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Abstract

This paper proposes new simple testing procedures for the joint null hypothesis of
absence of persistent effects in the form of random effects and first order serial cor-
relation in the error component model. The fact that the presence of random effects
is clearly of a one-sided nature, together with the fact that in many empirical ap-
plications researchers worry about positive serial correlation leaves room for a power
gain that arises from restricting the parameter space under the alternative hypothesis,
compared to existing procedures that allow for two-sided alternatives. A Monte Carlo
experiment shows that the proposed statistics have good size and power performance
in very small samples like those typically used in applied work in panel data. An
empirical example illustrates the usefulness of the proposed statistics.

JEL Classification: C12, C23, C52
Keywords: error component model, testing, random effects, serial correlation, one-
sided alternatives.

∗Department of Economics, Universidad de San Andres, Vito Dumas 284, Victoria, Argentina.
Phone-fax: 54-1-47257000. Email: wsosa@udesa.edu.ar. I thank Sebastian Galiani for useful com-
ments to a previous version. The usual disclaimer applies.



1 Introduction

Among the many uses of the basic linear error components model, a particularly

relevant one is to provide a flexible structure to explore persistent behavior. For ex-

ample, the seminal paper by Lillard and Willis (1979) uses a simple error component

model with individual random effects and first order serial correlation, to investigate

how much of the persistence of poverty is related to time invariant individual factors

that make certain persons more prone to be poor (random effects), or to bad shocks

experienced by individuals whose effect persist over time (serial correlation).

In the case that all persistences can be captured by observed variables, the

null hypothesis of ‘no persistence in the unobservables’ corresponds to the absence

of random effects and serial correlation. Baltagi and Li (1991) proposed a simple

procedure to test this hypothesis, based on the Rao score / Lagrange multiplier (LM)

principle. Their statistic is designed to detect departures from the null hypothesis

in any direction, in the sense that under the alternative hypothesis the parameters

controlling each effect (serial correlation and random effects) are different from zero.

The presence of random effects is clearly a one-sided matter since under the null

hypothesis the variance of the individual effect is zero, and under the alternative it

is a positive number. If, as in the case of the persistence literature, the interest is on

positive first order serial correlation, it is then relevant to ask whether the Baltagi

and Li procedure can be improved upon by deriving a test that explicitly considers

this one-sided nature of the alternative hypothesis.

A first goal of this paper is to derive one-sided versions of a test for the joint

null of absence of random effects and positive first order serial correlation. The

multiparameter character of the problem introduces a complication since, unlike the

single-parameter case, there is not an obvious optimality principle from which to

obtain such a test. We rely on results by King and Wu (1997) and Bera and Bilias

(2001) to derive asymptotically optimal one-sided tests.

The classic article by Breusch and Pagan (1980) proposes a simple LM based

test for the null of no individual random effects allowing for a two-sided alternative;

Honda (1985) derived the corresponding one-sided version. These tests implicitly

assume no serial correlation in the remaining error component. Bera, Sosa Escud-

ero and Yoon (2001, BSY hereafter) showed that the presence of first order serial

correlation makes these test reject the null of no random effects independently of
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whether it is true or not, and derived a test statistic that is insensitive to the pres-

ence of local serial correlation. A similar concern affects the test for first order serial

correlation derived by Baltagi and Li (1991), which implicitly assumes no random

effects, in the sense that its presence induces spurious rejections of the null of no

serial correlation. A robustified version of this test is also provided by BSY (2001).

When the interest is in exploring which source of persistence is active, the testing

framework by BSY (2001) is instructive, but the fact that the Breusch-Pagan/Honda

and the Baltagi-Li statistics reject their nulls in the presence of random effect or

serial correlation suggest that even though they were not explicitly designed for this

purpose, they may serve the goal of being informative about departures away of the

joint null of no persistence. Hence, it is relevant to consider this family of statistics

as valid competitors of the joint tests proposed.

Consequently, a second goal of this paper is to compare the new and existing

procedures through a detailed Monte Carlo experiment. The results suggest that

the use of one-sided tests result in non-trivial power gains in small samples similar to

those commonly used in applied work. Finally, as it is the case of all the previously

available procedures discussed above, the new test statistics are computationally

very simple, requiring OLS residuals only.

The paper is organized as follows. The next section discusses available proce-

dures to test for persistent effects in the form of tests of random effects and serial

correlation. Section 3 presents the theoretical framework used to derive optimal

tests for the one-sided multiparameter hypothesis of no random effects nor serial

correlation and derives the proposed test statistics. Section 4 illustrates their use-

fulness with a simple empirical example. The small sample behavior of the proposed

procedures is explored in Section 5 through an extensive Monte Carlo experiment.

