
Tests for Dynamic Effects in

Linear Panel Data Models ∗

Federico Zincenko
Department of Economics

Universidad de San Andrés

Walter Sosa-Escudero
Department of Economics
Universidad de San Andrés

November, 2007

Abstract

This paper proposes simple tests to detect dynamic and random effects in linear
panel data models, in the form of lagged dependent variables and random effects. We
use the analytical framework of Bera and Yoon (1993) to derive tests for the presence
of random effects, lagged dependent variables, or both. All test statistics can be com-
puted based on pooled OLS estimates, and hence can serve as a useful specification
search tool to validate the adoption of a dynamic model.
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1 Introduction

One of the most important uses of panel data is to help distinguishing among different

sources of persistent behavior. The availability of data for different units along time is

a requisite to disentangle whether persistence is due to the relevance of time-invariant,

unit-specific unobserved factors, to structural mechanisms that link present values to past
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previous versions of this paper. All errors are our responsability. Corresponding author: Federico Zincenko,
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ones, or to both. The literature has vaguely used the term ‘unobserved heterogeneity’ to

label the first source, and ‘state dependence’ to the second one.

In the standard linear error component model, individual specific factors induce persis-

tence over time due to the presence of these unmeasured random effects. In a static model,

the standard test for random effects originally proposed by Breusch and Pagan (1980),

BP(1980) henceforth, serves the purpose of checking for persistent effects due to the pres-

ence of random effects. Bera, Sosa-Escudero and Yoon (2001) found that the presence

of positive serial correlation confounds the Breusch-Pagan statistic, making it spuriously

reject its null even when random effects are absent. The intuition is that the BP(1980) test

implicitely assumes only one possible source of persistence in the unobserved terms (the

random effect), so serial correlation introduces a second source that is mistakenly perceived

as being indicative of the presence of random effects. A symmetric concern affects the test

for serial correlation by Baltagi and Li (1991), in the sense that it implicitely assumes no

random effects and, hence, is altered along the same lines when this assumption is false.

Bera et al. (2001) proposed modified statistics that are insensitive to misspecifications, at

least in a local sense, that is, they proposed tests for random effects (serial correlation)

that remain unaltered in the presence of local serial correlation (random effects). The

local nature of the solution seems restrictive, but extensive Monte Carlo experimentation

by these authors show that in small samples both tests have good performances even in

non-local contexts.

A relevant methodological contribution of the LSE school of dynamic econometrics in

the time series context (Hendry, 1995), is to stress the fact that serial correlation should

be more appropriately seen as a particular form of dynamic misspecification. The classic

article by Hendry and Mizon (1978) emphasizes the point that first order serial correlation

is one possible restriction of a more general dynamic specification, hence favoring these

general structures as a starting point for specification searches. This is the underlying idea

behind the ‘general-to-specific’ approach advocated by Hendry (1995).

Quite naturally, the same underlying principle applies to the search of dynamic speci-

fications in panel data models. Nevertheless, a major difference is that the extension from

a static to a dynamic model is not as straightforward as in the time series context, due to

the well known fact that lagged dependent variables are correlated with the unobserved,
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individual specific error component. This has launched a copious literature on alternative

methods to cincurvent this problem. A popular strategy is to use instrumental variable

methods, like those based on the results of Anderson and Hsiao (1982) and Arellano and

Bond (1991), the latter using a GMM structure to efficiently exploit the valid instruments

available due to the dynamic structure of the model. A practical drawback is the poor per-

fomance of these methods when the time dimension is low, see, for example, Judson and

Owen (1999), which has triggered abundant research to improve upon these basic methods.

Consequently, in light of the high implementation costs that dynamic panels impose,

in practice it is relevant to pose the basic question of whether static models should be

abandoned in favor of dynamic ones. In this paper we adopt a very simple approach, and

propose tests for dynamic and random individual effects after simple pooled OLS estima-

tion, with the ultimate goal of helping applied researchers confirm whether persistences

can simply be handled with a static random effects specification, or whether a dynamic

structure must be adopted. This paper can be seen as a generalization of Bera et al. (2001)

to the more general case where dynamics are handled through lagged dependent variables

instead of first order serial correlation, the latter arising as a particular ‘common factor’,

non-linear restriction in the dynamic specification.

