.

It is worth to note here that Assumption 2 only requires that any subset in Γ has positive

probability to be sampled, it does not mean that the sample Γs must have elements γ of all di�erent

sizes. For L̂HTc be unbiased, it does not matter the size of the subsets γ in Γs, we only have to be

sure that any subset could be sampled.

Let ps ≤ p be the maximum size of γ in Γs, we have that L̂HTc = 0 for all c > ps, and also

that L̂HTc > 0 for all c ≤ ps. This statement is a consequence of the de�nition of Γ: if we have

γ in the sample we also have all possible combinations of its elements, for instance, if we observe

γ1 = (u2, u5) in Γs we also observe γ2 = (u2) and γ3 = (u5). In other words, if we observe γ we also

observe every γ′ ⊂ γ.

3.3 Estimator for L

We propose to estimate L = (L1, L2, . . . , Lp)
′
replacing each element by L̂HTc , thus we have,

L̂HT =
(
L̂HT1 , L̂HT2 , . . . , L̂HTp

)′
. (4)

Lemma 2. Under Assumptions 1 and 2 we have that E
(
L̂HT

)
= L .

Proof. Under Assumptions 1 and 2 L̂HTc is unbiased for all c, thus L̂HT is unbiased.



3.4 Variances and covariances for L̂HTc

Let γc be an element of Γ of size c, and let γ′c′ be an element of Γ of size c′. Then, Cov
(
L̂HTc , L̂HTc′

)
can be expressed as follows,

σcc′ = Cov
(
L̂HTc , L̂HTc′

)
=
∑
γ∈Γ

∑
γ′∈Γ

π−1
γ I [#γ = c]π−1

γ′ I
[
#γ′ = c′

] (
πγγ′ − πγπγ′

)
.

It is worth to note that, for c = c′ the Cov
(
L̂HTc , L̂HTc′

)
= V ar

(
L̂HTc

)
.

The proposed estimator for the covariance is given by

σ̂cc′ = Ĉov
(
L̂HTc , L̂HTc′

)
=
∑
γ∈Γs

∑
γ′∈Γs

π−1
γ I [#γ = c]π−1

γ′ I
[
#γ′ = c′

] (
πγγ′ − πγπγ′

)
π−1
γγ′ .

Lemma 3. Under Assumptions 1-3, we have that E
[
Ĉov

(
L̂HTc , L̂HTc′

)]
= Cov

(
L̂HTc , L̂HTc′

)
.

Proof. See Appendix 8.2.1.

Provided that the sample will not necessarily include subsets γ of all sizes, then σ̂cc′ = 0 for

c ∧ c′ > ps.

3.5 Variance-Covariance matrix for L̂HT

Let ΩL = [σcc′ ] be the (p× p) variance-covariance matrix of L̂HT , replacing each element of ΩL by

its unbiased estimator we have the estimator for ΩL, Ω̂L = [σ̂cc′ ], where σ̂cc′ = Ĉov
(
L̂HTc , L̂HTc′

)
.

Lemma 4. Under Assumptions 1-3, we have that E
(

Ω̂L

)
= ΩL

Proof. Under Assumptions 1-3, σ̂cc′ is unbiased for all c and c′, thus Ω̂L is unbiased.

4 The chained Horvitz-Thompson estimator for T

Based on equation (2) the estimator we propose for T is given by,



T̂CHT = A−1L̂HT . (5)

Basically, it consists in replacing L by L̂HT in T = A−1L.

Lemma 5. Under Assumptions 1 and 2, we have that E
(
T̂CHT

)
= T .

Proof. Under Assumptions 1 and 2 L̂HT is unbiased , and given that A−1 is a non-stochastic matrix,

T̂CHT is also unbiased.

The variance-covariance matrix of T̂CHT is given by ΩT = A−1ΩLA
′−1, our proposed estimator

for ΩT is given by

Ω̂T = A−1Ω̂LA
′−1. (6)

Lemma 6. Under Assumptions 1-3, we have that E
(

Ω̂T

)
= ΩT .

Proof. Under Assumptions 1-3 Ω̂L is unbiased, and given that A−1 is a non-stochastic matrix, Ω̂T

is also unbiased.

4.1 Feasible estimator

We assume that we do not know p so the previous estimators are unfeasible because they depend

on p (L and A−1 are of order p). As a special case, if we know p we use (5) and (6).

We assume that all we know about the size of the subsets γ is based on the sample, thus the

largest size we observe is ps ≤ p. This fact could lead us to think that we can only estimate Lc≤ps ,

but this is not true because under Assumption 2 if we do not observe subsets of sizes c > ps is due

to randomness, therefore L̂HTc>ps = 0 because I [#γ = c] = 0 for c > ps. The problem caused by not

knowing p is that we do not know if there exist subsets of size c > ps, and their estimates are zero.

Since the largest size of subsets we observe in the sample is ps, then the estimate of the total

number of sets of size larger than ps is zero. Then L̂HTc>ps = 0 makes that T̂CHTk>ps = 0.



We write L, T and A as follows, L =
(
L
′
A, L

′
B

)′
where LA = (L1, . . . , Lps)

′
and LB =

(Lps+1, . . . , Lp)
′
, T =

(
T
′
A, T

′
B

)′
where TA = (T1, . . . , Tps)

′
and TB = (Tps+1, . . . , Tp)

′
, and A−1 = Ā11 Ā12

Ā21 Ā22

 where Ā11 is a (ps × ps) upper-left submatrix of A−1, Ā12 is a (ps × (p− ps)) upper-

right submatrix of A−1, Ā21 = [0] is a ((p− ps)× ps) lower-left submatrix of A−1 and Ā22 is a

((p− ps)× (p− ps)) lower-right submatrix of A−1.

Given that T = A−1L and the previous de�nitions, we have that TA =

[
Ā11 Ā12

]
L and

TB =

[
Ā21 Ā22

]
L, given this we divide the estimator of T into two parts, on the one hand we

estimate TA and on the other hand we estimate TB.

Using block matrix multiplication we have that,

T̂CHTA =

[
Ā11 Ā12

]
L̂HT

=

[
Ā11L̂

HT
A Ā12 L̂HTB

]
(7)

= Ā11L̂
HT
A .

The previous result is given by the fact that L̂HTB = 0.

It is worth to note here that Ā11 is a submatrix of A−1, if we need to know A−1 in order to get

Ā11, the estimator T̂CHTA would be unfeasible because it would still depend on p. In appendix (10)

we prove that Ā11 = A−1
11 where A11 = A [1 : ps, 1 : ps], that is, Ā11 is the inverse of a submatrix of

A given by its �rst ps rows and columns, therefore, it is enough to know ps to get Ā11.

In the same line

T̂CHTB =

[
Ā21 Ā22

]
L̂HT

=

[
0L̂HTA Ā22 L̂HTB

]
(8)

= 0.

The previous result is given by Ā21 = 0 and L̂HTB = 0.



The key issue here is that, regardless of whether we know p, the estimate for TB is equal to zero

because its estimator depends entirely on L̂HTB . In other words, the estimate of the total number of

sets larger than ps is zero, and the estimate of the total number of sets of sizes less than or equal to

ps is given by T̂CHTA .

Summarizing, if we do not know p the only feasible estimator is T̂CHTA . It does not mean we

only have an estimator for TA, we know that, if TB exist, its (unbiased) estimate is zero.

Lemma 7. Under Assumptions 1-2, we have that E
(
T̂CHTA

)
= TA and E

(
T̂CHTB

)
= TB.

Proof. Under Assumptions 1 and 2 L̂HT is unbiased, and given that Ā11, Ā12, Ā21 and Ā22 are a

non-stochastic matrices, T̂CHTA and T̂CHTB are also unbiased.

Let ΩTA be the variance-covariance matrix of T̂CHTA , the estimator of ΩTA is given by,

Ω̂TA = A−1
11 Ω̂L,11A

−1′

11 , (9)

where Ω̂L,11 = Ω̂L [1 : ps, 1 : ps] and A−1
11 = Ā11.

Let ΩTB be the variance-covariance matrix of T̂CHTB , the estimator of ΩTB is given by Ω̂TB = [0]

(we show this equality in Appendix 8.2.2).

Lemma 8. Under Assumptions 1-3, we have that E
(

Ω̂TA

)
= ΩTA and E

(
Ω̂TB

)
= ΩTB.

Proof. See Appendix 8.2.2.

4.2 Numerical Example

We present in this section a simple numerical example. Suppose we have a population of 10 houses

grouped into 6 blocks in the following way: 3 blocks have 1 house (T1 = 3), 2 blocks have 2 houses

(T2 = 2) and 1 block has 3 houses (T3 = 1).

U = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10} is a population ofN = 10 houses, Θ =
{
θ1, θ2, θ3, θ4, θ5, θ6

}
is a population of J = 6 blocks, where θ1 = (u1), θ2 = (u2), θ3 = (u3), θ4 = (u4, u5), θ5 = (u6, u7),

θ6 = (u8, u9, u10), the maximum size of sets (blocks) is p = 3.

The population of subsets is given by



Γ = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, (u4, u5) , (u6, u7) , (u8, u9) , (u9, u10) , (u8, u10) , (u8, u9, u10)},

the sizes of the elements of Γ are given by c = 1, 2, 3. Each element in Γ is a possible combination

of elements of each set in Θ.

We draw a random sample S of size n = 4 from U . The probability of selection of γc is given by

Prob (γc ∈ S) =

 N

n


−1 N − c

n− c

 .

Given that c = 1, 2, 3 we have that Prob (γ1 ∈ S) = n
N , Prob (γ2 ∈ S) = n(n−1)

N(N−1) and Prob (γ3 ∈ S) =

n(n−1)(n−2)
N(N−1)(N−2) .

Let S = {u1, u3, u6, u7} be a sample of U , and let Γs = {u1, u3, u6, u7, (u6, u7)}be the sample of

Γ that we get from S. The size of largest subset in Γs is ps = 2 < p.

We �rst estimate L = (LA, LB) by (4), where LA = (L1, L2) and LB = (L3), we have that

L̂HT1 = 4π−1
γ1 = 4

(
4

10

)−1

= 10

and

L̂HT2 = 1π−1
γ2 = 1

(
12

90

)−1

= 7.5

with the previous we have that L̂HTA = (10, 7.5)
′
.

We are assuming we do not know p, so we neither know that LB exist, that is, we do not know

there are subsets of size c = 3 in Γ but, under assumption 2, we know that if there are subsets of

size larger than ps = 2 the estimate of their total number is zero, that is, L̂HT3 = 0. Assumption

2 establishes that any subset in Γ should have positive probability to be sampled, given the size of

the largest subset in Γ is 3, as long as n ≥ 3 Assumption 2 holds.



On the other hand we have A =


1 2 3

0 1 3

0 0 1

 so A−1
11 = (A [1 : 2, 1 : 2])−1 =

 1 −2

0 1

 . Given

the previous we have that

T̂CHTA =

 1 −2

0 1

 L̂HTA ,

thus we have that T̂CHTA = (−5, 7.5)
′
.

As we see, in theory some Tk could be negative, but in practice they should be positive. We can

impute the value zero for every T̂CHTk < 0 , this generate some bias but reduce the Mean Square

Error.

We do not have an estimate of T3 because we do not know there are subsets of size 3, but we

know that the estimate of every Tk>2 is zero (if it exist!).

5 Estimating the network degree distribution

In this section we use the methodology proposed above to estimate the network degree distribution,

which is one of the most fundamental features of a network. Some of the papers related with this

topic are the following.

5.1 Literature review

Frank (1980, 1981) shows that, under certain networks sampling designs, the expectation of the

observed degree relative frequencies (i.e., the degree distribution) is a linear combination of the true

degree relative frequencies, and he proposes an estimator which depend on an inverse matrix that

in some cases is not invertible and, even when it is, the result may not be non-negative.

Zhang et al. (2015) proposes a method to overcome these problems, and apply it to a few

common networks sampling designs where inclusion probabilities are known. They do not make

assumptions about the structure of the network. The methodology is assessed by a simulation study

that considers the e�ects of several factors on the accuracy of the estimators. The results show,



among others aspects, that sampling schemes have a considerable impact on the performance of the

estimators.

Thompson (2006) proposes a sampling design and discusses inference procedures on the average

degree and the degree distribution under such sampling designs. In the same line, Ribeiro & Towsley

(2012) studies the mean squared error associated with di�erent sampling methods for the degree

distribution.

Stumpf & Wiuf (2005) discusses two sampling schemes for selecting random subnets from a

network and investigate how the degree distribution is a�ected for this two types of sampling. The

central question addressed by the authors is whether the degree distribution of randomly sampled

subnets has the same properties as the degree distribution of the overall network, they derive a

necessary and su�cient condition that guarantees this equality and describe some situations under

which this condition is satis�ed, however, for the majority of the networks this condition is no be

met.

Internet topology is one of the areas where networks are widely used. Faloutsos et al. (1999)

shows that the internet degree distribution has a power-law form, Lakhina et al. (2003) show that

when graphs are sampled using traceroute-like methods, the resulting degree distribution (based on

sampled network) can di�ers sharply from the true, they explore the reason of such bias and propose

a test for determining when sampling bias is present. Achlioptas et al. (2009) study the traceroute

sampling systematically and extend the results in Lakhina et al. (2003).

5.2 Some network de�nitions

A common way to represent a network is listing all their nodes and links among them. Let N =

{1, 2, ..., N} be a collection of N nodes and let g be a collection of links. Then a network is de�ned

by G = (N , g). If ij ∈ g, then node i is linked to node j, alternatively, we can use the notation

gij = 1 if nodes i and j are linked, gij = 0 otherwise.

The relation among nodes can be directed or undirected. In directed networks if i is linked to

j, j is not necessarily linked to i, that is, gij 6= gji is possible. In undirected networks there exists

reciprocity, and then, if i is linked to j, j is linked to i as well, gij = gji.

The degree of a node i, di (G), is the number of links i has. The degree distribution of a

network, PG , is a description of the relative frequencies of nodes that have di�erent degrees. Let



Tk =
∑N

i=1 I [di (G) = k] the total number of nodes with degree k in G, we have that Tk/N is

the relative frequency of nodes with degree k in G. Knowing Tk for all k, we can get the degree

distribution of G.

Let S ⊂ N be a subset of nodes, we name GS = (S, g|S) to the network G restricted only to the

set S. That is,

g|Sij =

 1 if i j ∈ S, gij = 1

0 otherwise
.

In the network literature there exist multiple networks sampling designs. We only work with two

of them known as induced subgraph and incident subgraph. In induced subgraph sampling a set of

nodes is selected and then all edges among selected nodes are observed. In incident subgraph links

are selected and then all nodes that correspond to selected links are observed. The selection can be

done under simple random sampling or under Bernoulli sampling.

5.3 Estimating network degree distribution by CHT estimator

In this subsection we apply the CHT estimator for estimating the network degree distribution. The

proposed estimator can be used under fairly general contexts, the main requirement being to have

a probability sample of links.

As noted above the CHT estimator works in a particular framework. This framework is given

by the existence of a population U whose elements are grouped into sets in Θ, the main goal of the

CHT estimator is to estimate the total number of sets of a given size in Θ based on a sample of U .

In order to apply the CHT estimator we need to adapt some networks concepts to the framework

established in Sections 2 and 3.

5.3.1 De�nitions

We begin by de�ning a network, a population of links and a sample of links.

De�nition 7. Let G = (N , g) be a �xed �nite network with N = {1, 2, ..., N} nodes. Let U = g

be a population given by the links of G, and let g|S be a probability sample of U .

De�nition 8. Let θi = {gij | gij = 1, for j ∈ N} be the set of all links that i has, with i = 1, . . . , J



and j = 1, . . . , N , where J is the total number of nodes in G with at least one link.