Section 6 concludes.

2 Persistent effects in the error component model

Consider the following one-way error component model which combines random

individual effects and first order serial correlation in the disturbance term

yit = x′itβ + uit, i = 1, 2, . . . , N, t = 1, 2, . . . , T,

uit = µi + νit,

νit = ρνi,t−1 + εit, |ρ| < 1,
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where β is a (k × 1) vector of parameters including an intercept, µi ∼ IIDN(0, σ2
µ)

is a random individual component, and εit ∼ IIDN(0, σ2
ε ). µi and νit are assumed

to be independent of each other with νi,0 ∼ N(0, σ2
ε /(1− ρ2)). N and T denote the

number of individual units and the number of time periods, respectively.

This model possesses three potential sources of persistent behavior. The first

one is the persistence in the explanatory variables, the second one is the presence

of µi, a time-invariant unobserved individual factor that introduces a source of

‘permanent’ persistent, and the third one is associated to ρ > 0, which induces

a ‘transitory’ persistence due to the stationary character of νit. In their seminal

article, Lillard and Willis (1978) used this structure to study the sources of income

persistence. Freije and Portela Souza (2002) or Sosa Escudero et al. (2006) are

recent applications of models of this sort.

In this context it is relevant to check whether all persistences can be appropri-

ately captured by observable variables, which corresponds to the null hypothesis

of no random effect and serial correlation. A test for this null may serve several

purposes. First, under the joint null and if the model is correctly specified, the

unknown parameters and their variances can be safely estimated by simple OLS

based methods. Second, and in a more general context, the presence of either ran-

dom effects or serial correlation bias standard OLS based estimates of variances,

invalidating inferential methods based on them. In a recent paper Bertrand, Duflo,

and Mullainathan (2004) clearly document that panel based difference-in-difference

estimates of treatment effects are severely affected by the presence of positive se-

rial correlation, spuriously favoring rejecting the ‘no treatment effect’ null, hence

highlighting the empirical importance of checking for correlated residuals. Third,

under random effects or serial correlation, OLS estimates are still unbiased so a

possible strategy is to consider alternative consistent estimators for the variances.

There is not a trivial strategy to ‘robustify’ variance estimates under serial corre-

lation and/or random effects, to the point, Bertrand et al. (2004) explore several

alternatives, favoring block bootstrap methods when the number of individual units

is large. Consequently, powerful tests for the joint null are needed to justify the

costs of moving away from standard procedures.

Finally, rejections of the joint null may point towards considering more efficient

estimation methods that explicitly contemplate random effects and/or serial corre-

lation. The latter seems to be of a more demanding nature since the presence of
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serially correlated errors may require more sophisticated dynamic structures, in the

sense of the classic paper by Hendry and Mizon (1979) for the standard time series

regression context, where serially correlated errors are suggested to arise as a con-

sequence of dynamic misspecifications, which only under very specific conditions,

like the presence of common factors, can be fully captured by simple autoregressive

structures instead of general dynamic specifications. Estimation and inference in

dynamic models for panel data are a complicated matter of active current research

and, again, powerful tests that suggest abandoning the null of no persistence may

help evaluating this decision.

There are several procedures available to explore persistence in unobservables in

the form of random individual effects and serial correlation. Breusch and Pagan’s

(1980) classic article derives a Lagrange multiplier test for the null H0 : σ2
µ = 0 (no

random effects) against HA : σ2
µ 6= 0. Honda (1985) notes the one-sided nature of

the relevant alternative, and proposes a simple test for HA : σ2 > 0, which results

in a gain in power by focusing on this more appropriate alternative hypothesis.

These tests are derived in the context of no serial correlation (ρ = 0). BSY (2001)

found that the presence of positive serial correlation induces spurious rejections of

the null of no random effects in the previous testing procedures. The underlying

intuition is that the Breusch-Pagan/Honda statistics check for correlations in the

residuals of estimating the linear panel model by OLS methods. In the absence of

serial correlation in the idiosyncratic term (νit) the only source of residual correlation

is relegated to the presence of µi, and the test derives its power by checking this

correlation. Obviously, the presence of positive serial correlation introduces an extra

source of persistence that confounds the Breusch-Pagan/Honda tests.