Some results are the following. As in the case of Bera et al. (2001), random effects

confound a simple test for dynamic effects, and the same occurs when the roles of the effects

are reversed. In particular, this implies that the classic test for random effects by Breusch-

Pagan is affected by dynamic missspecifications in the model, in the sense that the latter

make the BP test reject its null in spite of being false. We use the analytical framework

by Bera and Yoon (1993) to derive tests that are insensitive to local misspecification, and

hence help identifying which source of persistence is active. An extensive Monte Carlo

experiment shows that the proposed tests based on simple pooled OLS etimation, have a

good performance in small samples, and outperform standard GMM based tests in terms

of power.

The paper is organized as follows. Section 2 describes the general analytical framework

used to derive the tests. Section 3 obtains several test statistics for dynamic and individual

random effects. Section 4 presents the results of a Monte Carlo study to evaluate the small

sample performance of the proposed methods, and Section 5 presents concluding remarks.

3



2 MLE testing under local misspecification

In this section, we present the theoretical framework to derive test statistics. It is based

on Bera and Yoon (1993), and we refer to this paper for further details.

We consider a general econometric model represented by the log-likelihood function

L(w;π, ψ, φ), where w represents an M -dimensional vector of random variables (the data)

whose distribution function is known, π denotes the vector that includes the subset of

parameters to be estimated by maximum likelihood, ψ represents the vector of parameters

to be included in the null hypothesis, and φ is the vector of nuisance parameters. Their

respective orders are [m × 1], [r × 1], [s × 1]; and we also assume that (π, ψ, φ) ∈ Θ, a

compact subset of <(m+r+s). In the rest of this section, we impose on L(w;π, ψ, φ) the

standard regularity conditions specified in Bera and Yoon (1993) and the references cited

therein.

In the classic framework, we are interested in verifying a hypothesis such as H0 : ψ = ψ∗

and we assume the absence of nuisance parameters. This means that we are supposing a

fixed value for φ such that φ = φ∗ is true. In this context, if we define θ = (π, ψ, φ) as the

vector including all the parameters of the model, dψ(θ) = ∂L(w; θ)/∂ψ as the [r×1] vector

of first derivatives of L(w; θ) with respect to ψ, and J(θ0) = −Eθ0 [M−1∂2L(w; θ)/∂θ∂θ′]

as the Fisher information matrix evaluated at θ0 and divided by M , the LM statistic can

be written as

LMψ =
1
M

dψ(θ̃)′J−1
ψ,π(θ̃)dψ(θ̃), (1)

where θ̃ = (π̃, ψ∗, φ∗) denotes the vector of parameters estimated by maximum likelihood

under the restrictions of the null model, and assuming the absence of nuisance parameters

(i.e. φ = φ∗), Jψ,π(θ) = Jψ(θ)− Jψπ(θ)J−1
π (θ)Jπψ(θ), Jψ(θ) = −E[M−1∂2L(w; θ)/∂ψ∂ψ′],

Jψπ(θ) = −E[M−1∂2L(w; θ)/∂ψ∂π′], and Jπψ(θ) = −E[M−1∂2L(w; θ)/∂π∂ψ′]. Under the

null hypothesis and in the absence of nuisance parameters, a well known result is that

LMψ converges in distribution to a central chi-square with r degrees of freedom. On the

other hand, if a nuisance parameter contaminates the model, such as φ = φ∗ + δ/
√
M

(with δ 6= 0), the statistic (1) does not converge to a central chi-square variable but to

a non-central one, hence leading to spurious rejections due to the misspecified nuisance
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parameter and not to the falseness of the null hypothesis (Saikkonen, 1989).

Bera and Yoon (1993) proposed a simple statistic that is robust to the local misspeci-

fication of nuisance parameters. Specifically, the modified statistic has the form

LM∗
ψ =

1
M

[dψ(θ̃)− Jψφ,π(θ̃)J−1
φ,π(θ̃)dφ(θ̃)]

′[Jψ,π(θ̃)− Jψφ,π(θ̃)J−1
φ,π(θ̃)Jφψ,π(θ̃)]

−1

[dψ(θ̃)− Jψφ,π(θ̃)J−1
φ,π(θ̃)dφ(θ̃)], (2)

where Jψφ,π(θ) = Jψφ(θ) − Jψπ(θ)J−1
π (θ)Jπφ(θ). As shown by Bera and Yoon (1993),

under the null hypothesis and when the nuisance parameter is locally misspecified (φ =

φ∗ + δ/
√
M , δ 6= 0), when the sample size grows large, the test statistic (2) converges in

distribution to a central chi-square with r degrees of freedom, implying that the modified

statistic is insensitive to the misspecification of the nuisance parameter.