The neighborhood of a node i is the set of all nodes that i is linked to, Ni (g) = {j : gij = 1}.

The set θi is conceptually close to Ni (g), the latter contains the nodes linked to i while the former

contains the links i has. It is important to note here that, for di (G) 6= 0, di (G) = #θi , the degree

of the node i is equal to the total number of elements in θi.

De�nition 9. Let Θ = ∪Ji=1θ
i, be the collection of θ′s.2

Given the previous de�nitions, the total number of sets of size k in Θ is equal to the total number

of nodes with degree k in G, therefore Tk =
∑J

i=1 I
[
#θi = k

]
. Our main goal here is to estimate Tk.

Up to here we de�ned a population U whose elements (links) are grouped into sets which belong

to Θ. At this point it is worth to remember that the methodology proposed in Section 3 allows to

estimate the total number of sets of a given size based on a sample of elements from the sets instead

of a sample of sets, so based on a sample of U (links) we can estimate the total number of sets of

size k in Θ, what is no more than the total number of nodes with degree k in G. In other words,

based on a sample of links we can estimate the total number of nodes with degree k in G.

Next we de�ne an �arti�cial� population constructed from Θ.

De�nition 10. Let Γ = ∪θ∈Θ {P (θ)−Ø} be a collection of all possible subsets we can get from

each element of Θ, where P (θ) is the power set of θ, γ is a generic element of Γ and γc a generic

element of size c, with c = {1, 2, . . . , p}. The total number of elements of size c in Γ is given by

Lc =
∑

γ∈Γ I [#γ = c] .

The elements of θ are links then, given a node i, the collection Γ contains all combinations of

one link of i, all combinations of two links of i, all combinations of three links, etc.3, and this is so

for all i.

De�nition 11. Let Γs = {γ| ∀ γ ∈ g|S} be the collection of all subsets γ in g|S . Let ps ≤ p be the

maximum size of γ ∈ g|S .

γ ⊆ θ are subsets of links, what we mean by γ ∈ g|S is that all links in γ are in g|S . By now we

do not say anything about g|S , it is only a probability sample of links.

2We de�ne Θ as a collection because their elements are not necessarily exclusive.
3Assuming that di (G) ≥ 3.



De�nition 12. Let πγ = Prob (γ ∈ Γs) be the probability of selection of γ and πγγ′ = Prob (γ ∪ γ′ ∈ Γs)

be the joint probability of selection of γ and γ′. Given de�nition 11, πγ = Prob (γ ∈ g|S) and

πγγ′ = Prob (γ ∪ γ′ ∈ g|S).

Given that γ is a subset of links, the probability of selection of γ is the joint probability of

selection of such links.

5.3.2 Assumptions

We are going to use the CHT estimator for estimating the network degree distribution. The un-

biasedness and feasibility of the estimator require assumptions 1 and 2 hold, and the unbiasedness of

the variance estimator requires assumptions 1-3 hold. We present below these assumptions adapted

to the network context.

First we assume some mild conditions under which Assumption 1 holds.

Assumption 4. Let g|S be a probability sample of links from G. For all [g|S ]ij = 1 we observe i.

Let [g|S ]ij be a sampled link between i and j. Assumption (4) establishes we know such link

belongs to node i. This requirement makes feasible to group the sampled links as they are grouped

in θ so we have a sample of subsets of θ. The �arti�cial� population Γ contains all possible subsets

of every θ, therefore we have a sample of Γ, that is Γs.

The next two assumption refer to the individual and joint probability of selection of γ.

Assumption 5. πγ > 0 ∀γ ∈ Γ. The probability of selection of any element in Γ has to be positive.

Assumption 6. πγγ′ > 0 ∀γ ∨ γ′ ∈ Γ. The joint probability of selection of any pair of elements in

Γ has to be positive.

Assumptions 5 and 6 are equivalent to assumptions 2 and 3. The elements in Γ are subsets

of links that belong to the same node, therefore we need that any set of links that belongs to the

same node has positive probability to be sampled (individual probability), and not only that but

also we need that any combination of two sets of links has positive probability to be sampled (joint

probability).



5.3.3 Estimator

Let T̃ =
(
T0, T

′
)′

be a ((p+ 1)× 1) vector with T = (T1, T2, . . . , Tp)
′
, where T0 and Tk are the total

number of nodes with degree zero and k in G respectively4, therefore we have that PG = N−1T̃ .

Following we present an estimator for PG based on the methodology proposed in the previous section.

Based on de�nitions (7), (8) and (9) we have a population of links named U whose elements are

grouped into sets which belongs to Θ. We know that the total number of sets of size 0 < k ≤ p

in Θ is equal to the total number of links with degree k in G, that is, Tk. We propose to use the

methodology presented above for estimating Tk.

An important point to note here is we assume p is unknown, that is, we do not know the maximum

degree in G, therefore, following the exposed in section (4.1), we only going to have estimates for

Tk≤ps , but it does not mean we can only estimate T partially, because we know that the estimates

for Tk>ps are zero.

Being Lc the total number of subsets of size c in Γ, the HT estimator for Lc is given by

L̂HTc =
∑
γ∈Γs

π−1
γ I [#γ = c] . (10)

Given we are assuming p is unknown we propose to use the estimator (7) for estimating T as

follows

T̂CHTA = Ā11L̂
HT
A , (11)

where L̂HTA =
(
L̂HT1 , . . . , L̂HTps

)′
and T̂CHTA =

(
T̂CHT1 , . . . , T̂CHTps

)′
.

Despite the previous estimator only estimates Tk≤ps , we know that, if there exist nodes with

degree larger than ps the estimate of their total number is zero.

Up to here we estimate Tk≥1, we do not have an estimator for T0, that is, we do not have an

estimator for the total number of nodes without connections, but given that T0 = N −
∑p

k=1 Tk,

assuming we know N we can estimate T0 by T̂CHT0 = N − 1ps T̂
CHT
A where 1ps is a (1× ps) vector

4We divide the vector T̃ into T0 and T because our methodology allows to estimate T , that is, the total number of
nodes with degree k > 0. For estimating the total number of nodes with degree zero, T0, we present another estimator.



of ones. Here we are assuming we know N , but if we do not, N should be replaced by any unbiased

estimator.

Our proposed estimator for the network degree distribution is given by

P̂CHTG = N−1 ˆ̃TCHTA , (12)

where ˆ̃TCHTA =
(
T̂CHT0 , T̂CHT

′
A

)′
.

Given we are assuming p is unknown, we do not know if there are nodes with degree greater

than ps, but we know if they exist the estimate of their total number is zero, so the estimate of the

relative frequencies of nodes with degree greater than ps is zero.

The V ar
(
T̂CHT0

)
= V ar (N) + V ar

(
1ps T̂

CHT
A

)
− 2Cov

(
N, 1ps T̂

CHT
A

)
, and given that N is

not random, we have that V ar
(
T̂0

)
= V ar

(
1ps T̂

CHT
A

)
. The estimator of V ar

(
T̂CHT0

)
is given

by V̂ ar
(
T̂CHT0

)
= 1psΩ̂TA1

′
ps .

The variance estimator of P̂CHTG is given by

V̂ ar
(
P̂CHTG

)
= N−2

(
V̂ ar

(
T̂CHT0

)
, Diag

(
Ω̂TA

))
.

5.4 Estimating degree distribution under induced and incident subgraph sampling

designs. Probabilities

All of the previous developments are valid for any probability sampling design. Here, we derive the

probabilities of selection under induced subgraph sampling for directed networks. The extension to

undirected networks is straightforward.

5.4.1 Probability of selection under induced subgraph sampling

Under induced subgraph sampling we draw a sample of nodes and we know their relation (we know

the links among sampled nodes), therefore we have to construct the probability of selection of links

based on the probability of selection of nodes.

The probabilities of selection of a link is given by the joint probability of selection of the two



nodes involved in such link. It is important to remember that γ is a subset of links that belong to

the same node, therefore all links in γ have a common node, thus the total number of nodes involved

in γ is equal to the total number of links in γ plus one. Thus, the probability of selection of γc is

given by the joint probability of selection of the (c+ 1) nodes involved in γc.

Prob (γc ∈ g|S) =

 N

n


−1 N − (c+ 1)

n− (c+ 1)

 ,

where n is the number of sampled nodes,

 N

n

 are all possible samples of size n, and

 N − (c+ 1)

n− (c+ 1)


are all possible samples of size n which contain all the nodes involved in the c links of γ.

On the other hand, πγγ′ is the joint probability of selection of γ and γ′, this is equal to the joint

probability of selection of all nodes involved in the links of γ and γ′. The nodes involved in the links

of γ and γ
′
could be repeated, for instance, being gij a link in γ, the link gji could be in γ′, thus

both links are formed by the same two nodes.

Let ωγγ′ = {i, j| gij ∈ γ ∪ γ′} be a set of all nodes (without repetitions)5 involved in the links of

γ and γ′, we have

Prob
((
γc ∪ γ

′
c′

)
∈ g|S

)
=

 N

n


−1 N − ωγγ′

n− ωγγ′

 .

In case the links involved in γc and γ
′
c′ do not have nodes in common, #ωγγ′ = (2c+ 2), and in

case the links involved in γ and γ′ have all nodes in common, #ωγγ′ = (c+ 1).

In order to the estimator (12) be unbiased it is necessary that πγ > 0 for all γ and this happens

as long as n ≥ (c+ 1) for all c, and given c = {1, 2, . . . , p} this implies that the sample size should

be, at least, equal to the number of nodes involved in the links of γp, that is, p+ 1.

Similarly, in order to the estimator of the variance be unbiased, in addition to the previous

assumption on πγ , it is necessary to assume that πγγ′ > 0 for allγ and γ′, and this happens as long

5Since ωγγ′ is an union of nodes, if there are some common nodes among the links in γ and γ′ they will appear
only once in ωγγ′ .



as n ≥ #ωγγ′ for all γ and γ′. This implies that the sample size should be, at least, equal to the

number of nodes involved in the links of all pairs of subsets γ and γ′, therefore, in order to πγγ′ > 0

we need that n ≥ max
(
#ωγγ′

)
.

6 Monte Carlo simulations

In order to evaluate the performance of the CHT estimator for degree distribution we present Monte

Carlo simulations.

We simulate the coordinates of N points (nodes) by two U(0, 1) independent random variables,

and then we establish links among points following the p-nearest neighbors criteria, and construct

the corresponding adjacency matrix. The networks created in this way ensure that each node has

degree p (where p is the number of neighbors), i.e., the so called �regular networks� (networks whose

nodes have all the same degree).

Second, in order to construct networks whose nodes have di�erent degrees we randomly delete

some links by taking rows and columns from the adjacency matrix and �lling them with zeros. We

randomly select the id's of the rows and columns to �ll with zeros drawing two random samples

from {1, . . . , N}. We draw one sample of size dα1Ne for selecting rows and other of size dα2Ne for

selecting columns, with 0 < {α1, α2} < 1 . In this way we have networks whose nodes have di�erent

degrees but none of them are greater than p.

We consider networks of two di�erent sizes, N = 300, 600, whereas the sampling rates are

{0.9, 0.7, 0.5}. The maximum degree is �xed in p = 4, so the degree distribution has domain in

k = {0, 1, . . . , 4}.

We want to ensure that the relative frequencies of nodes with degree k are not smaller than 0.1,

that is, we want to ensure that PG (d = k) > 0.1 for all k. For doing that we �x α1 = 0.1 and

α2 = 0.4.

Given a sample size, we generate one network and draw R = 500 samples for each sampling rate.

The networks are the same at each repetition for all sampling rates.

For induced subgraph sampling we randomly choose n numbers from {1, . . . , N} and select the

nodes that match with such numbers. Under this sampling design we know all links among sampled

nodes, so we can construct an adjacency matrix for the sampled nodes. Once we have the links and



the probability of selection (previously presented) we construct the CHT estimator and its variance

estimator.

We group all the links (within the sample) incident to a given node and then we construct all

the di�erent subsets we can make based on it. We do this for each sampled node, these subsets of

links are the subsets γ in g|S .

We assume that we do not know p, so the estimator for Tk>ps is zero. We take into account such

zeros when we construct the estimators.

We report the sampling rates (n/N). For each Monte Carlo exercise we report the true degree

distribution, PG (d = k) and the true average degree , ave.PG . We also report the estimates for the

average degree. Then we report the bias and root-mean squared error (RMSE), that is,

Bias (d = k) =
1

R

R∑
r=1

(
P̂ rG (d = k)− PG (d = k)

)
,

Bias (ave) =
1

R

R∑
r=1

(
ave.P̂ rG (d = k)− ave.PG (d = k)

)
,

RMSE (d = k) =

[
1

R

R∑
r=1

(
P̂ rG (d = k)− PG (d = k)

)2
]1/2

,

RMSE (ave) =

[
1

R

R∑
r=1

(
ave.P̂ rG − ave.PG

)2
]1/2

,

We also report the average of the estimated standard deviations, sd (d = k) = 1
R

∑R
r=1 ŝd(P̂ rG (d = k))

and sd(ave) = 1
R

∑R
r=1 ŝd(ave.P̂ rG) in order to assess the proposed estimator of the variance.

We compare our proposed estimator with the �naive� one, where the in-sample degree is calcu-

lated. We also report the bias and RMSE for this case.

Tables 2 and 3 report the simulation results for N = 300 and N = 600 network sizes, respectively.



Table 2: Induced subgraph sampling N = 300.
CHT estimator Naïve estimator

n/N Degree distribution Bias RMSE std.dev. Bias RMSE

0.9

PG (0) = 0.120 0.000 0.011 0.011 0.005 0.011

PG (1) = 0.163 0.000 0.021 0.022 0.023 0.027

PG (2) = 0.293 0.000 0.030 0.031 -0.010 0.021

PG (3) = 0.283 -0.001 0.036 0.035 -0.061 0.064

PG (4) = 0.140 0.001 0.025 0.026 -0.056 0.058

Average degree 2.16 0.000 0.047 0.049 -0.213 0.219

0.7

PG (0) = 0.120 0.000 0.030 0.029 0.022 0.027

PG (1) = 0.163 0.000 0.074 0.071 0.047 0.052

PG (2) = 0.293 -0.007 0.118 0.111 -0.079 0.082

PG (3) = 0.283 0.006 0.125 0.112 -0.173 0.174

PG (4) = 0.140 0.000 0.068 0.062 -0.116 0.117

Average degree 2.16 0.008 0.104 0.103 -0.643 0.647

0.5

PG (0) = 0.120 0.005 0.080 0.079 0.040 0.044

PG (1) = 0.163 -0.017 0.260 0.246 0.021 0.029

PG (2) = 0.293 0.032 0.440 0.388 -0.176 0.178

PG (3) = 0.283 -0.033 0.417 0.331 -0.248 0.249

PG (4) = 0.140 0.013 0.118 0.123 -0.135 0.135

Average degree 2.16 0.000 0.183 0.175 -1.082 1.087

Table 3: Induced subgraph sampling N = 600.
CHT estimator Naïve estimator

n/N Degree distribution Bias RMSE std.dev. Bias RMSE

0.9

PG (0) = 0.131 0.000 0.007 0.007 0.001 0.007

PG (1) = 0.136 0.000 0.015 0.015 0.029 0.031

PG (2) = 0.286 -0.002 0.024 0.025 0.000 0.015

PG (3) = 0.336 0.001 0.021 0.023 -0.086 0.087

PG (4) = 0.108 0.000 0.015 0.015 -0.044 0.045

Average degree 2.15 0.000 0.034 0.035 -0.212 0.217

0.7

PG (0) = 0.131 0.000 0.020 0.020 0.013 0.017

PG (1) = 0.136 0.000 0.052 0.052 0.065 0.067

PG (2) = 0.286 0.002 0.085 0.083 -0.063 0.066

PG (3) = 0.336 -0.002 0.073 0.073 -0.224 0.225

PG (4) = 0.108 0.000 0.039 0.040 -0.089 0.090

Average degree 2.15 0.000 0.069 0.073 -0.645 0.649

0.5

PG (0) = 0.131 0.000 0.058 0.056 0.028 0.031

PG (1) = 0.136 0.000 0.179 0.174 0.046 0.049

PG (2) = 0.286 0.010 0.272 0.260 -0.167 0.168

PG (3) = 0.336 -0.011 0.221 0.203 -0.301 0.302

PG (4) = 0.108 0.003 0.098 0.079 -0.104 0.104

Average degree 2.15 0.000 0.128 0.124 -1.077 1.081

The simulation results highlight that the naive estimator of the degree distribution that uses the



sampled network as if it were the true one produces considerable bias in the estimation of both, the

degree distribution and the average degree. The bias increases when the sampling rate decreases,

and the same problem arises for both types of sampling designs. Our proposed CHT estimator, has

a small bias in all cases. The CHT estimator also has a good performance in terms of RMSE.