Nevertheless, and for the purposes of this paper, it is relevant to stress the fact

that the previous concern applies when the interest is in distinguishing which one,

if any, of the sources of persistence is present. But when the interest is in checking

the null of no persistence, the Breusch-Pagan/Honda statistics may serve the goal

of being informative about the validity of the joint null since they have power in

all directions away from the joint null (random effects, serial correlation or both),

even though, very likely, in a sub optimal way since they were explicitly designed

to capture deviations away from the no-random effects null solely.

In the same paper, BSY (2001) proposed modified versions of the Breusch /

Pagan and the Honda statistics, that are insensitive to the presence of local serial
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correlation, hence the tests have power only in the direction of the presence of

random effects. Of course, when serial correlation can be safely assumed to be

inexistent, there is a power cost associated to this robustification, since in such case

the Breusch-Pagan/Honda procedures are optimal. BSY (2001) conducted a Monte

Carlo experiment that shows that the modified tests work well even in non local

contexts, and that the power loss discussed above is relatively small.

Baltagi and Li (1991) proposed a test for the null of no first order serial cor-

relation, assuming no random effects. As expected, the same concern highlighted

by BSY (2001) affects this procedure, in the sense that the presence of the random

effect adds an extra source of persistence that confounds the check for autocorre-

lation. BSY (2001) also proposed a robustified version of the Baltagi and Li test,

with good performances in their Monte Carlo experiment.

All the previous procedures are designed to check the presence of random effects

or serial correlation separately, but when the interest is in the joint null of no

persistence in the unosbervables, it is natural to consider joint tests that may exploit

departures from the null more efficiently. To this purpose, Baltagi and Li (1991)

derive an LM test for the joint null of no random effect and serial correlation (H0 :

σ2
µ = 0, ρ = 0) against the general two-sided alternative H0 : σ2

µ 6= 0, ρ 6= 0. As

advanced in the Introduction, the presence of random effects is clearly of a one-

sided matter, and if the interest lies in the possible presence of persistent effects,

applied researchers may want to focus on the relevant alternative of positive serial

correlation. This appreciation opens the door to consider one-sided versions for the

joint null that result in larger power. This is the task of the next section.

3 One-sided tests for persistence

This section describes the theoretical framework used to derive one-sided optimal

tests for the null hypothesis of no random effects and positive serial correlation in

the error component model. It is based on Bera and Bilias (2001) to which we refer

for further details.

Assume we are interested in a parametric statistical model for a sample of n

observations that can be represented by its log-likelihood function L(θ), where θ is a

p vector of unknown parameters. Let s(θ) and I(θ) be, respectively, the score vector

and the information matrix, defined as s(θ) ≡ ∂L(θ)/∂(θ), and I(θ) ≡ E [s(θ)s(θ)′].

We will be interested in testing Ho : θ = θ0 against the one-sided alternative HA :
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θ > θ0.

The case p = 1 corresponds to the single parameter case, for which there is a

well established theory from where to derive optimal tests. For example, the well

known Rao score / Lagrange multiplier principle suggests that a test based on the

statistic

LM = s(θ0)2/I(θ0)

is locally most powerful, and has asymptotic central chi-squared distribution with

one degree of freedom under the null hypothesis. Alternatively, Rao and Poti (1946)

proposed to use

RP =
s(θ0)√
I(θ0)

which has asymptotic standard normal distribution under the null, and tests based

on it are, naturally, locally most powerful for the one sided alternative. It is inter-

esting to remark that this form of the test can be easily derived directly from the

Neyman-Pearson Lemma for local alternatives. See Gourieroux and Monfort (1995,

pp. 32-33).

The generalization of the score test for p > 1, the multiparameter case, is given

by

LM = s(θ0)′I(θ0)−1s(θ0)

which under the null hypotheses has asymptotic chi-squared distribution with p

degrees of freedom under the null.

Unfortunately the optimality property of the single-parameter case does not

translate directly to the multiparameter case. The problem lies in that optimality

for the single parameter case follows from maximizing power in the only direction

available under the alternative hypothesis, that is, the direction given by θ > θ0.

In the multiparameter case there will be a power surface defined over the possible

values θ can take, and even when one-sided alternatives are considered, there is

no obvious direction that should be used to maximize power. There have been

many attempts at defining an implementable principle that maximizes power over

relevant directions of this power surface. Sen Gupta and Vermeire (1986) and Rao

and Mukerjee (1994) are modern references of a literature that dates back to Neyman

and Pearson’s (1938) work on the issue.
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More recently King and Wu (1997) proposed a testing framework for one-sided

hypothesis in the multiparameter case. Let i be a p-vector of ones. For the case

when θ0 = 0, so HA : θ > 0, they propose the following test statistic

KW =
i′s(θ0)√
i′I(θ0)i

,

which has an asymptotic standard normal distribution under the null. Tests based

on this statistic are shown to be locally mean most powerful against HA : θ > 0.