It is important to remark that both, the original and the modified LM tests, can be

computed based on the null model, hence the modified version is not computationally more

involved than than the simple one.

3 Tests for dynamic panels

We will consider a linear dynamic panel data model that includes the lagged endogenous

variable as a regressor, and the random individual effect as a component of the error term.

The model can be characterized by the following equations:

yit = γyi,t−1 + xitβ + uit, i = 1, 2, ..., N, t = 1, 2, ..., T,

uit = µi + εit. (3)

In this case, yit is the endogenous variable, yi,t−1 is the (one period) lagged endoge-

nous variable, µi is the random effect component, εit is the independent and identically

distributed observation specific error term, and xit is the [1 × k] vector of independent

variables. β is a [k × 1] vector of coefficients and γ is a scalar parameter less than one in

absolute value.

In order to construct tests for this model, we will make the following assumptions. The

model (3) generates the variables yit, where yi0 is known and exogenous for all i. The
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variables xit are stochastic, independent of the variables for other individuals, and they

are also independent of µi and εit. The matrix
∑
i,t x

′
itxit is invertible with probability

approaching one. Finally, to construct the log-likelihood function, it is assumed that

µi
iid∼ N(0, σ2

µ) and εit
iid∼ N(0, σ2

ε). In this context, the null of no random effects corresponds

to σ2
µ = 0 and the null of no dynamic effects to γ = 0.

Defining eT = (1, 1, ..., 1)′ as the T -dimension column vector of ones, IN as the N -

dimension identity matrix, ω = σ2
µ/σ

2
ε , HNT = (IN⊗eT e′T ), Y = (y11, y12, .., yit, .., yN(T−1),

yNT )′, the log-likelihood function for this problem has been derived by Bhargava and Sargan

(1983, pp. 1641), and is given by:

L(Y ; θ) = −NT
2

ln(σ2
ε)−

N

2
ln(1 + Tω)− u′u

2σ2
ε

+
(

ω

1 + Tω

) (
u′(HNT )u

2σ2
ε

)
, (4)

where θ = (β′, σ2
ε , γ, ω)′ and u = (u11, u12, .., uit, .., uN(T−1), uNT )′.

We set θ0 = (β, σ2
ε , 0, 0), and using the notation of section 2, we define dγ(θ0) =

∂L(Y ; θ)/∂γ and dω(θ0) = ∂L(Y ; θ)/∂ω as the first partial derivatives of L(Y ; θ) with

respect to γ (and ω) evaluated at θ0. It is easy to express them as

dγ(θ0) =
Y ′
−1u

σ2
ε

,

dω(θ0) = −(NT )
2

+
u′(HNT )u

2σ2
ε

. (5)

In addition, using the subindex −1 to represent the application of the one period

lag operator over t, and denoting X = (x′11;x
′
12; ..;x

′
it; ..;x

′
N(T−1);x

′
NT )′, and J(θ0) =

−(NT )−1Eθ0 [∂2L(Y ; θ)/∂θ∂θ′] as the expectation of second partial derivatives of L(Y ; θ)

with respect to θ evaluated at θ0, it is straightforward to show that

J(θ0) =


X′X

(NT )σ2
ε

0[k×1]
(X′X−1)β
(NT )σ2

ε
0[k×1]

0[1×k]
1

2(σ2
ε)2

0[1×1]
1

2σ2
ε[

(X′X−1)β
(NT )σ2

ε

]′
0[1×1]

(X−1β)′(X−1β)
(NT )σ2

ε
+ 1 T−1

T

0[1×k]
1

2σ2
ε

T−1
T

T
2

. (6)
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For later interpretation of the tests, it is useful to observe that to construct (6), we

have used that Eθ0 [Y−1] = X−1β and Eθ0 [Y
′
−1Y−1] = (X−1β)′(X−1β) + (NT )σ2

ε .