The average of the estimated standard deviation is close to the simulated RMSE, and this

suggests the estimator of the variance performs well in small samples.

With respect to the sampling rates and the population sizes the results are expected. The greater

the sampling rate is, the better the estimators behave, and in the same line, given a sampling rate,

the greater the population is, the better the estimators behave.

7 Conclusion

This paper presents a general methodology for estimating the total number of sets of a given size

based on a sample of elements of such sets. The resulting estimator is the chained Horvitz-Thompson

(CHT) estimator.

We apply such methodology to derive an estimator for the degree distribution (and its variance)

to be used under probability sampling designs, and we adapt it to a widely used sampling design

known as induced subgraph. The results obtained from the Monte Carlo simulations show that the

estimator perform well in terms of bias and RMSE, in line with the analytical results.

This is a basal paper, and there are many interesting lines in which to continue working. It

would be worth to derive the asymptotic distribution of the CHT estimator. This should be relat-

ively straightforward because the CHT estimator is no more than a linear combination of the HT

estimator, and under some regularity conditions such estimator is asymptotically normal.

It would also be interesting to adapt the degree distribution estimator to other probability

sampling designs and to evaluate them under other schemes. In the same line, more structure could

be added to the degree distribution estimator. By assuming some particular degree distribution

(scale-free, Poisson, etc.) the results may improve.



8 Appendix

8.1 Some properties of A and A−1

The ((p+ 1)× (p+ 1)) Pascal Matrix P = [pij ] is de�ned by pij =

 j

i

 with i, j = 0, 1, . . . , p.

The inverse P−1 =
[
p̄−1
ij

]
is de�ned by p̄−1

ij = (−1)j+i

 j

i

.
Lemma 9. Let A = P [1 : p, 1 : p] be a (p× p) submatrix of P , then A−1 = P−1 [1 : p, 1 : p].

Let Pn =

 B C

D A

, where B(1×1) = [1], C(1×p) = [1, . . . , 1] and D(p×1) = [0, . . . , 0]
′
. By block

matrix inversion we have that

 B C

D A

−1

=

 B−1 +B−1C
(
A−DB−1C

)−1
DB−1 −B−1C

(
A−DB−1C

)−1

−
(
A−DB−1C

)−1
DB−1

(
A−DB−1C

)−1



Given D(p×1) = [0, . . . , 0]
′
we have

 B C

D A

−1

=

 B−1 −CA−1

D A−1


The inverse of B and A exists.

Given the previous we have that P−1 [1 : p, 1 : p] = A−1, and thus ā−1
ij = (−1)j+i

 j

i

 with

i, j = 1, . . . , p.

The matrix P has a well known inverse, and given that A is a submatrix of P , we proved above

that the inverse ofA is a submatrix of the inverse of P .

Lemma 10. Let A11 = A [1 : ps, 1 : ps] be a (ps × ps) upper-left submatrix of A with ps ≤ p, then

A−1
11 = A−1 [1 : ps, 1 : ps].

A =

 A11 A12

A21 A22

 where A11 is a (ps × ps) upper-left submatrix of A, A12 is a (ps × (p− ps))

upper-right submatrix of A, A21 = [0] is a ((p− ps)× ps) lower-left submatrix of A and A22 is a

((p− ps)× (p− ps)) lower-right submatrix of A.



By block matrix inversion we have that

 A11 A12

A21 A22

−1

=

 A−1
11 +A−1

11 A12

(
A22 −A21A

−1
11 A12

)−1
A21A

−1
11 −A−1

11 A12

(
A22 −A21A

−1
11 A12

)−1

−
(
A22 −A21A

−1
11 A12

)−1
A21A

−1
11

(
A22 −A21A

−1
11 A12

)−1

 ,
given A21 = [0] we have

 A11 A12

A21 A22

−1

=

 A−1
11 −A−1

11 A12A
−1
22

A21 A−1
22

 ,
A11 and A22 are unitriangular matrices so their inverses exist.

Given the previous we have that A−1 [1 : ps, 1 : ps] = A−1
11 , that is, the inverse ofA11 is the

(ps × ps) upper-left submatrix of A−1. It is so relevant because this implies we do not need to know

A to get A−1
11

8.2 Variance and covariance

As we saw, the estimator L̂HTc can be expressed as L̂HTc =
∑

γ∈Γ π
−1
γ I [#γ = c] Iγ , the �rst indicator

select the elements γ of size c in Γ and the second indicator identi�es which are in the sample. In

the same way we have L̂HTc′ =
∑

γ′∈Γ π
−1
γ′ I [#γ′ = c′] Iγ′ .

Cov
(
L̂HTc , L̂HTc′

)
= Cov

∑
γ∈Γ

π−1
γ I [#γ = c] Iγ ,

∑
γ′∈Γ

π−1
γ′ I

[
#γ′ = c′

]
Iγ′


=

∑
γ∈Γ

∑
γ′∈Γ

π−1
γ I [#γ = c]π−1

γ′ I
[
#γ′ = c′

]
Cov

(
Iγ , Iγ′

)
=

∑
γ∈Γ

∑
γ′∈Γ

π−1
γ I [#γ = c]π−1

γ′ I
[
#γ′ = c′

] [
E
(
IγIγ′

)
− E (Iγ)E

(
Iγ′
)]
.

The E (Iγ) = πγ , the expectation of γ be sampled is equal to the probability of γ be sampled,

and the same is for E
(
Iγ′
)

= πγ′ . On the other hand E
(
IγIγ′

)
= πγγ′ , where πγγ′ is the joint

probability of selection of γ and γ′.

Then using the previous results we have



Cov
(
L̂HTc , L̂HTc′

)
=

∑
γ∈Γ

∑
γ′∈Γ

π−1
γ I [#γ = c]π−1

γ′ I
[
#γ′ = c′

] (
πγγ′ − πγπγ′

)
.

8.2.1 Variance-covariance estimator for Lc

The covariance estimator proposed in (3.4) can be written as

Ĉov
(
L̂HTc , L̂HTc′

)
=

∑
γ∈Γ

∑
γ′∈Γ

π−1
γ I [#γ = c]π−1

γ′ I
[
#γ′ = c′

] (
πγγ′ − πγπγ′

)
π−1
γγ′
(
IγIγ′

)
,

where
(
IγIγ′

)
is an indicator function that takes the value one if γ ∧ γ′ ∈ Γs and zero otherwise.

With this we have

E
[
Ĉov

(
L̂HTc , L̂HTc′

)]
=

∑
γ∈Γ

∑
γ′∈Γ

π−1
γ I [#γ = c]π−1

γ′ I
[
#γ′ = c′

] (
πγγ′ − πγπγ′

)
π−1
γγ′E

(
IγIγ′

)
,

with E
(
IγIγ′

)
= πγγ′ , and thus E

[
Ĉov

(
L̂HTc , L̂HTc′

)]
= Cov

(
T̂HTc , T̂HTc′

)
.

8.2.2 Variance-covariance matrix estimator for T̂CHTA and T̂CHTB

By equation (7), the variance-covariance matrix of T̂CHTA is given by ΩTA =

[
Ā11 Ā12

]
ΩL

[
Ā11 Ā12

]′
.

Replacing ΩL by Ω̂L we have the estimator for ΩTA . Under assumptions 1-3 Ω̂L is unbiased, there-

fore, Ω̂TA it is also.

By equation (8), the variance-covariance matrix of T̂CHTB is given by ΩTB =

[
Ā21 Ā22

]
ΩL

[
Ā21 Ā22

]′
.

Replacing ΩL by Ω̂L we have the estimator for ΩTB . Under assumptions 1-3 Ω̂L is unbiased, there-

fore, Ω̂TB it is also.

To show that the previous expressions can be reduced we divide Ω̂L into four submatrix as

follows, Ω̂L,11 = Ω̂L [1 : ps, 1 : ps], Ω̂L,12 = Ω̂L [1 : ps, (ps + 1) : p], Ω̂L,21 = Ω̂L [(ps + 1) : p, 1 : ps]

and Ω̂L,22 = Ω̂L [(ps + 1) : p, (ps + 1) : p] .

Given that σ̂cc′ = 0 for c∧c′ > ps we have that Ω̂L,12 = [0], Ω̂L,21 = [0] and Ω̂L,22 = [0], therefore



Ω̂TA =

[
Ā11 Ā12

] Ω̂L,11 0

0 0

[ Ā11 Ā12

]′
= A−1

11 Ω̂L,11A
−1′

11 .

given that Ā11 = A−1
11 .

Ω̂TB =

[
Ā21 Ā22

] Ω̂L,11 0

0 0

[ Ā21 Ā22

]′
= Ā21Ω̂L,11Ā

′
21

And given Ā21 = [0] this implies Ω̂TB = [0].

where A−1 [1 : ps, 1 : p] =
[
A−1
R , D

]
with D = A−1 [1 : ps, (ps + 1) : p], Ω̂L =

 Ω̂LR 0

0 0

 with

Ω̂LR = Ω̂L [1 : ps, 1 : ps].

The same as before, Ω̂LR disregards the terms equal to zero in Ω̂L, that is σ̂cc′ for c ∧ c′ > ps.

Providing that σ̂cc′ is unbiased for all c and c′ (regardless some of them are equal to zero) Ω̂TR is

also unbiased.
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Capítulo II

Regional and state heterogeneity of monetary shocks in

Argentina1

Abstract

This paper empirically investigates how economic activity in Argentina at regional and pro-
vincial (i.e., state) levels responds to central national monetary policy shocks, as given by a
change in the interest rate. Regional heterogeneity of monetary shocks exists in Argentina. At
the regional level the long-term e�ects of increasing the interest rate are negative and statistic-
ally signi�cant. At the provincial level, 11 provinces show a negative and signi�cant impact of a
shock on the interest rate over employment. However, there are 13 provinces in which the e�ect
is not statistically signi�cant, including the City of Buenos Aires and Buenos Aires Province.

Keywords: Monetary policy, Monetary transmission, Regional E�ects

JEL classi�cation: E52, G21, R11, R12

1Una versión extendida de este artículo fue publicada en The Journal of Economic Asymmetries 20 (2019): e00129,
en coautoria con Emilio Blanco, Pedro Elosegui y Gabriel Montes Rojas.



1 Introduction

As noted by Carlino and DeFina (1999) the idea that policy changes a�ect states di�erently is

intuitive given the heterogeneity of state economies and their �nancial and trade networks. State

heterogeneity in a state's response to U.S. Federal Reserve Board actions can be deduced from

traditional and new credit-based theories (Bernanke and Blinder, 1988; Kashyap, Stein, and Wilcox,

1993; Kashyap and Stein, 1994) of the monetary policy transmission mechanism. Park and Hewings

(2012) found that industry mix and even more critically the place in the value chain production

contributed to the asymmetries. In the business literature, the notion of a whipsaw e�ect has been

introduced to show how economies with production systems at the early stages of a value chain

experience greater �uctuations that those whose production is close to �nal goods. Further, the

latter economies' business cycles will be more highly correlated with the national ones than the

former economies.

As a result, it is important to account for feedback e�ects among regions when modeling regional

responses to aggregate shocks, and policymakers actions should take into account potential extreme

or unexpected e�ects in some regions. The simple estimation of a standard vector autoregressive

(VAR) for each region, as is being done in empirical macroeconomic and monetary studies may result

in serious misspeci�cation since indirect e�ects of policy actions (operating, for instance, through

trade and �nancial linkages among regions) are neglected. See the literature review in Dominguez-

Torres and Hierro (2018) for a recent discussion of di�erent models implemented in this context,

and empirical evidence for the U.S., Europe and few other countries.

This paper is the �rst to empirically investigate how economic activity in Argentina at regional

and provincial (i.e., state) levels responds to central or national monetary policy shocks. To do this

we implement di�erent spatial macro-type structural vector autoregressive (SVAR) models where we

study how a change in the interest rate (i.e., monetary policy shock) a�ect employment in regions

or provinces within Argentina, taking into account the spatial correlations among them. We thus

evaluate the short-, medium- and long-term e�ects of monetary shocks on Argentine regions by

computing the impulse response functions.

We �nd that regional heterogeneity exists in Argentina, resulting in di�erential e�ects of mon-

etary policy shocks. At the regional level it is interesting to note that the North-East (NEA) region



is the only one that does not show a signi�cant impact of the shock on the interest rate on employ-

ment. In all other cases, the results are statistically signi�cant, showing that a tightening of the

monetary policy results in a negative e�ect on employment. Ciudad Autónoma de Buenos Aires

(CABA) and Great Buenos Aires (GBA) together with the Centro region show a similar behavior

to that of the national aggregate. Meanwhile, the Sur, North-West (NOA) and Cuyo regions show

the largest negative e�ect on regional employment. At the provincial level, 11 provinces show a

negative and signi�cant impact of the shock on the interest rate over employment, accumulated to

10 periods. However, there are 13 provinces in which the e�ect is not statistically signi�cant. Among

the latter, the two main jurisdictions (GBA-CABA and Buenos Aires) are noteworthy due to their

non-signi�cant impact, together with other relatively less developed provinces, such as Formosa and

Patagonian provinces. On the other hand, the provinces that show signi�cant impacts have diverse

ranges of economic and �nancial development.

This paper is organized as follows. Section 2 develops the econometric model used to estimate and

evaluate the shocks. Section 3 describes the Argentinean data and section 4 presents the econometric

results for Argentina. Section 5 concludes and proposes further lines of research.

2 Econometric model

2.1 Maximum likelihood model

As mentioned in the Introduction, the aim of this work is to account for the spatial heterogeneity

of macroeconomic shocks.

In Carlino and DeFina's (1998, 1999) approach interdependence across states is dealt with by

allowing the lagged output of other regions to enter the equations of each speci�c region or state.

However, no contemporaneous feedback is allowed (i.e., simultaneous propagation of economic dis-

turbances among regions is excluded). This assumption is re�ected in the identi�cation scheme

that is adopted, which rules out any contemporaneous interdependence among states by means of

a set of overidentifying restrictions imposed on the contemporaneous VAR coe�cients matrix. As

a result, spatial propagation of monetary policy shocks is assumed to take place at least with a

one-period time lag. De Lucio and Izquierdo (1999) contribution, while ruling out lagged feedback

e�ects among regions, does allow for contemporaneous correlation among the VAR model residuals.



Their preferred speci�cation consists of a set of regional macro-type SVARs, jointly estimated using

seemingly unrelated regression (SUR) techniques.

Di Giacinto (2003) uses geographical proximity in the model speci�cation assuming that inform-

ation with respect to the nearest neighboring areas is relevant in predicting the process at a given

location. He follows the standard approach in spatial econometrics (see, e.g., Anselin, 1988, chap.