Finally, if we employ the definitions of Jψ,π(θ), Jφ,π(θ) and Jψφ,π(θ) detailed in section

2, and if we replace ψ, φ and π by γ, ω and (β, σ2
ε), then, for this particular case we can

obtain the following terms Jγ,(β,σ2
ε)(θ0), Jω,(β,σ2

ε)(θ0), J(γ,ω),(β,σ2
ε)(θ0) and Jγω,(β,σ2

ε)(θ0):

Jγ,(β,σ2
ε)(θ0) =

(X−1β)′Q(X−1β)
(NT )σ2

ε

+ 1,

Jω,(β,σ2
ε)(θ0) =

T − 1
2

,

J(γ,ω),(β,σ2
ε)(θ0) =

 (X−1β)′Q(X−1β)
(NT )σ2

ε
+ 1 T−1

T
T−1
T

T−1
2

,
Jγω,(β,σ2

ε)(θ0) =
T − 1
T

, (7)

where Q = (INT − X(X ′X)−1X ′) is the orthogonal projection matrix that projects any

vector onto the orthogonal complement of the linear space spanned by the columns of X.

Based on these definitions, in the rest of this section we use the LMψ and LM∗
ψ statistics

(detailed in section 2) to construct simple tests for model (3). The parameters to be

estimated by restricted maximum likelihood will be β and σ2
ε and the restrictions will be γ =

0 and ω = 0. Then, if we use θ̃ = (β̃, σ̃2
ε , 0, 0) to denote the restricted maximum likelihood

estimator (i.e. the argument that maximizes L(Y ; θ) subject to γ = 0 and ω = 0), it is clear

that β̃ is the pooled OLS estimator of regressing of yit on xit, while σ̃2
ε = (NT )−1 ∑

i,t ũ
2
it

with ũit = yit − xitβ̃. Or equivalently, if we define ũ = (ũ11, ũ12, .., ũit, .., ũN(T−1), ũNT )′,

ũ = QY and σ̃2
ε = (NT )−1ũ′ũ.

With these results, we can apply (1) and (2) to derive a test to detect dynamic effects

(random effects) in the presence of local random effects (dynamic effects). Naturally, it is

also possible to construct tests to identify the presence of dynamic effects in the absence

of random effects, and, jointly the presence of both dynamic and random effects.

Since in the rest of the section the parameters to be estimated by maximum likelihood

will be β and σ2
ε , we can fix π = (β, σ2

ε). Furthermore, we will always have that ψ∗ = φ∗ = 0,

thus the computation of the tests will be very simple. Specifically, to compute all the
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statistics, it will be sufficient to estimate the restricted model by pooled OLS, so it will

not be necessary to rely on more complex GMM based methods.

Test for dynamic effects robust to the presence of random effects

Employing the notation of section 2 to this particular case, we have that the nuisance

parameter is ω, and we can set π = (β, σ2
ε)
′, ψ = γ, ψ∗ = 0, φ = ω, and φ∗ = 0. Since we

are assuming the existence of a nuisance parameter, we have that φ = φ∗ + δ/ 2
√
NT (with

δ 6= 0), or equivalently, ω = δ/ 2
√
NT .

Using the log-likelihood function and the results described before, we can obtain a

particular version of the statistic (2):

LM∗
γ = (NT )

[B + (A/T )]2

C − 2(T−1)
T 2

, (8)

where A = (1 − ũ′(HNT )ũ
ũ′ũ ), B =

Y ′
−1ũ

ũ′ũ , and C = [ (X−1β̃)′Q(X−1β̃)
(ũ′ũ) + 1]. By the arguments

described at the end of section 2, the asymptotic distribution of LM∗
γ , under the null

of absence of dynamic effects and under the presence of local random effects, is central

chi-square with one degree of freedom.

Test for random effects robust to the presence of dynamic effects

The nuisance parameter in this case is γ, so using the notation of section 2, we have

that π = (β, σ2
ε)
′, ψ = ω, ψ∗ = 0, φ = γ, and φ∗ = 0. Since we are assuming the existence

of a nuisance parameter, we have that φ = φ∗ + δ/ 2
√
NT (with δ 6= 0), or equivalently,

γ = δ/ 2
√
NT . The test statistic is

LM∗
ω = (NT )

[
A
2 + (T−1)B

TC

]2

T−1
2 − (T−1)2

T 2C

, (9)

and its asymptotic distribution under the null of absence of random effects and under the

local presence of dynamic effects, is central chi-square with one degree of freedom.