3; Martin and Oeppen, 1975; Pfeifer and Deutsch, 1980; Pfeifer and Bodily, 1990) where a priori

information on the spatial connectivity structure underlying the observed data is made operational

within the VAR model through a sequence of spatial weights matrices, de�ned according to a proper

spatial weighting scheme. Through the sequence of spatial weights matrices, a set of parameter

restrictions is imposed on the VAR coe�cients matrices. On one hand, these restrictions allow for

the identi�cation and estimation of a single monetary policy shock series for all regions by elimin-

ating the degrees-of-freedom constraint incurred by VAR models as the cross-sectional dimension of

the model increases. On the other hand, spatial constraints are useful in modeling contemporan-

eous interdependence among regions while preserving a su�ciently large number of restrictions for

structural parameter identi�cation.

Bertanha and Haddad (2008) apply Di Giacinto's model to Brazilian states and analyze the

presence of regional asymmetries in the impact of monetary shocks for the 27 states of Brazil. The

authors use a SVAR model with spatial weighted matrices. In fact, they can test the di�erence

between the contiguity matrix and a trade-weighted matrix, as well as the importance of lagged and

direct spatial e�ects. The direct e�ects predominate in the results, while the trade matrix enhances

the impact of the shock in the state of São Paolo and Manaus (tax-free zone) where trade is a highly

relevant sector. This is in fact the closest paper to our analysis.

We follow the model proposed in Di Giacinto (2003) that constructs a structural VAR (SVAR)

model with temporal as well as spatial lags. The spatial SVAR model adds spatial information in

the model making use of techniques commonly employed in spatial econometrics. Broadly speaking,

the idea of spatial heterogeneity is given by the fact that the output of any spatial unit could be

directly or indirectly a�ected by the output of any of the other units. Such idea can be covered by

the traditional SVAR as in Carlino and DeFina (1998, 1999), Fraser et al. (2014) and Guo and Tajul

(2017). The innovation of the spatial SVAR model is the introduction of the contiguity matrix in

the context of SVAR.



The model considers three sets of variables. The �rst set, denoted as xt = [x1t, x2t, . . . , xKt]
′,

represents K macroeconomic aggregate control variables. Under our speci�cation, such variables

are given by consumer's price index (CPI), the U.S. dollar / peso exchange rate and gross domestic

product (GDP), i.e., K = 3. These variables correspond to the aggregate or national level. The

second set of variables, denoted by yt = [y1t, y1t, . . . , yNt]
′, includes the stacked values of the output

variable measured on the N spatial units. Our spatial variable is total formal employment in each

regional/state unit. As discussed below this is the only variable for which we have spatial as well

as temporal heterogeneity in Argentina. The third set is given by a single variable, the monetary

policy instrument, the interest rate in our model, denoted by rt. Following the macroeconomics

literature, our interest is to estimate the e�ect of a shock in this variable on the output variables,

which is measured by employment.

Setting zt = [x′t,y
′
t, rt]

′, the spatial SVAR model has the following expression

C0zt = C1zt−1 + . . .+ Cpzt−p + ut, (1)

where ut = [ux1t, . . . , u
x
Kt, u

y
1t, . . . , u

y
Nt, u

r
t ] is an orthogonal multivariate white-noise series, i.e.,

E(ut) = 0, E(utu
′
t−h) = Ω = diag([σ2x1, . . . , σ

2
xK , σ

2
y1, . . . , σ

2
yN , σ

2
r ]
′) if h = 0 and E(utu

′
t−h) = 0

elsewhere for h ≥ 0.

The C0 matrix has the following block triangular structure

C0 =


IK 0 0

0 Cyy
0 0

−Crx
0 −Cry

0 1

 , (2)

where Crx
0 is a (1 × K) vector of unrestricted coe�cients relating the policy instrument to the

contemporaneous values of the macro variables x, and where

Cry
0 = ary0 ω

′. (3)



ary0 is a scalar parameter to be estimated and ω is a vector of N �xed coe�cients representing

the average weight of employment of each spatial unit with respect to the national aggregate. This

determines that the interest rate is a�ected by employment only through a national weighted average.

This restriction is motivated by the assumption that only aggregate output enters the Central Bank

information set and, hence, the monetary instrument response function. The Cyy
0 matrix models

simultaneous spatial interdependence by the following structure

Cyy
0 = IN − φ0W, (4)

where φ0 = diag([φ10, φ
2
0, . . . , φ

N
0 ]′) and W is the N ×N spatial weights matrix with typical element

w(i, j) > 0 if locations i and j are contiguous (in a broad sense) and w(i, j) = 0 elsewhere and if

i = j.

Two types of restriction are imposed on the Ch matrices (h = 1, . . . , p). First,

Ch =


Cxx
h Cxy

h Cxr
h

Cyx
h Cyy

h Cyr
h

Crx
h Cry

h Crr
h

 . (5)

Second, spatial restrictions are imposed on blocks Cyy
h that have structure

Cyy
h =

λh∑
k=1

φhW, (6)

where φh = diag([φ1h, φ
2
h, . . . , φ

N
h ]′). Coe�cients Cxy

h and Cry
h relating the macro variables and the

monetary instrument to past values of the spatial output series are constrained as follows

Cxy
h = axyh ω

′ (7)

Cry
h = aryh ω

′ (8)



where axyh and aryh are, respectively, a k-dimensional vector and a scalar to be estimated. All

remaining blocks are left unrestricted, as in the standard VAR speci�cation. Di Giacinto (2003)

derives consistent estimators of model parameters applying Full Information Maximum Likelihood

method. Further details on the estimation procedure can be found in that paper.

Shock identi�cation is embedded in the structural model described above. As noted by Dominguez-

Torres and Hierro (2018) this is the most common structure for identi�cation of monetary shocks

in spatial models, where the policy instrument (i.e., rt) is regressed on all other contemporaneous

variables and temporal lags. Their meta-analysis suggests, however, �that the choice of the identi�ca-

tion scheme appears to have no e�ect on the pattern of the responses yielded by these studies, since

such responses broadly exhibit a hump-shaped trajectory (when a contractive shock is analysed)

irrespective of the identi�cation scheme implemented.�(p.4) Our preliminary evidence also con�rm

that the results are robust to di�erent identi�cation procedures.

2.2 Models

We estimate three di�erent models. One the one hand we estimate a SVAR model that ignores

spatial heterogeneity, and use this models as a benchmark. This corresponds to a national-level

model, a standard empirical macroeconomics SVAR in the line of Christiano et al. (1996).2

On the other hand, based on the general setting presented above, we estimate two spatial models,

the State Model (SM) and the Regional Model (RM). The main di�erence between them is given by

the level of spatial aggregation. The SM considers N = 24 spatial units given by the 23 states plus a

conglomerate formed by the City of Buenos Aires and its contiguous neighborhood (known as Gran

2This model considers the macro variables, the interest rate and the aggregate employment (yt), that is, it considers
the same variables as the spatial models but employment is aggregated at the national level. We maintain the structural
form of the non-spatial model as similar as possible to the spatial ones. In particular we consider a model of the form

B0zt = B1zt−1 + . . .+Bpzt−p + ut, (9)

where zt = [x′t, et, rt] and ut = [ux
1t, . . . , u

x
Kt, u

y
t , u

r
t ] is an orthogonal multivariate white-noise series. The B0 matrix

has the following block triangular structure

B0 =

 IK 0 0
0 1 0

−Brx
0 −Bry

0 1

 , (10)

where Brx
0 is a (1×K) vector of unrestricted coe�cients relating the policy instrument to the contemporaneous values

of the macro variables x, and −Bry
0 is a coe�cient relating the policy instrument to the contemporaneous values of

the aggregate employment. As in spatial models, the temporal lags were set to p = 2.



Buenos Aires, CABA-GBA), while the RM considers N = 6 spatial units given by 5 regions (groups

of states) plus the previously de�ned conglomerate. See section 3 for a description of the Argentine

regional structure.

Regarding the spatial structure of the models, for the SM we used a Queen type contiguity

matrix, that is, two states are considered neighbors if they have a common border. 3 For the RM,

however, we used a distance based contiguity matrix with the following structure. Let W [wij ] be

the contiguity matrix,

wij =
d(i, j)−1∑N
j=1 d(i, j)−1

.

The strength of the relation between two spatial units, wij , is given by the inverse of the distance,

as measured by centroids, among regions, d(i, j)−1, considering the inverse of the distance to all

the regions,
∑N

j=1 d(i, j)−1. This con�guration gives more weight to closer units. Unlike the Queen

matrix, under this con�guration all regions are considered neighbors. Both contiguity matrix are

row-normalized.

For both models the spatial lag order was set to 1, and the temporal lags were set to p = 2, thus

the matrix (5) has the following elements:

• Cxx
h is a (3× 3) matrix relating the macro variables to their own values h periods ago;

• Cxr
h is a (3× 1) matrix relating the macro variables to the interest rate h = 1, 2, periods ago;

• Cyx
h is a (N × 3) matrix relating the total employment in each spatial unit to the macro

variables h = 1, 2, periods ago;

• Cyr
h is a (N × 1) matrix relating the total employment in each spatial unit to the interest rate

h = 1, 2, periods ago;

• Crx
h is a (1× 3) matrix relating the interest rate to the macro variables h = 1, 2, periods ago;

• Crr
h is a (1× 1) matrix relating the interest rate to his own value h = 1, 2, periods ago.

3Stakhovych and Bijmolt (2008, p.408) �nd that spatial models estimated using the �rst-order contiguity weights
matrix perform better on average than those using the nearest neighbours or inverse distance weights matrices in
terms of their higher probabilities of detecting the true model and they have lower MSE of the parameters.



Regarding the elements Cxy
h and Cry

h , they relate the macro variables and the interest rate to a

weighting average of the total employment h = 1, 2, periods ago, respectively.

Following equations (7) and (8) we have that

• axyh is a (3×1) matrix relating the macro variables to a weighting average of the total employ-

ment h = 1, 2, periods ago.

• aryh is a (1×1) matrix relating the interest rate to a weighting average of the total employment

h = 1, 2, periods ago.

We follow Bertanha and Haddad (2008) for de�ning the weights vector ω,

ω′ = (ω1, ω2, . . . , ωN ),

with ωj =

∑T
t=1(TotEmpjt/NatEmpt)

T
, where TotEmpjt is the total employment in spatial unit

1 at time t and NatEmpt =
∑N

n=1(TotEmpnt) is the total employment at national level at time

t. The weight of each spatial unit is thus given by its relative importance in terms of national

employment along the analyzed period.

2.3 Impulse response functions

From the model estimates our main interest lies in constructing the impulse response functions (IRFs)

from a unit shock (i.e., 1% increase in the interest rate) in urt on the yt regional variables. That is, in

evaluating the e�ect at provincial/regional level of an aggregate monetary shock corresponding to a

tightening of the monetary policy via an increase of the reference interest rate. We study the e�ect

of this shock on the di�erence in logarithm of employment, and thus the e�ects are evaluated on

employment growth. The shock is determined by the identi�cation strategy given by the structural

model.

Given the complex nature of the maximum likelihood model presented above and the fact that we

are not necessarily con�dent in the Gaussian nature of the shocks, we compute bootstrap standard

errors of all parameter estimates. In particular, we consider non-parametric bootstrap samples,

with replacement, of quarters with the corresponding structure of lags (using 2 lags), maintaining



the geographic structure intact throughout the analysis. IRFs analysis is evaluated using 20%

con�dence intervals where we generate a ranking order from the bootstrap samples for each of the

12 periods-ahead used in the IRFs.

3 Data description

3.1 Brief description of Argentina's regional structure

Argentina is a federal country, with 23 provinces and a semi-autonomous city, Ciudad Autónoma de

Buenos Aires. As a federation, provinces reserve all powers not delegated to the federal government.

They can dictate their own constitutions and manage autonomous budget and public policies (e.g.

education, health) collecting local turnover, property and stamp taxes. Although the national

constitution contemplates the possibility that provinces agree to be grouped into regions, the basic

institutional jurisdiction is always the provincial level. Regions are nevertheless a common (and

historical) way to group and analyze at a subnational level.4 In general, they are selected by

geographical contiguity, historical traditions and economic and �nancial similarities.5 Figure 1

shows a traditional regional division that comprises six di�erent regions: Centro, NOA (North-

West), NEA (North-East), Cuyo, Sur, and the Buenos Aires metropolitan region, that comprises

the city of Buenos Aires and its metropolitan area (Ciudad Autónoma de Buenos Aires plus Gran

Buenos Aires, GBA-CABA). We consider GBA-CABA as a di�erent spatial unit because they have

considerable economic and structural di�erences in relation to the rest of the country, and in the

Argentinean case, they concentrate a considerable portion of economic activity and population.

Together the 6 regions are used in the regional model (RM) described above.

As can be seen in Table 1, provinces included in the Centro (34% GDP) and GBA-CABA (40%

GDP) regions are the more economic developed provinces. The NEA (4.2% GDP) and to a lesser

extent, the NOA (6.9% of GDP) provinces are the less developed ones. Whereas the Cuyo (6,1% of

GDP) region includes provinces with an intermediate level of economic development. Finally, the

Patagonian Sur region (9.2% GDP) includes intermediated developed provinces with large areas and

low population density.

4See for instance the National Production Ministry, http://mapaprod.produccion.gob.ar
5See, for instance, Elosegui, Anastasi, Sangiácomo, and Blanco (2010) for an analysis of economic determinants of

use and availability of banking services at a local level for the 1998-2009 period.



3.2 Variables used in the econometric models

Table 2 describes the data used and its sources. All variables have quarterly periodicity, and the

time span considered for our exercises is 2003q1-2017q2. The series were seasonally adjusted (when

needed) using X-13 ARIMA-SEATS, detrended or di�erentiated to make them stationary and �nally

log transformed. Population data between Census was interpolated using a linear polynomial.

One of the major issues working with Argentina is the lack of good data. At the regional and

provincial level we can only rely on employment (total formal employment) to construct a panel

data from which we can study the spatial interactions. The macro variables (consumer's price index

CPI, US dollar/peso exchange rate and GDP) as well as the 'spatial variable' are in logarithm, the

interest rate (30-59 days term deposits rate) is in percentage. After these transformations, based on

augmented Dickey-Fuller tests, all variables are stationary. Figure 2 plots the main macroeconomic

variables.6

For our subsequent analysis (see section ?? for the Bayesian model averaging analysis) we add to

employment and macro data three sets of subnational indicators: one that captures the production

mix of the province, and other that is speci�c to the stance of the provincial economy and the last

that accounts for �nancial sector indicators (see Table 1).

4 Empirical results

4.1 Spatial correlation estimates

The spatial SVAR models proposed here depends on the existence of spatial e�ects. Such interaction

is captured by the coe�cients φhk, where h refers to the temporal lag and k refers to the lag order

of the contiguity matrix, we use h = 0, 1, 2 and k = 1. If φn0k 6= 0, with n = (1, . . . , N), that means

that a change in employment in the neighborhood of spatial unit n has a (direct) contemporaneous

impact on employment of unit n. Furthermore, given that all spatial units are, directly or indirectly

connected, a change in employment in any spatial unit has a (direct or indirect) contemporaneous

6Constructing appropriate data for Argentina for the 2007-2015 period is a controversial issue. First, during those
years the o�cial statistical o�ce (INDEC, Instituto Nacional de Estadísticas y Censos) has been manipulated to
report lower in�ation. Nevertheless, we use the o�cial CPI. Preliminary evidence using other alternative CPI provide
the same results. Second, the 2011-2015 period is one of exchange rate controls. Thus, the o�cial exchange rate
(OER) di�ered from the uno�cial exchange rate (UER) also known as �blue�. The former applied to imports and
exports, but most economic agents had quantity restrictions on buying US dollars and could only could buy dollars
at the uno�cial market. We use the OER for our analysis.



impact on employment of all other spatial units. This multiplicative impacts depend on the value

(and signi�cance) of φnhk. This is also valid for φn1k and φ
n
2k, but now the impact is with one and two

time lags respectively.

Tables 3 and 4 present the point estimates and the bootstrap standard errors (with 200 bootstrap

simulations) of the estimates of φhk for the Regional and State models, respectively. The analysis

con�rms that most spatial e�ects are statistically signi�cant and positive with a few exceptions.

4.2 Regional and non-spatial aggregate models

Figures 3 and 4 summarize the IRFs from a monetary shock (a 1% increment in the interest rate) at

under both the regional level (using the RM model) the non-spatial national aggregate models. A

simple comparison shows that most regions show a negative e�ect when the interest rate increases,

except for the NEA region (where the e�ect is not statistically signi�cant). There is however a

marked heterogeneity in the e�ects. The Sur and Cuyo regions are the most a�ected. Note that the

IRF for the non-spatial model does not correspond to a simple average of the others, although it is

close to the GBA-CABA region (the largest and most concentrated region).

As a comparison we also compute the e�ect of the same monetary shock on employment, for

each region separately (see �gure 5). The results con�rm the negative impact of increasing the

interest rate on employment. These results con�rm that monetary shocks have a negative impact on

regional employment. Note, however, that the RM spatial model produces larger e�ects than what

is captured by each region separately. While the separate VAR has e�ects ranging between -0.003

and -0.008, the RM model ranges from -0.010 to -0.025 (ignoring the positive NEA e�ect). The

ranking among regions also changes. While GBA-CABA has the largest e�ect when considering by

a separate VAR, it the smallest e�ect (in absolute value) in the RM estimation.

4.3 State model

Consider now the IRFs from a monetary shock at the provincial level. These results are summarized

in �gures (6)-(8). This analysis shows greater heterogeneity among provinces. Many of them are

not statistically signi�cant although the point estimate is negative.

First, most short- and long-term e�ects are negative, except for Neuquén, Santiago del Estero

and Tierra del Fuego. Thus, increasing the interest rate has a negative impact on employment



growth at the Argentinean states.

Second, most of them have a short term negative and signi�cant e�ect. Exceptions are CABA-

GBA and Buenos Aires provinces. This could be due to the limited nature of our database because

the national level estimate is indeed signi�cant, and both units have a large share of the national

aggregate total employment.

Third, for those provinces with a long-term statistically signi�cant e�ect, employment growth

decreases by between 1% and 2% after a 1 percentage point increment in the interest rate.

5 Discussion and conclusion

This paper empirically investigates how economic activity, as measured by total formal employment

in Argentina at regional and provincial (i.e., state) levels respond to central or national monetary

policy shocks, given by a change in the policy interest rate. The results con�rm that there is con-

siderable regional heterogeneity across regions and states within Argentina, resulting in di�erential

e�ects of monetary policy shocks. At the regional level the long-term e�ects are negative and stat-

istically signi�cant. At the provincial level, 11 provinces show a negative and signi�cant long-term

impact of the shock on the interest rate over employment. However, there are 13 provinces in which

the e�ect is not statistically signi�cant, including GBA-CABA and Buenos Aires province.

Macroeconomic policies are generally �blind� at regional level (Hewings, 2014) and this ignores

potentially large asymmetric e�ects across regions. The results in this paper indicate that further

research should be applied bene�ting from the large literature on spatial analysis of macroeconomic

e�ects.

The non-homogeneous synchronization of regional business cycles may also be an important

factor for the observed heterogeneity of regional impact of monetary shocks. In fact, local or regional

cycles may not be in phase, with other regions or the national economy. In this sense, the time

window and the territorial unit of analysis may be crucial to understand the potential heterogeneity.

Indeed, high frequency data may augment the heterogeneity by capturing better region to region

interaction, as documented by Park and Hewings (2012). Given our short time span we focused

on quarterly data that is at the same time more relevant to analyze the impact of monetary policy

considering the traditional implementation lag of monetary policy shocks. Also, the authors showed



that di�erent industry mix and/or the place in the value chain production may contribute to the

cyclical asymmetries, in line with the importance of such characteristics for the monetary policy

transmission mechanism literature.

As Dominguez-Torres and Hierro (2018) emphasize, not only the time domain but also the

space domain is important when considering cyclical heterogeneities. Asymmetries can be traced

back to the interaction between regions, or more likely between provinces within the regions. The

authors reviewed several empirical studies having comparable results with di�erent aggregation

levels both in terms of qualitative (trajectory) and quantitative (magnitude) results. In the case of

US and China, authors �nd that the results are broadly maintained when using di�erent levels of

territorial aggregation. However, in the cases of Brazil and Canada, there are no such regularities

and consistencies among the empirical analysis when using di�erent levels of territorial aggregation.

See also Mejía, P. y D. Lucatero (2011) for the case of Mexico.

It should be noted that as an initial methodological approach to the provincial business cycle

in Argentina, we focus on the impact of a macroeconomic shock (monetary policy) to the regions

or provinces considering the spatial interactions. However, as noted by an anonymous referee,

our next research agenda should include at least two interesting issues. First, a better distinction

between aggregated shocks and local to local shocks. Despite been an active research agenda for

developed federal countries, there are not much research in developing federal countries. For instance,

Bai and Wang (2012) was used by Chung and Hewings (2015) to capture regional asymmetries

using a multi-level (in this case, two-level) approach. Along the same lines, Ramajo et al. (2017)

developed a multiregional spatial vector autoregressive (MultiREG-SpVAR) model applied to study

the spatiotemporal transmission of macroeconomic shocks across the regions in Spain. Second, our

results indicate that the nation in�uences regions and there is some �contamination� from other

regions but the strength and direction of these e�ects are not fully revealed as in the work by

Hayashida and Hewings (2009) or through the Dendrinos-Sonis log-linear relative dynamic approach

applied by Postiglione and Hewings (2008) for the case of Italy.
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Table 1: Selected economic and �nancial variables by provinces and regions

Employment by sector share Financial shares Firms by size shares
Province Region GDP share Industry Services Public emp. pc Loans Deposits Branches Branch per 10K Small Large Public Bank Exports pc

GBA-CABA GBA-CABA 39.7% 20% 57% 1% 54% 54% 18% 0.6789 89% 4% 1 0.00018
Buenos Aires Centro 13.9% 21% 42% 9% 12% 12% 31% 2.2905 92% 4% 1 0.00340
Cordoba Centro 7.8% 21% 45% 4% 7% 6% 10% 1.3811 91% 4% 1 0.00286
Entre Rios Centro 2.4% 19% 37% 7% 2% 2% 3% 1.1489 89% 5% 0 0.00117
La Pampa Centro 0.9% 12% 36% 8% 1% 1% 2% 3.4175 88% 7% 1 0.00118
Santa Fe Centro 8.8% 25% 42% 5% 8% 6% 10% 1.4838 90% 4% 1 0.00469
Mendoza Cuyo 3.9% 19% 41% 8% 2% 2% 4% 0.9374 88% 6% 0 0.00082
San Juan Cuyo 1.1% 17% 36% 8% 1% 1% 1% 0.5726 84% 9% 0 0.00230
San Luis Cuyo 1.1% 31% 36% 7% 0% 2% 1% 1.2260 82% 11% 0 0.00141
Chaco NEA 1.3% 11% 40% 8% 1% 1% 1% 0.6160 85% 8% 1 0.00031
Corrientes NEA 1.2% 15% 34% 6% 1% 1% 2% 0.9571 85% 8% 1 0.00022
Formosa NEA 0.5% 7% 32% 9% 0% 1% 1% 0.4716 83% 11% 0 0.00006
Misiones NEA 1.3% 19% 37% 6% 1% 1% 1% 0.5901 85% 8% 0 0.00039
Catamarca NOA 0.9% 21% 35% 16% 0% 0% 1% 0.6797 82% 12% 0 0.00240
Jujuy NOA 0.8% 21% 34% 13% 1% 1% 1% 0.4901 84% 10% 0 0.00062
La Rioja NOA 0.6% 31% 25% 15% 0% 0% 1% 0.8692 80% 13% 1 0.00076
Salta NOA 1.7% 13% 39% 8% 2% 1% 1% 0.5682 85% 8% 0 0.00081
Santiago del Estero NOA 1.2% 11% 41% 7% 1% 1% 1% 0.6178 84% 9% 0 0.00081
Tucuman NOA 1.7% 15% 41% 8% 2% 1% 1% 0.1933 85% 8% 0 0.00062
Chubut Sur 2.2% 11% 33% 8% 1% 1% 2% 1.9839 87% 7% 1 0.00430
Neuquen Sur 3.1% 7% 40% 12% 2% 1% 2% 1.8866 85% 8% 1 0.00032
Rio Negro Sur 1.3% 9% 38% 10% 1% 1% 2% 1.1274 87% 7% 0 0.00083
Santa Cruz Sur 1.7% 5% 36% 1% 1% 1% 1% 1.8616 83% 9% 0 0.00671
Tierra del Fuego Sur 0.8% 34% 37% 14% 1% 1% 2% 6.6035 81% 12% 1 0.00130

Notes: Sources: Provincial GDP (2004) INDEC. Employment shares (Ministry of Labor statistical o�ce). Export and population information INDEC. Financial information, Central Bank of Argentina.
See Table 2 for sources.



Table 2: Variable description and sources

State/Regional Model Source Seasonally adjusted

Industrial employment data Ministry of Labor Yes
Population Data INDEC Yes

Macro Variables

National GDP INDEC Yes
CPI In�ation INDEC No
30-59 days term deposits rate BCRA No
Bilateral Peso/USD Exchange rate BCRA No

Notes: INDEC: Instituto Nacional de Estadísticas y Censos (National Statistical O�ce), BCRA:
Central Bank of Argentina.

Table 3: Estimates of φ01 and φ11 for RM.

Centro Cuyo CABA-GBA NEA NOA Sur

φ0 0.619 0.749 0.464 -0.969 0.895 0.684
(0.146)*** (0.296)*** (0.123)*** (0.506)** (0.136)*** (0.240)***

φ1 0.662 0.388 0.154 0.399 0.558 0.918
(0.198)*** (0.290)* (0.147) (0.384) (0.259)*** (0.254)***

Notes: Bootstrap standard errors in parenthesis. * Signi�cant at 0.2 level. ** Signi�cant at 0.1 level.
*** Signi�cant at 0.05 level. The estimates of φ21 are only signi�cant for CABA-GBA, Sur and NEA at 0.2
level.



Table 4: Estimates of φ01 and φ11 for SM.

States φ01 φ11 States φ01 φ11
Buenos Aires 0.263 -0.039 Mendoza 0.451 0.699

(0.833) (1.316) (0.118)*** (0.211)***
Córdoba 0.330 0.197 Misiones 0.171 0.276

(0.162)*** (0.126)* (0.078)*** (0.124)***
Catamarca 0.979 0.438 Neuquén 0.852 0.344

(0.285)*** (0.316)* (0.193)*** (0.300)
Chaco 0.566 0.467 Río Negro 0.237 0.424

(0.468) (0.472) (0.138)** (0.158)***
Chubut 0.420 0.263 Salta -0.088 -0.097

(0.114)*** (0.205)* (0.153) (0.226)
GBA-CABA 0.001 0.015 San Juan 0.172 -0.031

(0.034) (0.024) (0.072)*** (0.125)
Corrientes 0.588 0.670 San Luis 0.272 0.225

(0.129)*** (0.218)*** (0.140)** (0.205)
Entre Ríos 0.301 0.171 Santa Cruz 0.982 -0.065

(0.062)*** (0.097)** (0.287)*** (0.325)
Formosa 0.513 0.072 Santa Fe 0.150 0.340

(0.287)** (0.402) (0.110)* (0.118)**
Jujuy 0.131 0.135 Santiago del Estero -0.141 -0.198

(0.074)** (0.138) (0.129) (0.393)
La Pampa 0.247 0.351 Tierra del Fuego -0.625 0.320

(0.163)** (0.265)* (0.198)*** (0.158)***
La Rioja -0.126 0.930 Tucumán 0.506 0.417

(0.255) (0.541)** (0.160)*** (0.325)*

Notes: Bootstrap standard errors in parenthesis. * Signi�cant at 0.2 level. ** Signi�cant at 0.1 level.
*** Signi�cant at 0.05 level. The estimates of φ21 are only signi�cant for Mendoza and San Juan at 0.05
level and for Tierra del Fuego and for Santa Fe at 0.1 and 0.2 level respectively.



Figure 1: Regions of Argentina
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Figure 2: Macro variables
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Figure 3: IRFs for national and regional model
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Note: IRFs of a 1% increment in the interest rate using the national aggregate VAR model and the
RM spatial model.



Figure 4: IRFs by Regions

(a) Centro
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(b) Cuyo
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(c) GBA-CABA
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(d) NEA
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(e) NOA
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(f) Sur
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Note: IRFs of a 1% increment in the interest rate using the RM spatial model. 80% con�dence
interval are reported using bootstrap with 200 repetitions.



Figure 5: IRFs for each region separately VAR model
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Figure 6: IRFs by states

(a) Buenos Aires (Centro)
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(b) Catamarca (NOA)
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(c) Chaco (NEA)
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(d) Chubut (Sur)
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(e) Córdoba (Centro)

0 2 4 6 8 10 12

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01

Quarters

D
if.

 L
og

. E
m

p.

(f) Corrientes (NEA)
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(g) Entre Ríos (Centro)
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(h) Formosa (NEA)
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(i) GBA-CABA

0 2 4 6 8 10 12

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01

Quarters

D
if.

 L
og

. E
m

p.

Note: IRFs of a 1% increment in the interest rate using the SM spatial model. 80% con�dence
interval are reported using bootstrap with 200 repetitions.



Figure 7: IRFs by state (cont.)

(a) Jujuy (NOA)
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(b) La Pampa (Centro)
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(c) La Rioja (NOA)
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(d) Mendoza (Cuyo)
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(e) Misiones (NEA)
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(f) Neuquén (Sur)
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(g) Río Negro (Sur)
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(h) Salta (NOA)
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(i) San Juan (Cuyo)
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Note: IRFs of a 1% increment in the interest rate using the SM spatial model. 80% con�dence
interval are reported using bootstrap with 200 repetitions.



Figure 8: IRFs by state (cont.)

(a) San Luis (Cuyo)
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(b) Santa Cruz (Sur)
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(c) Santa Fe (Centro)
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(d) Santiago del Estero (NOA)
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(e) Tierra del Fuego (Sur)
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(f) Tucumán (NOA)
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Note: IRFs of a 1% increment in the interest rate using the SM spatial model. 80% con�dence
interval are reported using bootstrap with 200 repetitions.



Capítulo III

Exploring peer e�ects in education in Latin America and

the Caribbean

Abstract

This paper assesses peer group in�uence on academic performance of primary school students
in Latin America and the Caribbean. Based on TERCE data set, we investigate peer e�ects in
mathematics, language and sciences tests outcomes among sixth grade students. We apply a
social interaction model which allows to identify endogenous and exogenous peer e�ects while
controlling for group-level �xed e�ects. We explore some heterogeneities related to the school
type (private, public or rural). The estimates suggest the existence of endogenous peer e�ects
but their magnitude and signi�cance depend on subject and school type.

Key words: Peer e�ects, group interaction, academic performance.

JEL classi�cation: C31, I21



1 Introduction

Social scientists have long been interested in peer e�ects because of their far reaching implications

at the individual and collective level. These non-market interactions represent how an individual's

decision or outcome is directly in�uenced by his peer's outcome or characteristics. The sociological

literature has placed great emphasis on the importance of social interactions arguing that they play

an important role in determining behavioral and economic outcomes. In fact, a number of theoretical

approaches such as collective socialization theories, contagion-based or epidemic theories, informa-

tion asymmetries and network theories (Andrews et al., 2002) have been developed to account for

contextual in�uence on individual's outcomes and behaviors regarding diverse aspects of life (such

as criminal activity, use of public services, labor markets outcomes, etc.).