Test for dynamic effects in the absence of random effects

In this case, we fix the parameters of the model at π = (β, σ2
ε)
′, ψ = γ, ψ∗ = 0, φ = ω,
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and φ∗ = 0. Since we are assuming the absence of nuisance parameters, we have that

φ = φ∗ (i.e. ω = 0). As result of the arguments discussed above, we have that

LMγ = (NT )
B2

C
, (10)

under the null hypothesis of γ = 0 and if ω = 0, the asymptotic distribution of LMγ is

central chi-square with one degree of freedom.

Test for random effects in the absence of dynamic effects

For this case, the parameters are set as follows: π = (β, σ2
ε)
′, ψ = ω, ψ∗ = 0, φ = γ, and

φ∗ = 0. In this case, there are not nuisance parameters, and naturally the statistic reduces

to the classic Breusch-Pagan test for random effects. Specifically,

LMω = (NT )
A2

2(T − 1)
, (11)

and when γ = 0, the asymptotic distribution of LMω, under the null hypothesis of ω = 0,

is central chi-square with one degree of freedom.

Test for dynamic and random individual effects

Finally, we re-define the parameters of the model as π = (β, σ2
ε)
′, ψ = (γ, ω)′, and

ψ∗ = (0, 0)′. It is important to remark that there are no possible nuisance parameters in

this situation because all the parameters are involved in the null hypothesis or are estimated

by maximum likelihood. Then, we have that the relevant test statistics is

LMγ,ω = (NT )
[B + (A/T )]2

C − 2(T−1)
T 2

+ (NT )
A2

2(T − 1)
, (12)

and its asymptotic distribution under the null γ = ω = 0 is central chi-square with two

degrees of freedom.

4 Monte Carlo Experiment

With the aim of evaluating the small sample behavior of the tests described in the precedent

section, we report the results of a Monte Carlo experiment. We use an experimental design
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similiar to the one used in previous work on the subject, in particular, Bera et al. (2001)

and Baltagi, Chang and Li (1992), we refer to these papers for further details.

The specific purpose of these simulations is to analyze the finite sample properties of

the previous tests for different values of ω (random effect) and γ (dynamic effect). In the

experiments the model has been set as special case of (3), and the variables εit and µi have

been generated following a Gaussian distribution. The data generation process is:

yit = γyit−1 + α+ xitβ + uit, i = 1, 2, ..., N, t = 1, 2, ..., T,

uit = µi + εit, (13)

where µi
iid∼ N(0, 20ω) and εit

iid∼ N(0, 20). The values and distributions for the fixed

parameters are α = 5 and β = 0.5, while the independent variable xit was generated a la

Nerlove (1971), as xit = 0.1t + 0.5xit−1 + wit, where wit is uniformly distributed on the

interval [−0.5, 0.5]. The experiment was performed for different values of ω and γ. The

number of replications was 2000 and the nominal size of these tests was set in 0.05.

In each replication, the unknown coefficients are estimated by pooled OLS and the

proposed statistics are computed. For comparisson, we also compute the GMM based test

statistic LMG
γ of H0 : γ = 0 after estimating the dynamic model using the the Arellano and

Bond (1991) estimator. We use a standard GMM based LM test statistic, see Wooldridge

(2002, pp. 426-427).

Tables 1 and 2 report the results of simulations for different values of γ and ω. We report

results for sample sizes (N,T ) = (50, 10) and (N,T ) = (100, 15). Results for other sample

sizes only reinforce the conclusions, and to save space, are omited and made available upon

request. Specifically, the numbers reported in each column are the proportions of rejections

of the null hypothesis corresponding to each test.

Regarding size, the tests for dynamic effects (LMγ and LM∗
γ are a bit undersized for

N = 50 and T = 10, as compared to tests for random effects (LMω and LM∗
ω, the joint

test is also undersized and, finally, the GMM based test has empirical size larger than

the nominal (0.072). As expected, size performance improves when a larger sample size is

considered, as can be seen in Table 2.

In terms of power, consider first the case of no random effects (ω = 0) when the relative

importance of the lagged dependent variable is increased gradually, as measured by γ. A
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first relevant result is the very poor performance of the GMM based test LMG
γ as compared

to the LM based test for lagged dependent variables in the absence of random effects, LMγ .

In both cases power increases with ω though in the case of LMG
γ not monotonically. What

is relevant is that LMγ has substantially larger power. As advanced in the Introduction,

the poor performance of the GMM based test is severely affected when the sample size is

low, and hence the LM based test is a much more powerful alternative.