Among the various spheres in which peer e�ects may manifest themselves, the school context is

especially important considering the vital role educational attainments have on future living condi-

tions of individuals. Human capital accumulation has intertemporal repercussions given the proven

relationship between years of schooling and labor incomes (Mincer, 1974; Becker, 1994). The ana-

lysis of peer e�ects in education has received considerable attention, notably since the publication

of the Coleman report (Coleman et al., 1966). A common hypothesis is that student outcomes are

higher in the presence of favorable peer groups, conditional on individual characteristics and family

background (McEwan, 2003).

Evaluating peer e�ects in academic achievements is important for parents, teachers and schools; but

crucially from a public policy perspective. A major question in the economic literature is whether

or not interactions among students lead to large social multipliers (Epple & Romano, 1996). De-

pending on the nature of peer e�ects, there may be social gains from their existence (Hoxby, 2000).

Furthermore, many researchers have studied the relative importance of peer e�ects in students aca-

demic performance versus the in�uence of other factors such as school infrastructure and teachers

quali�cations (Hanushek et al., 1998; Greene et al., 1999). As a matter of fact, peer e�ects have

played a prominent role in educational policy debates concerning ability grouping, racial integration

and school vouchers (Sacerdote, 2001; Gaviria & Raphael, 2001; Lin, 2005).

In this paper we analyse the possible existence of peer e�ects in educational achievements among

sixth grade students participating in the Third Regional Comparative and Explanatory Study



(TERCE) conducted by United Nations Educational, Scienti�c and Cultural Organization (UN-

ESCO). Since this survey focuses on primary school students, TERCE data provides a unique

opportunity to explore peer e�ects in education in its early stages. Given the fact that primary

education is a phase in which public policy can make a di�erence for students coming from vulner-

able contexts, a better understanding of the educational production function shall improve equity

in the education system. The latter has much relevance taking into consideration early education's

welfare implications for future living standards of individuals and their families. Therefore, a deep

understanding of the nature and characteristics of peer e�ects in education is not only central for

educational policies but also for general policies targeting at social inequality.

One important di�culty in dealing with peer e�ects is that they are hard to identify with observa-

tional data since it is not easy to distinguish between the impacts that actually result from social

interactions from the choices of with whom to interact with 1 and the existence of a common environ-

ment among group members (Manski, 1993). For this reason, disparities in educational attainments

may actually re�ect children and families with similar characteristics sorting together at the school

level or facing similar exogenous factors. Consequently, divergence in academic performance of stu-

dents could in fact re�ect broader inequalities in the economy and thus policy implications di�er

greatly. To deal with these problems, recent developments in network literature allow to study out-

comes of social interactions taking into consideration the problems caused by endogenous association

of members within a group and cofounding factors (Mo�tt et al., 2001; Bramoullé et al., 2009; Lee,

2007).

With this research we expect to contribute to the recent empirical literature on peer e�ects in edu-

cation. Besides, this paper should speci�cally add to the scarce existing evidence on the magnitude

and characteristics of peer e�ects in education in Latin America and the Caribbean. The article

will explore personal, family and contextual factors associated with mathematics, language and sci-

ences learning achievements for sixth grade students of those countries participating in TERCE. We

also explore some heterogeneities in results depending on whether the school is urban public, urban

private or rural. As this survey was applied in �fteen countries in the region, the data provides a

general perspective of this subject in Latin American and Caribbean countries.

The paper is organized as follows. Section 2 reviews the existing literature on peer e�ects in educa-

1This refers to selection into peer groups based on common unobserved characteristics (homophily).



tion. Section 3 presents the methodological approach and econometric model used for estimations.

Section 4 describes the data and variables used in the analysis, and explains how we deal with

missing observations. Finally, section 5 shows estimation results while conclusions are provided in

Section 6.

2 Literature review

The problem of heterogeneity of results in the education process, that manifests itself in signi�cant

di�erences in academic performance or achievements of students, has long attracted considerable

attention in the economic literature (Hanushek, 1979; Burgess, 2016). In this line of research, the

in�uence of peers on educational outcomes has been extensively studied. The milestone in this

�eld is the 1966's Equality of Educational Opportunity Report (Coleman et al., 1966), known as

Coleman report for its director. This report pushed peer e�ects into the limelight when concluding

`�nally, it appears that a pupil's achievement is strongly related to the educational backgrounds and

aspirations of the other students in the school' (Coleman et al., 1966, pg. 22). Since this research,

the empirical literature on peer e�ects has grown (Sacerdote, 2001; Hanushek et al., 2003; Angrist

& Lang, 2004; Stinebrickner & Stinebrickner, 2006; Ammermueller & Pischke, 2009). However, the

evidence regarding the magnitude of peer e�ects on student's achievement is far from conclusive.

The aforementioned lack of consensus partly re�ects various econometric issues that any empirical

study on peer e�ects must address. Trying to explain the common observation that people belonging

to the same group tend to behave similarly, in a pioneer study Manski (1993) di�erentiates three

kinds of social e�ects: endogenous e�ects, wherein the propensity of an individual to behave in some

way varies with the behavior of the group; exogenous (contextual) e�ects, wherein the propensity

of an individual to behave in some way varies with the exogenous characteristics of the group; cor-

related e�ects, wherein individuals in the same group tend to behave similarly because they have

similar individual characteristics or face similar institutional environments.

Distinguishing between endogenous and exogenous e�ects is important because they have di�erent

implications for policy interventions. Endogenous e�ects may give rise to bidirectional in�uences

and consequently to the possibility of social multipliers, while the repercussion of exogenous e�ects



does not necessarily imply ampli�ed responses to exogenous shocks (Gaviria & Raphael, 2001). As

regards correlated e�ects, they arise when students in the same reference group achieve similar edu-

cational outcomes because they share a common set of characteristics. In this case, for example, it

could imply that families send their children to the same schools according to their willingness and

ability to pay for better peer in�uences (Gaviria & Raphael, 2001).

Researchers have used various approaches to solve these issues, but there is no simple methodolo-

gical answer to face the existing challenges (Calvó-Armengol et al., 2009). Manski (1993) shows that

endogenous and exogenous e�ects cannot be separately identify in a linear-in-means model2 due to

the re�ection problem. Thus by using this kind of econometric models only aggregate parameters

are estimated (Sacerdote, 2001; Ammermueller & Pischke, 2009). Many empirical studies have ad-

dressed this issue imposing alternative structures or excluding e�ects on the original model. As

another strategy, some use instruments to obtain consistent estimates of the endogenous peer e�ect

(Evans et al., 1992; Gaviria & Raphael, 2001; Atkinson et al., 2008). The key here is the suitable

choice of those variables which are correlated with the endogenous peer e�ect but not correlated

with the error terms in the model.

With respect to correlated e�ects, some studies explicitly account for this source of bias. Research-

ers have used three main strategies to handle this problem. They have either exploited data where

group members are randomly or quasi-randomly assigned within their groups (Angrist & Lavy, 1999;

Boozer & Cacciola, 2001; Sacerdote, 2001; Zimmerman, 2003; Kang et al., 2007), they have used an

instrumental variable strategy (Evans et al., 1992; Rivkin, 2001), or a family �xed e�ect strategy

(Aaronson, 1998; Plotnick & Ho�man, 1999).

Bramoullé et al. (2009) consider an extended version of the linear-in-mean model where interactions

are structured through a social network allowing the existence of correlated e�ects. By doing so they

provide necessary and su�cient conditions for identi�cation; such conditions generalize a number of

previous results due to Manski (1993), Mo�tt et al. (2001) and Lee (2007).

In Lee et al. (2010) the model proposed in Lee (2007) is extended to consider network structures

and correlated disturbances among connected individuals. The possible endogeneity of the network

is a particular concern in settings where peer e�ects hypothetically raise from networks that are

2In the linear in means model, the outcome of each individual depends linearly on his own characteristics, on the
mean outcome of his reference group and on its mean characteristics.



formed by individuals making choices to establish links, because such endogenity may bias estim-

ates. Goldsmith-Pinkham & Imbens (2013) and Hsieh & Lee (2016) propose correcting this selection

bias by modelling the endogenous network formation process.

Considering the fact that the model speci�ed in Lee (2007) adequately deals with the above men-

tioned di�culties, it has been used as reference in various empirical researches (Lin, 2010; Lee et al.,

2010; Boucher et al., 2014), especially when studying peer in�uences in the school context. Therefore,

unlike various strategies proposed to address the basic issues a�ecting peer e�ects estimations, the

one developed by Lee (2007) has the advantage of fully identifying peer e�ects not requiring panel

data or strong assumptions that are di�cult to motivate and may not hold in practice (Boucher

et al., 2014).

Finally, another source of bias in empirical research comes from the determination of reference

groups. The choice of reference groups is often severely constrained by the availability of data.

Consequently many studies of peer e�ects in education focus either on the grade-within-school level

(Hoxby, 2000; Hanushek et al., 2003; Angrist & Lang, 2004), or analyse peer e�ects at the classroom

level (Kang et al., 2007; Burke & Sass, 2008; Atkinson et al., 2008; Ammermueller & Pischke, 2009).

The data set used in this research does not provide information on students social networks, but

allows estimations at the classroom level.

This paper advances the literature on peer e�ects in education in Latin America and the Caribbean,

providing, to our knowledge, the �rst application based on Lee (2007). Although there are a few

other works that analyses peer e�ects in the region (McEwan, 2003; Dieye et al., 2014; De Melo,

2014; Mariño Fages, 2015), they do not use the same methodological approach. This social interac-

tion model proposed in Lee (2007) considers group interaction and the existence of the three e�ects

mentioned above (e.i. endogenous, exogenous and correlated e�ects).

3 Methodological approach and Econometric model

As mentioned previously, the model considered in this paper is the one proposed in Lee (2007), this

model relies in two key assumptions. First, individuals interact in groups that are known for the

modeller. Under our setting these groups are formed by classmates, so students are a�ected by all



others in their groups (classrooms) but by none outside it. Second, individual outcome is determined

by a linear-in-means model with group �xed e�ects. Thus, the test score of a student is a�ected

by his characteristics and by the average test score and characteristics in his group of peers. In

addition, it may be a�ected by any kind of correlated group-level unobservables.

Suppose there are R groups and there are mr units in the rth group. At group level, the structural

model is given by

Yr = λ0WrYr +Xr1βr10 +WrXr2βr20 + Imrαr + er, r = 1, ..., R,

with Wr =
1

mr − 1
(lmr l

′
mr
− Imr) where lmr is the mr-dimensional vector of ones, and Imr is the

mr-dimensional identity matrix. Yr, Xr1, Xr2 are the vector and matrices of the mr observations in

the rth group. Equivalently in terms of each unit i in a group r,

yri = λ0

( 1

mr − 1

mr∑
j=1,j 6=i

yrj

)
+ xri,1β10 +

( 1

mr − 1

mr∑
j=1,j 6=i

xrj,2

)
β20 + αr + eri,

with i = 1, ...,mr, and r = 1, ..., R, where yri is the ith individual in the rth group, xri,1 and

xrj,2 are, respectively, k1 and k2-dimensional row vectors of exogenous variables, and eri are i.i.d

N(0, σ0)
3. Variables

( 1

mr − 1

∑mr
j=1,j 6=i yrj

)
and

( 1

mr − 1

∑mr
j=1,j 6=i xrj,2

)
are the peer group means

of the outcome and the exogenous variables respectively4.

In section (2), following (Manski, 1993), we de�ned endogenous e�ects as the propensity of an in-

dividual to behave in some way varies with the behavior of the group, such e�ects are captured by

parameter λ0 because it re�ects peers outcome in�uence. Exogenous (contextual) e�ects were de�ned

as the propensity of an individual to behave in some way varies with the exogenous characteristics

of the group, such e�ects are captured by parameters β20 because it re�ects peers exogenous charac-

teristics in�uence. The individual e�ects are given by the in�uence of the own exogenous variables,

such e�ects are captured by parameter β10. Correlated e�ects arise because individuals in the same

group tend to behave similarly because they have similar individual characteristics or face similar

3For G2SLS estimation we do not need to assume normality.
4As we can see in the summations, a student is not assumed to be one of his own peer. This creates individual

variations in average peer attributes. These variations survive the elimination of common unobservables.



institutional environments, such e�ects are captured by αr, it represents the mean unobservables of

the r-th group. As those unonbservables may correlate with exogenous variables, they are treated

as �xed e�ects.

The vector of all exogenous variables xri's must vary across individuals in a group, as all group

invariant variables will be captured in αr. In a general setting, xri,1 and xrj,2 are subvectors of xri,

which may or may not have common elements.

Lee (2007) proposes two ways to estimate the model, generalized two-stage least squares (G2SLS)

and conditional maximum likelihood (CML), and shows that the identi�cation of endogenous and

exogenous e�ects is possible if there are su�cient group size variation in the sample. The identi�c-

ation, however, can be weak if of all groups are of large sizes.

The model assumes thatWr is exogenous conditional on the unobserved e�ect αr
5, i.e. E(eri|xri,Wr, αr) =

0. This assumption can accommodate many situations where Wr is endogenous. Suppose, for in-

stance, Wr depends on unobserved common characteristics of the student's group (i.e. their prefer-

ences for sports, for physical infrastructure, and so on), the model admits this kind of correlation.

Nevertheless, this assumption fails to hold, for instance, if some unobserved characteristics a�ect

both the likelihood to be in the group (classroom) and the outcome, and di�ers among individuals

in the same group.

4 Data

4.1 Third Regional Comparative and Explanatory Study (TERCE)

In recent years, quantitative research on students outcomes in Latin America and the Caribbean

has bene�ted a lot from the growing availability of international comparable data. The Third

Regional Comparative and Explanatory Study (TERCE) is an example of this kind of data source.

Implemented in 2013 by UNESCO, TERCE is a large scale study of learning achievements carried

out in 15 countries: Argentina, Brazil, Chile, Colombia, Costa Rica, Dominican Republic, Ecuador,

Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru and Uruguay, as well as in

5Under the group interaction assumption all students in a classroom are peers, so the conditional exogeneity of
Wr is equivalent to the conditional exogeneity of the group size, mr.



the Mexican state of Nuevo León. Its main goals are to provide information for the discussion on

educational quality in the region and to orientate decision making in public policies. TERCE is the

third study of its kind in primary education conducted by UNESCO Regional Bureau of Education

for Latin America and the Caribbean, preceded in 1997 by the First Regional Comparative and

Explanatory Study (PERCE) and in 2006 by the Second Regional Comparative and Explanatory

Study (SERCE).

TERCE assessed the performance of pupils in third and sixth grades primary school in Mathematics

and Language (reading and writing skills); and students achievements in Natural Sciences, in the

case of sixth grade. In order to measure learning achievements, the study applied tests regarding

common elements of the school curricula in the region. To assure cultural adaptation to each country

and to prevent from imposing foreign standards, the design and implementation of the study was

done following a collaborative process with participating countries (Flotts et al., 2015).

In addition to students academic performance, context questionnaires aiming to collect information

on associated factors that in�uence student's learning achievements were also implemented. Among

the variables considered in these questionnaires, importance was given to socio-economic context,

family life and personal issues, as well as educational policies and school processes. Therefore, the

study also collected data on the characteristics of students and their families, teachers, the school

and its principal.

The TERCE data base consists of NT = 67, 582 observations on students which are grouped in

RT = 3, 115 classrooms along the 15 countries and the state of Nuevo León6.

In table (1) we present the total number of classrooms and the quartiles of the classroom sizes

distribution by country.

6For an in depth description of TERCE's sample design and survey's contents refer to (Flotts et al., 2015).