Is is also interesting to observe that the robust version LM∗
γ has a very good perfor-

mance. It is relevant to remark that in the absence of random effects, LM∗
γ is by construc-

tion sub-optimal and hence is expected to perfom worse. Nevertheles, the ‘robustification

cost’, that is, the power loss compared to the ‘optimal’ LMγ test, seems to be small.

As in Bera et al. (2001) the standard Breusch-Pagan test for random effects LMω is

affected by the presence of an unconsidered source of persistence, in this case, the lagged

dependent variable. When ω = 0 (no random effects), the empirical rejection frequencies

of LMω should be close to the chosen nominal size (0.05). This is certainly not the case:

when γ increases, rejections increase rapidly, hence leading to spurious rejections of the

null of no random effects due to the relevance of the lagged dependent variable. This

is an important result, since it implies that dynamic misspecifications bias the standard

Breusch-Pagan test towards rejecting the null of no random effects, not due to its falsness

but to the effect of ignored dynamic terms. This result can be seen as a generalization of

that of Bera et al. (2001) who restricted the analysis to the case of the harmful effects of

the ignored first-order serial correlation, the latter being a particular case of a more general

dynamic misspecification.

The robust version LM∗
ω preserves size well in the presence of small values of γ, in

both sample sizes considered. Its rejection frequencies are substantially below those of its

non-robust counterpart. For example, when γ = 0.2, LMω rejects the null 54% of the cases,

compared to only 16.1% for the robust version.

Similar remarks hold for the symmetric case of random effects with no lagged dependent

variables. LMγ has unwanted power when the strength of the random effect is increased,

hence leading to spurious rejections of the null of no dynamic effects. Surprisinigly, the

robust version LM∗
γ preserves size quite well, even in non-local context, a result similar

to that obtained by Bera et al. (2001) for their test of serial correlation. By construction
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LMG
γ is robust to the presence of random effects, and hence its size is not affected.

5 Final remarks

In this paper we suggest simple tests to detect persistences in the form of pure dynamic

terms and random individual effects. Both tests are based on pooled OLS estimation of

the joint null model. Since statistics are derived in the Bera and Yoon (1993) framework,

they are insensitive to local misspecifications, and hence they are informative about the

source of misspecification when they reject their nulls.

These statistcs should be helpful in applied work, when researchers are doubtful about

the dynamic structure of a model and hence the effects of adopting a dynamic specifica-

tion, possibly involving GMM estimation and inference strategies, may be costly. Since the

proposed tests are based on simple OLS estimation, they may serve the purpose of chek-

ing whether a simple random effects structure suffice to handle persistences, or, instead,

whether the costs of relying on more complex estimation methods should be accepted in

order to allow for richer dynamic models.

Quite interestingly, our Monte Carlo results show that GMM based tests have very low

power to detect dynamic effects, so the proposed new statistics, which imply a considerable

power gain, are more informative when they tend to accept the null of no dynamic effects.

Finally, this paper stresses the fact that the methodological concerns of Hendry and

Mizon (1978) in their classic article, where serial correlation is seen as a particular form of a

more general dynamic model, apply naturally to the case of panels. From this perspective,

this paper generalizes the results of Bera et al (2001) to a more flexible dynamic framework

where persistent behavior is allowed to arise from a dynamic model instead from a static

one with serial correlation.
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Appendix (not to be published)

A.1 First and second partial derivatives of L(Y ; θ)

The first partial derivatives of the function L(Y ; θ) with respect to θ are:

∂L(θ)
∂β

=
X ′u

σ2
ε

− ω

σ2
ε(1 + Tω)

(X ′HNTu)

∂L(θ)
∂σ2

ε

= −NT
2σ2

ε

+
u′u

2(σ2
ε)2

− ω

2(σ2
ε)2(1 + Tω)

(u′HNTu)

∂L(θ)
∂γ

=
Y ′
−1u

σ2
ε

− ω

σ2
ε(1 + Tω)

(Y ′
−1HNTu)

∂L(θ)
∂ω

= − NT

2(1 + Tω)
+

u′HNTu

2(σ2
ε)(1 + Tω)2

(A.1)

Therefore, if we evaluate these derivatives at θ0, it is easy to obtain the results detailed in (5).
In addition, the second derivatives of the function L(Y ; θ) with respect to θ are:
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= −X
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(u′HNTu) (A.2)

Similarly, if we evaluate (NT )−1E[∂2L(Y ; θ)/∂θ∂θ′] at θ0, it is simple to obtain the results
detailed in (6). Finally, after applying the definitions of section 2 to the matrix J(θ0), it is straight-
forward to obtain the results of (7).
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Table 1: Empirical rejection probabilities of different tests. N=50, T=10.