Table 1: Classrooms and sizes. Original data.

Country Number of classrooms
Quartiles of classroom sizes

Quartile 1 Quartile 2 Quartile 3

Argentina 207 14 20 26
Brazil 126 21 29 34
Chile 197 20 28 35
Colombia 149 23 31 36
Costa Rica 197 12 19 24
Dominicana 170 13 22 30
Ecuador 210 16 26 35
Guatemala 232 14 22 31
Honduras 203 10 18 28
Mexico 168 14 23 30
Nicaragua 180 9 22 31
Panama 187 15 20 26
Paraguay 205 10 17 25
Peru 285 7 16 25
Uruguay 238 12 19 24
Nuevo León 161 21 27 35

4.2 Variables

To analyze student's learning achievements, the dependent variables used are individual results on

students mathematics, language and sciences tests7:

Score_math: irt standardized mathematics score.

Score_lang: irt standardized language score.

Score_scien: irt standardized sciences score.

Regarding explanatory variables, individual characteristics, family background and peer's in�uence

were taken into account. Following the literature (Sacerdote, 2001; Gaviria & Raphael, 2001; Lin,

2005, 2010; Lee et al., 2010; Boucher et al., 2014), we consider these variables:

Isecf: standardized index of the economic, material and sociocultural condition of the student's

household. This index is directly estimated by UNESCO, and to construct it information

on the mother's education level and occupation, as well as household income and goods and

services available at the house is collected.

7Estimated as the standardized score following the Item Response Theory (see Flotts et al. (2015) for a thorough
explanation on how this scores are calculated).



Mothereduc: highest education level of the mother. This is a categorical variable using UN-

ESCO's International Standardized Education Classi�cator (CINE-P, for its acronym in Span-

ish), which takes the following values:

� 1 Without studies

� 2 Primary school/Low secondary school [cine-p 1-2]

� 3 High secondary school [cine-p 3]

� 4 Post secondary education/Tertiary education [cine-p 4-5]

� 5 University [cine-p 6]

� 6 Master degree/Ph.D. [cine-p 7-8]

Age: student's age measured in years.

Gender: dummy variable taking value one if the student is male and zero if female.

Indigenous: dummy variable taking value one if at least one of these conditions is met and zero

otherwise:

� the mother or father self-de�ne themselves as indigenous

� at least one of the parents speaks an indigenous language

� parents speak in an indigenous language to the student

� the student self-de�nes him or herself as indigenous

� the student speaks in an indigenous language

Contextual e�ects: average values of all the explanatory variables over the student's classmates.

Endogenous e�ects: average result in tests of the student's classmates.

The following Table shows basic statistical measures for all the variables considered above.



Table 2: Descriptive statistics.
Variable Mean S.D.

Score_math 712.3 105.3
Score_lang 711.3 103.0
Score_scien 709.4 103.1
Age 12.41 0.940
Gender 0.503 0.499
Indigenous 0.234 0.423
Mothereduc 2.898 1.223
Isecf 0.142 1.047

4.3 Missing data treatment

As it happens in most surveys, many observations present missing data in some variables. The

percentage of missing values in the total sample of sixth grade students is 5% for language score, 4%

for mathematics score, 3% for sciences score, 15% for isecf index and 23% for mothereduc indicator.

There are several methods to deal with missing data in the literature (Little, 1992; Pigott, 2001;

Enders, 2010). Their accuracy depends crucially on the assumptions about the missing data mech-

anisms generating it. For missing values in explained variables we apply complete cases method,

which consists of only using observations for which we have the value for the explained variable (lan-

guage, mathematics or sciences scores). For missing data in explanatory variables we use random

imputation.8

With respect to only using observations for which the explained variable is de�ned, while this is

an accurate method when the mechanism generating missing data is random, in models where the

explained variable is also used as explanatory variable it is not advisable to use it9. Given the fact

that in this case overall missing data in explained variables is relatively small (5, 4 and 3 % respect-

ively), we expect that any bias that could be introduced in estimates by using complete observations

(complete on explained variables) shall be negligible.

Consequently, to estimate the models we only use cases in which we observe the explained variables.

Besides, we also dismiss all observations from classrooms where the percentage of missing values

in any variable (explained or explanatory) exceeds 50%; and those cases where there is only one

student in the classroom. Furthermore, as the neighborhood violence level is one of the variable we

8See appendix 8.2 for details
9The model proposed in this paper has an important link with spatial economnetric models, in particular with the

Saptial Lag Model. The treatment of missing data under the latter model has some particular issues, see Wang &
Lee (2013), LeSage & Pace (2004) and Kelejian & Prucha (2010) for details



use to impute the mothereduc indicator and as this variable has missing values for a few classrooms,

we drop observations from those classrooms.

Finally, as observations with missing values di�ers among subjects the �nal data bases are not the

same. The �nal data bases for the three subjects consist in nearly 90% of the students and classrooms

from the original sample10.

5 Empirical results

We estimate the model for the whole sample and for di�erent subsamples in order to capture some

heterogeneities, we named such models Whole sample Model and Subsamples Model respect-

ively. We present the estimates for both models in the following subsections.

5.1 Whole sample Model

Tables (3) and (4) display estimates of the proposed model for student's mathematics, language and

sciences academic outcomes based on both, CML and B2SLS estimation methods respectively.

10See 8.1 and 8.3 for more details on missing data.



Table 3: CML Estimation.
Random Imputation

Mathematics Language Sciences

Endogenous E�ects 0.326*** 0.102* 0.091
(0.046) (0.054) (0.063)

Individual E�ects
Isecf 13.28*** 12.61*** 11.88***

(0.872) (0.886) (0.988)
Age -7.91*** -9.36*** -7.23***

(0.600) (0.683) (0.692)
Mothereduc 2.69*** 5.69*** 5.82***

(0.720) (0.621) (0.658)
Gender 12.41*** -8.59*** 2.80***

(0.957) (1.040) (0.980)
Indigenous -2.80** -7.27*** -4.32***

(1.171) (1.211) (1.188)
Contextual E�ects
Isecf 14.56 -14.14 -10.65

(14.26) (15.41) (17.39)
Age 12.08 14.03 14.17

(9.089) (11.83) (12.40)
Mothereduc -20.38 -5.94 1.08

(13.80) (10.55) (11.23)
Gender 24.22 20.67 8.92

(15.73) (18.36) (15.30)
Indigenous 28.55 -25.27 15.94

(18.63) (21.77) (19.10)
Corr2(ŷ, y) 0.345 0.148 0.142

Notes: Standard Errors in parenthesis.(***) indicates 1% signi�cance level.
(**) indicates 5% signi�cance level.(*) indicates 10% signi�cance level.



Table 4: B2SLS Estimation
Random Imputation

Mathematics Language Sciences

Endogenous E�ects 1.406 -0.040 0.222
(1.166) (0.053) (2.926)

Individual E�ects
Isecf 13.42*** 12.62*** 11.86***

(0.988) (0.904) (1.122)
Age -7.64*** -9.40*** -7.19***

(0.771) (0.619) (1.146)
Mothereduc 2.30*** 5.72*** 5.80***

(0.802) (0.630) (0.718) )
Gender 12.50*** -8.58*** 2.76**

(1.132) (1.004) (1.166)
Indigenous -2.49 -7.07*** -4.40**

(1.801) (1.551) (1.860)
Contextual E�ects
Isecf 4.67 -11.81 -12.72

(19.09) (14.23) (53.62)
Age 26.73 11.75 16.11

(21.34) (8.447) (46.42)
Mothereduc -33.37* -4.32 -0.05

(18.54) (10.64) (25.97)
Gender 15.32 19.36 7.74

(16.72) (14.99) (24.02)
Indigenous 40.63 -21.76 14.98

(33.06) (23.75) (26.08)
Corr2(ŷ, y) 0.383 0.037 0.221

Notes: Standard Errors in parenthesis.(***) indicates 1% signi�cance level.
(**) indicates 5% signi�cance level.(*) indicates 10% signi�cance level.

Regarding the estimation methods, results are quite similar for signi�cant estimates in both

methods. The main di�erence arise in the estimate of the endogenous e�ect, which turns out to be

signi�cant only under CML method.

The di�erences among estimation methods are consistent with theory, CML are more e�cient than

B2SLS, furthermore, B2SLS su�ers from weak instrument problem. The instrument quality is pos-

itively related with the relation between the explained and the explanatory variables, and we can

see in the results that such relation is poor.

As explained above, the methodological approach used here allows to account for the incidence of

endogenous e�ects (i.e., the in�uence of peer outcomes), student's individual characteristics and

contextual or exogenous e�ects (i.e., the in�uence of exogenous peer characteristics); while �ltering



�xed e�ects at the group level. These �xed e�ects include not only observable characteristics of the

group (such as country of residence, school infrastructure, teacher's quali�cations, etc.) but also

unobservables, as well as common shocks faced by the group. Endogenous peer e�ects estimates are

listed at the top of tables (3) and (4) and contextual e�ects at the bottom.

Before analyzing the social-interaction e�ects, a brief discussion of the performance of the control

variables is necessary. Concerning personal background controls, i.e. student's age, gender and

ethnicity, they are all statistically signi�cant in determining academic performance. Student's age

is negatively related to academic achievements for all the three subjects. This variable may be an

indirect indicator of late schooling or grade repetition among students and consequently could be

re�ecting individual di�culties in school performance.

Regarding gender, results are consistent with the empirical literature (Hyde et al., 1990). Female

students tend to outperform males in language, while males students achieve better results than

females in mathematics and sciences tests. Turning to ethnicity, results indicate that students with

indigenous background achieve poorer academic results than the rest, which is in line with previous

research (Verdisco et al., 2009). Furthermore, this disadvantage seems stronger when it comes to

language outcomes possibly indicating that indigenous children su�er from idiomatic limitations

that condition their academic achievements (Flotts et al., 2015). Finally, family sociocultural and

economic condition as well as mother education, all have positive signi�cant in�uence in student's

academic achievements, reinforcing existing �ndings on these topics (Davis-Kean, 2005).

With respect to those e�ects that surge from social interaction, exogenous peer characteristics or

contextual e�ects do not signi�cantly in�uence student's academic outcomes. However, the fact that

variables re�ecting peer's characteristics turn out not to be statistically signi�cant may be related

to their high correlation with student's own ones.

On the other hand, endogenous peer e�ects, under CML estimation, prove to be statistically signi-

�cant for both mathematics and language academic outcomes, though they are not in the case of

sciences results. Endogenous peer e�ects in mathematics scores are highly signi�cant and somehow

stronger than in language. This may re�ect the fact that mathematics provide more opportunities

for interactions among students. Nevertheless, peer outcomes also impact language tests' results at

10% signi�cance. These �ndings are in accordance with previous empirical studies (Boucher et al.,

2014; Carrell et al., 2009; Hoxby, 2000; Hanushek et al., 2003; Vigdor & Nechyba, 2004; Zimmer &



Toma, 2000).

It is worth to note, however, that the model does not explain much of the variability of the data11

suggesting the existence of other factors that may explain student's academic performance besides

those explicitly considered here. Even so, it is clear that classmates academic outcomes do a�ect

student's performance at school and therefore attention should be paid to these �ndings.

5.2 Subsamples Model

The model proposed up to here does not allow interactions between the endogenous peer e�ect

and other factors, i.e. we have the same endogenous peer e�ect for the whole population. This

assumption can be restrictive, specially under such a heterogeneous population.

One of the sources of heterogeneity in peer e�ects is the type of school. The sample considers

three types of schools, namely, urban public, urban private, and rural. They di�er in many aspects,

such as infrastructure, socio-economic level, �nancial access and facilities among others. Rurality is

associated with greater poverty and their access to resources and infrastructure is lower compared

to schools in urban areas (UNESCO, 2016). To gain some insight into heterogeneities we estimate

the proposed model for the three di�erent type of schools. We do that in the same way as before,

i.e. under two estimation methods and three missing data manage alternatives.

With respect to sample sizes, rural schools are about 42% of the schools in the �nal data base, whereas

urban private and urban public schools are 25% and 32% respectively. Regarding to students,

34% attend rural schools, whereas 28% and 38% attend urban private and urban public schools

respectively. The results are shown below.

11Based on Corr2(ŷ, y).



Table 5: CML Estimation.
Mathematics Language Science

Urban Urban Rural Urban Urban Rural Urban Urban Rural
Public Private Public Private Public Private

Endogenous E�ects 0.363*** 0.400*** 0.008 -0.216*** 0.505*** -0.060 0.249*** 0.469*** -0.148
(0.034) (0.055) (0.070) (0.041) (0.051) (0.048) (0.042) (0.074) (0.111)

Individual E�ects
Isecf 11.97*** 11.73*** 10.05*** 11.56*** 7.37*** 12.53*** 11.44*** 10.31*** 10.96***

(2.028) (1.923) (1.326) (2.232) (2.341) (1.389) (2.145) (2.036) (1.450)
Age -6.52*** -6.72*** -8.01*** -10.42*** -6.57*** -9.12*** -7.35*** -4.32*** -6.93***

(1.573) (1.559) (0.820) (1.177) (1.655) (0.848) (1.454) (1.672) (0.932)
Mothereduc 5.13*** 2.10 2.52** 9.50*** 6.04*** 3.72*** 10.12*** 5.38*** 4.31***

(1.429) (1.336) (1.218) (1.671) (1.173) (1.133) (1.708) (1.344) (1.137)
Gender 12.17*** 15.93*** 9.90*** -7.75*** -11.10*** -6.89*** 3.05 2.94 1.66

(2.255) (2.072) (1.398) (2.212) (1.908) (1.560) (2.324) (2.146) (1.485)
Indigenous -4.30* -2.01 -1.67 -5.81** -2.34 -8.56*** -5.41** -2.14 -4.36**

(2.616) (2.653) (1.656) (2.492) (2.405) (1.785) (2.721) (2.820) (1.762)
Contextual E�ects
Isecf -81.20* 34.65 16.07 -109.46** -78.94 13.29 -74.95 6.26 -8.50

(46.58) (15.36) (17.95) (54.21) (49.52) (17.76) (49.54) (36.43) (20.46)
Age 67.43* 25.35 -2.07 12.18 50.50 9.99 54.94* 28.77 8.37

(37.25) (8.672) (9.331) (23.63) (30.82) (10.40) (33.55) (28.91) (13.53)
Mothereduc 23.59 26.24 -18.59 98.36** -6.94 -30.22* 102.97** -13.33 -7.02

(32.39) (11.68) (18.58) (41.63) (20.99) (16.80) (42.93) (25.42) (15.76)
Gender 14.97 41.03 9.22 12.88 40.21 24.01 -31.81 50.83 1.15

(49.00) (15.43) (16.31) (47.79) (33.33) (20.17) (50.51) (42.17) (17.18)
Indigenous 15.99 45.00 30.46 1.94 108.18** -53.59* 6.81 39.95 11.44

(61.37) (24.49) (24.15) (57.16) (48.67) (27.63) (63.16) (47.85) (24.46)

Corr2(ŷ, y) 0.002 0.243 0.090 0.046 0.030 0.077 0.001 0.209 0.026

Notes: Standard Errors in parenthesis.(***) indicates 1% signi�cance level.(**) indicates 5% signi�cance level.(*) indicates 10% signi�cance level.

Table 6: B2SLS Estimation.
Mathematics Language Science

Urban Urban Rural Urban Urban Rural Urban Urban Rural
Public Private Public Private Public Private

Endogenous E�ects 2.064** 0.448 0.397 -1.399 1.005** -0.500*** 0.985 0.728 -9.616***
(0.858) (1.061) (1.214) (1.793) (0.488) (0.148) (0.748) (1.680) (0.201)

Individual E�ects
Isecf 10.61*** 11.73*** 10.17*** 13.70*** 6.969*** 12.33*** 10.73*** 10.31*** 12.14***

(2.295) (2.056) (1.470) (3.252) (2.198) (1.356) (2.257) (2.153) (1.192)
Age -5.04*** -6.70*** -8.00*** -9.82*** -6.239*** -9.34*** -7.01*** -4.22** -10.81***

(1.854) (1.854) (0.852) (1.178) (1.803) (0.829) (1.653) (2.069) (0.714)
Mothereduc 4.61*** 2.09* 2.28* 9.27*** 6.107*** 4.05*** 10.70*** 5.42*** 8.17***

(1.515) (1.302) (1.375) (1.561) (1.215) (1.079) (1.691) (1.336) (0.921)
Gender 12.22*** 15.98*** 9.75*** -6.25** -10.865*** -6.91*** 2.86 3.19 11.87***

(2.541) (2.681) (1.553) (2.436) (2.221) (1.530) (2.509) (2.996) (1.307)
Indigenous -4.59 -1.95 -1.56 -7.02** -1.781 -7.33*** -4.39 -2.07 8.17***

(4.312) (3.636) (2.532) (3.904) (3.624) (2.214) (4.337) (3.807) (1.928)
Contextual E�ects
Isecf -141.57** 16.03 14.98 -36.69 -94.15** 14.84 -103.53* 3.94 127.36***

(58.63) (35.55) (17.76) (107.25) (44.79) (16.73) (55.78) (39.63) (14.76)
Age 120.83** 27.17 1.08 13.04 62.69* 1.90 70.99* 32.67 -130.55***

(48.77) (37.91) (15.56) (23.42) (33.04) (9.92) (41.97) (44.60) (8.01)
Mothereduc 3.52 -28.61 -24.68 98.60*** -8.67 -21.33 113.82*** -13.89 112.95***

(34.06) (26.15) (25.42) (32.80) (21.82) (14.31) (37.34) (28.77) (11.88)
Gender -2.54 67.65 3.40 39.02 52.21 19.27 -39.60 56.47 181.18***

(54.31) (44.37) (23.03) (48.16) (44.07) (18.38) (54.05) (60.05) (14.87)
Indigenous 17.80 51.46 34.38 -35.63 125.82* -33.69 37.160 42.96 174.72***

(99.13) 68.39) (37.79) (94.15) (67.66) (26.05) (101.21) (71.34) 23.47)

Corr2(ŷ, y) 0.127 0.257 0.261 0.104 0.000 0.024 0.032 0.229 0.173

Notes: Standard Errors in parenthesis.(***) indicates 1% signi�cance level.(**) indicates 5% signi�cance level.(*) indicates 10% signi�cance level.

The conclusions about di�erent estimation methods are the same as before. As regards estimates,

the impact of controls variables are similar in both models (homogeneous and heterogeneous): age

and ethnicity have a negative impact when signi�cant; males have better results in mathematics,

females in language, and gender is not signi�cant in science results, while mother education and isecf

show a positive impact in almost every estimation; and contextual e�ects are mostly not signi�cant.

Focusing on heterogeneity by school types, ethnicity has no impact in urban private schools, the

e�ect of mother education seems to be stronger in urban public schools and isecf appears to be



weaker in urban private schools but only for language. Endogenous peer e�ect are greater for urban

private schools whereas for rural schools it is mostly not signi�cant. Even though such di�erences

depend on the subject, the are more noticeable in language followed by science.

6 Concluding remarks

Estimating peer e�ects is challenging because of the existence of the re�ection problem, omitted vari-

able bias problem as well as data limitation. In this paper we applied the social interaction model

proposed in Lee (2007) to academic results of primary school students. This model allows separ-

ate estimations of endogenous and exogenous e�ects, while controlling for correlated e�ects. The

results found in this research add empirical evidence that supports the hypothesis of peer e�ects in

education, a�ecting in this particular application primary school attendants in Latin America and

the Caribbean. We show that peer in�uence plays a signi�cant role in early education academic

achievements, mainly through endogenous e�ects. Considering the multiplying characteristics of

these e�ects, results found here are important from a public policy perspective. On the other hand,

we explore some heterogeneities showing that the impact of some control variables, as well as the

endogenous e�ect, not only depend on the subject, but they are also of di�erent magnitudes de-

pending on the school types.

Hopefully, this paper has contributed to a better visualization of the impacts of social interactions in

human capital accumulation. These results may add new inputs to be considered in the educational

policy agenda of the region. Undoubtedly, the issues regarding the accumulation of human capital

are sure to remain a fertile ground for future research. In fact, we expect to extend this research

to third grade pupils also evaluated in TERCE as well as investigating possible non-linearities and

other sources of heterogeneities of the e�ects so as to achieve a more precise picture of peer e�ects

in�uence on students academic performance in the region.
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8 Appendix

8.1 Missing data descriptions

As we mentioned, the percentage of missing values in the total sample of sixth grade students is 5%

for language score, 4% for mathematics score, 3% for sciences score, 15% for isecf index and 23%

for mothereduc indicator. The overall percentage of classrooms with at least one missing value in

language score, mathematics score, sciences score, isecf index and mothereduc indicator are 44%,

36%, 30%, 60% and 86% respectively. Despite the fact that the number of classrooms with missing

data is high (specially for explanatory variables), the percentage of missing values within classrooms

is considerable lower. In fact, the 80% of classrooms with missing data in language, mathematics

and sciences scores do not have more than 8%, 6% and 5% of missing values respectively; whereas

the 80% of classrooms with missing values of isecf index and mothereduc indicator do not exceed

20% and 33% of missing values respectively.

The aforementioned information on missing data concerns the sample as a whole, but the proportion

of missing values varies considerably between countries, classrooms and variables. To get some

insights in the distribution of missing values we calculate both, the percentage of missing values by

country and the distribution of the percentage of missing values by classroom in each country. We

report the 8th quantile of such distributions.



Table 7: Missing data by country and classrooms in explained and explanatory variables.
Country (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Argentina 64 17 66 16 62 15 89 38 95 46
Brazil 95 25 97 30 94 25 98 40 99 53
Chile 50 6 51 5 50 7 76 22 90 29
Colombia 46 5 34 3 42 4 47 8 91 16
Costa Rica 13 0 23 3 13 0 23 4 76 15
Dominicana 17 0 36 5 14 0 43 7 92 25
Ecuador 20 2 16 0 21 2 43 9 80 20
Guatemala 23 3 41 8 19 0 70 100 88 100
Honduras 16 0 38 6 15 0 44 11 80 28
Mexico 39 4 45 7 37 4 60 15 82 22
Nicaragua 36 5 68 15 30 3 68 20 86 33
Panama 63 16 62 12 52 10 76 26 92 37
Paraguay 37 7 46 10 35 6 65 22 91 40
Peru 14 0 24 4 11 0 38 10 73 22
Uruguay 32 5 36 6 32 5 70 100 86 100
Nuevo León 42 5 53 6 35 4 66 13 89 18

(1) % Classrooms with missing data in Mathematics score. (2) % Missing data in Mathematics score by
classrooms, Q8 . (3) % Classrooms with missing data in Language score. (4) % Missing data in Language
score by classrooms, Q8. (5) % Classrooms with missing data in Sciences score. (6) % Missing data in
Sciences score by classrooms, Q8 . (7) % Classrooms with missing data in isecf index. (8) % Missing data in
isecf index by classrooms, Q8. (9) % Classrooms with missing data in mothereduc indicator . (10)% Missing
data in mothereduc indicator by classrooms, Q8.

The percentage of classrooms with missing data in explained variables shows wide variability

when measured by country. Regarding mathematics score it ranges from 13 to 95%, for language

score it goes from 16 to 97 %, while in the case of sciences score it varies from 11 to 94%. In almost

every country the percentage of classrooms with missing values in language score is slightly grater

than the percentage of classrooms with missing data in mathematics and sciences scores. Something

worth noting is that, regardless the number of classrooms with missing data, the percentage of miss-

ing values by classroom is relatively low. For instance, the 1st, 3rd and 5th columns of table (7)

show that Brazil has missing values in almost every classroom in all the three subjects (mathemat-

ics, language and sciences scores), but 80% of such classrooms do not have more than 25 or 30% of

missing data in those variables respectively.

As regards explanatory variables, they show more classrooms with missing data as well as a higher

number of missing information by classroom.



8.2 Random imputation

Supposing that the missing problem is con�ned to a single variable, y, and that we observe a set

of variables X for all units, then the method consists in estimating a regression model based on

observed data. As we know all X, we impute the missing y using the estimated model.

Let yo and yu be the observed and unobserved y respectively, we estimate yo = βXo + eo, where

e ∼ N(0, σe), and then we impute the missing y by ŷu = β̂Xu + êu (consider we completely observe

X). It is worth noting that we add an error term, êu, to the imputed values ŷu (hence the name

random imputation), which is generated by simulating their distribution, êu ∼ N(0, σ̂e).

The model we use to impute isecf index and mothereduc indicator when these variables show missing

data has the following structure,

yir = β1y−ir + β2x2,ir + β3x3,ir + eir

where yir is the y value (isecf index or mothereduc indicator) for the i−th student in r−th classroom,

y−ir is the mean of y in classroom r without considering yi, x2,ir is the mean of isecf index and it

is present in both model, whereas x3,ir is the kind of school (public or private) in the model for

isecf index, and the level of neighbor violence in the model for mothereduc indicator, eir ∼ N(0, σe)

is an error term.12 The intra-classroom autocorrelation of isecf index and mothereduc indicator is

relatively high. That is why we use y−ir as explanatory variable. However, this triggers another

issue because the variable y−ir is a classroom mean of the partially observed variable y, so it is

also partially observed. We ignore this fact because the goal here is not causal inference but simply

accurate prediction. Therefore it is acceptable to use any input in the imputation model to achieve

this goal, and given y−ir is helpful for explaining y, we consider it in the model.

8.3 Final data

As mentioned previously, to estimate the models we dismiss some observations due to missing data

problems. The observations with missing values in mathematics score di�er from those with missing

12We have selected the explanatory variables in order to maximize the R2.



values in language score and sciences score, so the �nal data bases used for each subject di�er.

The mathematics data base consists of Nm = 58, 817 observations (students) which are grouped

in R = 2, 736 classrooms. That is, we work with the 87% of observations and with the 88% of

classrooms from the original data. The overall percentage of missing values in isecf index and

mothereduc indicator is 7 and 15% respectively. Whereas the overall percentage of classrooms with

some missing value in isecf index and mothereduc indicator is 53 and 84% respectively. The 80%

of classrooms with missing data of isecf index and mothereduc indicator do not have more than 12

and 24% of missing values respectively.

The language data base consists of Nl = 58, 224 observations (students) which are grouped in

R = 2, 730 classrooms. Consequently, we work with the 86% of the observations and with the 88%

of classrooms from the original data. The overall percentage of missing values in isecf index and

mothereduc indicator is 5 and 13 % respectively. The total percentage of classrooms with some

missing value in isecf index and mothereduc indicator is 44 and 83% respectively. The 80% of

classrooms with missing data in isecf index and mothereduc indicator do not have more than 10 and

22% of missing values respectively.

The sciences data base consists of Nc = 59, 051 observations (students) which are grouped in R =

2, 737 classrooms. Consequently, we work with the 87% of the observations and with the 88%

of classrooms from the original data. The overall percentage of missing values in isecf index and

mothereduc indicator is 7 and 15 % respectively. The total percentage of classrooms with some

missing value in isecf index and mothereduc indicator is 53 and 84% respectively. The 80% of

classrooms with missing data in isecf index and mothereduc indicator do not have more than 12 and

25% of missing values respectively.

Given the fact that the percentage of missing data varies across countries, the missing �ltering

process impacts di�erently on each country data. In the following lines we present some measures

on missing data distribution by country and by subject.



Table 8: Classrooms, sizes and missing data distribution. Reduced sample.

Country
Mathematics data Language data

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)

Argentina 80.2 19.0 83.1 25.0 93.4 33.3 79.7 19.0 80.6 25.0 92.1 33.3
Brazil 71.4 27.0 80.0 20.0 96.7 33.3 71.4 25.5 71.1 16.7 95.6 29.5
Chile 91.4 28.0 72.8 17.3 90.0 24.4 91.4 28.0 72.2 17.4 90.0 23.9
Colombia 97.3 30.0 42.8 6.3 90.3 15.4 97.3 31.0 38.6 6.2 89.7 15.4
Costa Rica 98.5 19.0 21.6 3.5 74.7 15.0 98.5 19.0 19.6 0.0 74.7 15.0
Dominicana 94.7 22.0 41.6 6.2 92.5 24.3 94.7 22.0 23.6 3.0 91.9 23.5
Ecuador 88.6 22.5 59.8 10.9 83.3 21.1 88.6 26.0 31.7 4.0 79.0 15.4
Guatemala 75.0 22.5 59.8 10.9 83.3 21.1 75.0 22.0 32.8 4.6 76.4 16.7
Honduras 91.6 19.0 42.5 8.3 79.0 23.1 91.1 18.0 30.3 4.0 76.8 20.1
Mexico 91.7 23.0 55.2 13.6 82.5 20.3 92.3 23.0 45.8 8.7 76.8 18.2
Nicaragua 91.1 22.0 68.3 15.5 86.0 25.3 90.0 21.0 37.0 5.0 83.3 20.0
Panama 89.3 18.0 67.1 16.7 91.0 30.3 88.8 19.0 60.8 16.0 88.0 26.7
Paraguay 86.3 16.0 55.4 14.3 88.7 30.7 85.9 16.0 43.8 9.1 88.6 28.6
Peru 95.1 17.0 37.3 8.3 72.7 20.0 95.1 16.0 32.1 6.7 71.6 20.0
Uruguay 68.5 18.0 49.7 13.5 77.3 23.1 68.1 18.0 48.8 12.5 78.4 23.0
Nuevo León 98.1 27.0 64.6 12.0 88.0 17.5 98.1 27.0 55.1 10.6 86.1 15.9

(1) % of classrooms from the complete sample. (2) Median of classroom size. (3) % classrooms with missing
values in isecf index. (4) % missing data in isecf index by classrooms, Q8. (5) % classrooms with missing
data in edumother indicator. (6) % missing data in edumother indicator by classrooms, Q8.

Table 9: Classrooms, sizes and missing data distribution. Reduced sample.

Country
Sciences data

(1) (2) (3) (4) (5) (6)

Argentina 80.2 19.0 83.1 25.8 94.0 33.3
Brazil 71.4 26.5 80.0 19.2 96.7 33.3
Chile 91.4 28.0 73.3 17.8 90.0 25.0
Colombia 97.3 31.0 42.8 6.3 89.7 15.5
Costa Rica 98.5 19.0 21.1 3.5 74.2 15.0
Dominicana 94.7 22.0 41.6 6.2 92.5 25.0
Ecuador 88.6 26.0 36.0 4.8 79.6 15.0
Guatemala 75.0 22.5 59.8 10.9 83.3 21.1
Honduras 91.6 19.0 42.5 8.3 79.0 23.1
Mexico 92.3 23.0 54.8 13.6 81.9 20.2
Nicaragua 91.1 23.0 68.9 16.2 86.0 27.8
Panama 89.3 19.0 68.9 17.2 91.0 31.2
Paraguay 86.3 16.0 55.9 14.3 89.3 30.0
Peru 95.1 17.0 37.3 8.3 72.7 20.0
Uruguay 68.5 18.0 49.7 14.1 76.7 22.7
Nuevo León 98.1 27.0 65.2 12.3 88.6 17.2

(1) % of classrooms from the complete sample. (2) Median of classroom size. (3) % classrooms with missing
values of isecf index. (4) % missing data in isecf index by classrooms, Q8. (5) % classrooms with missing
data in edumother indicator. (6) % missing data in edumother indicator by classrooms, Q8.