ω γ LMγ LM∗
γ LMω LM∗

ω LMγ,ω LMG
γ

0,00 0,00 0,039 0,031 0,055 0,044 0,034 0,072
0,05 0,117 0,105 0,078 0,057 0,103 0,013
0,10 0,448 0,349 0,176 0,082 0,360 0,009
0,15 0,814 0,665 0,333 0,117 0,722 0,036
0,20 0,968 0,897 0,540 0,161 0,940 0,107
0,25 0,997 0,977 0,727 0,241 0,994 0,260
0,30 1,000 0,998 0,852 0,351 1,000 0,410
0,35 1,000 1,000 0,943 0,465 1,000 0,564

0,05 0,00 0,033 0,033 0,052 0,049 0,037 0,062
0,05 0,132 0,102 0,105 0,074 0,120 0,012
0,10 0,457 0,347 0,203 0,088 0,383 0,009
0,15 0,824 0,655 0,376 0,131 0,744 0,037
0,20 0,962 0,890 0,567 0,178 0,941 0,103
0,25 0,998 0,974 0,730 0,246 0,993 0,224
0,30 1,000 0,994 0,874 0,361 1,000 0,389
0,35 1,000 1,000 0,961 0,508 1,000 0,574

0,10 0,00 0,035 0,036 0,067 0,063 0,047 0,072
0,05 0,179 0,100 0,173 0,100 0,174 0,016
0,10 0,525 0,335 0,295 0,128 0,458 0,012
0,15 0,838 0,633 0,465 0,185 0,784 0,028
0,20 0,978 0,872 0,669 0,260 0,960 0,101
0,25 0,997 0,975 0,823 0,332 0,996 0,229
0,30 1,000 0,995 0,918 0,486 1,000 0,377
0,35 1,000 1,000 0,968 0,591 1,000 0,535

0,15 0,00 0,063 0,031 0,155 0,146 0,132 0,068
0,05 0,247 0,114 0,265 0,185 0,286 0,018
0,10 0,615 0,320 0,441 0,234 0,582 0,008
0,15 0,893 0,629 0,631 0,317 0,862 0,033
0,20 0,983 0,864 0,788 0,410 0,972 0,086
0,25 1,000 0,975 0,901 0,520 0,999 0,217
0,30 1,000 0,996 0,959 0,618 1,000 0,381
0,35 1,000 1,000 0,989 0,750 1,000 0,506

0,20 0,00 0,089 0,032 0,277 0,285 0,251 0,073
0,05 0,369 0,095 0,476 0,364 0,492 0,020
0,10 0,742 0,311 0,667 0,450 0,760 0,011
0,15 0,941 0,621 0,809 0,525 0,933 0,033
0,20 0,995 0,883 0,918 0,614 0,992 0,116
0,25 1,000 0,967 0,966 0,731 1,000 0,203
0,30 1,000 0,998 0,989 0,793 1,000 0,340
0,35 1,000 1,000 0,998 0,903 1,000 0,460

0,25 0,00 0,190 0,026 0,514 0,522 0,507 0,078
0,05 0,511 0,075 0,694 0,621 0,711 0,014
0,10 0,854 0,298 0,828 0,664 0,888 0,010
0,15 0,979 0,609 0,925 0,744 0,983 0,028
0,20 0,998 0,871 0,972 0,816 0,999 0,090
0,25 1,000 0,963 0,988 0,873 1,000 0,184
0,30 1,000 0,993 0,998 0,928 1,000 0,324
0,35 1,000 1,000 0,999 0,964 1,000 0,451

0,30 0,00 0,301 0,027 0,737 0,749 0,738 0,070
0,05 0,691 0,080 0,876 0,822 0,892 0,016
0,10 0,925 0,280 0,942 0,863 0,970 0,010
0,15 0,992 0,583 0,978 0,898 0,999 0,024
0,20 1,000 0,842 0,994 0,941 1,000 0,082
0,25 1,000 0,959 1,000 0,959 1,000 0,170
0,30 1,000 0,990 0,999 0,976 1,000 0,282
0,35 1,000 1,000 1,000 0,992 1,000 0,405
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Table 2: Empirical rejection probabilities of different tests. N=100, T=15.

ω γ LMγ LM∗
γ LMω LM∗

ω LMγ,ω LMG
γ

0,00 0,00 0,035 0,036 0,047 0,047 0,041 0,067
0,05 0,419 0,352 0,122 0,065 0,333 0,025
0,10 0,942 0,906 0,310 0,096 0,909 0,262
0,15 1,000 0,999 0,571 0,145 0,998 0,771
0,20 1,000 1,000 0,832 0,217 1,000 0,971
0,25 1,000 1,000 0,936 0,328 1,000 1,000
0,30 1,000 1,000 0,988 0,502 1,000 1,000
0,35 1,000 1,000 0,997 0,635 1,000 1,000

0,05 0,00 0,051 0,044 0,051 0,057 0,057 0,073
0,05 0,464 0,363 0,160 0,091 0,366 0,023
0,10 0,957 0,890 0,412 0,130 0,922 0,257
0,15 1,000 0,998 0,678 0,216 0,999 0,727
0,20 1,000 1,000 0,886 0,289 1,000 0,966
0,25 1,000 1,000 0,958 0,399 1,000 0,999
0,30 1,000 1,000 0,995 0,532 1,000 1,000
0,35 1,000 1,000 1,000 0,736 1,000 1,000

0,10 0,00 0,057 0,034 0,156 0,166 0,134 0,061
0,05 0,538 0,352 0,360 0,199 0,538 0,026
0,10 0,975 0,882 0,614 0,284 0,948 0,242
0,15 1,000 0,999 0,851 0,375 1,000 0,712
0,20 1,000 1,000 0,958 0,503 1,000 0,956
0,25 1,000 1,000 0,993 0,633 1,000 0,997
0,30 1,000 1,000 0,999 0,781 1,000 1,000
0,35 1,000 1,000 1,000 0,880 1,000 1,000

0,15 0,00 0,108 0,043 0,433 0,448 0,390 0,082
0,05 0,695 0,324 0,719 0,549 0,798 0,028
0,10 0,991 0,891 0,882 0,640 0,987 0,210
0,15 1,000 0,998 0,968 0,727 1,000 0,695
0,20 1,000 1,000 0,997 0,819 1,000 0,951
0,25 1,000 1,000 1,000 0,893 1,000 0,995
0,30 1,000 1,000 1,000 0,952 1,000 1,000
0,35 1,000 1,000 1,000 0,979 1,000 1,000

0,20 0,00 0,239 0,035 0,832 0,844 0,818 0,071
0,05 0,861 0,293 0,935 0,875 0,956 0,020
0,10 0,999 0,867 0,984 0,915 1,000 0,208
0,15 1,000 0,994 1,000 0,950 1,000 0,672
0,20 1,000 1,000 0,999 0,968 1,000 0,956
0,25 1,000 1,000 1,000 0,984 1,000 0,991
0,30 1,000 1,000 1,000 0,996 1,000 1,000
0,35 1,000 1,000 1,000 0,999 1,000 1,000

0,25 0,00 0,503 0,026 0,980 0,986 0,978 0,078
0,05 0,962 0,291 0,993 0,988 0,997 0,016
0,10 0,999 0,843 0,999 0,996 1,000 0,208
0,15 1,000 0,996 1,000 0,994 1,000 0,664
0,20 1,000 1,000 1,000 1,000 1,000 0,942
0,25 1,000 1,000 1,000 1,000 1,000 0,995
0,30 1,000 1,000 1,000 1,000 1,000 0,999
0,35 1,000 1,000 1,000 1,000 1,000 1,000

0,30 0,00 0,762 0,032 0,999 0,999 1,000 0,083
0,05 0,993 0,242 1,000 1,000 1,000 0,021
0,10 1,000 0,844 1,000 1,000 1,000 0,191
0,15 1,000 0,999 1,000 1,000 1,000 0,636
0,20 1,000 1,000 1,000 1,000 1,000 0,918
0,25 1,000 1,000 1,000 1,000 1,000 0,991
0,30 1,000 1,000 1,000 1,000 1,000 0,998
0,35 1,000 1,000 1,000 1,000 1,000 1,000
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