The King-Wu test is based on a simple unweighted linear combination of the

components of the score vector. Bera and Bilias (2001) suggest to weigh the individ-

ual scores by their respective precision measures. Denote with
√

I(θ0)−1 the square

root matrix of I(θ0)−1, that is,
√

I(θ0)−1 is such that
√

I(θ0)−1′√I(θ0)−1 = I(θ0)−1.

The proposed sum of normalized scores (SNS) test statistic is

SNS =
i′
√

I(θ0)−1s(θ0)√
p

,

which also has asymptotic standard normal distribution under the null.

In practice there will be nuisance parameters that have to be estimated. In

such case θ is expressed as θ = (θ′1, θ′2)′ where θ1 and θ2 are respectively p1 > 1

and p2 > 0 vectors of parameters with p1 + p2 = p, and we will be interested

in testing H0 : θ1 = 0 against HA : θ1 > 0, so θ2 are nuisance parameters for

the testing problem. Let θ̃ be the maximum likelihood estimator of θ under the

restriction imposed by the null hypothesis, that is, for our case, a p vector with its

first p1 components set at 0 and the remaining p2 components set at the maximum

likelihood estimates under the null hypothesis. Let s1(θ) be the first p1 coordinates

of the score vector and G1(θ) the upper p1×p1 block of the inverse of the information

matrix.

The King-Wu and SNS test statistics for this case will be

KW =
i′s1(θ̃)√

i′G1(θ̃)−1i
(1)

and

SNS =
i′

√
G1(θ̃)s1(θ̃)√

p
(2)

For the two-sided alternative hypothesis H1 : θ1 6= 0 the standard LM test is

LM = s1(θ̃)′G1(θ̃)s1(θ̃)
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which under the null has an asymptotic chi-squared distribution with p1 degrees of

freedom.

In order to derive test statistics for the error component model, analytic expres-

sions for the score and the information matrix of this model are given in Baltagi

and Li (1991). The information matrix is block diagonal between β and (σ2
µ, ρ, σ2

ε ),

so we will concentrate the analysis on the latter. In terms of the notation of the

previous section, θ1 = (σ2
µ, ρ)′, θ2 = σ2

ε , p1 = 2, p2 = 1, and p = 3. The score vector

for these parameters, evaluated at the restricted maximum likelihood estimates is

given by

s(θ̃) =



−NT

2σ̂2
ε
A

NTB
0




where

A = 1− ũ′(IN ⊗ eT e′T )ũ
ũ′ũ

and

B =
ũ′ũ−1

ũ′ũ
.

IN is the identity matrix with dimension N , eT is a T -vector of ones, ũ is an NT -

vector of OLS residuals from the standard linear model yit = x′itβ + uit, ũ−1 is

an NT -vector with typical element ũi,t−1, and ‘⊗’ denotes the Kronecker product.

σ̂2
ε = ũ′ũ/NT is the maximum likelihood estimator of σ2

ε .

The information matrix I(θ) evaluated at θ̃ is

I(θ̃) =
NT

2σ̂4
ε




T 2(T−1)σ̂2
ε

T 1
2(T−1)σ̂2

ε
T

(
T−1

T

)
2σ̂4

ε 0
1 0 1


 .

Analytic expressions for the inverse of I(θ̃), its upper 2× 2 block G1(θ̃), its inverse

G1(θ̃)−1, and
√

G1(θ̃) are given in the Appendix.

Replacing these magnitudes in (1) and (2) we obtain the following expression

for the test statistics:

KW =
NT

[
2Bσ̂2 −A

]
√

2N(T − 1)(T + 4σ̂2
ε + 2σ̂4

ε )

and

SNS =
NT

[
B

(√
2(T − 2)− 2

)
−A

]
√

4N(T − 1)(T − 2)
.
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As mentioned before, both statistics have asymptotic standard normal distribution

under the joint null. The expression for the joint Baltagi and Li (1991) LM test

(labeled JBL) for the two-sided alternative is

JBL =
NT 2

2(T − 1)(T − 2)

[
A2 + 4AB + 2TB2

]
,

which has asymptotic Chi-square distribution with 2 degrees of freedom under the

null.

4 Empirical illustration

In order to illustrate the usefulness of the testing procedures discussed in this arti-

cle, we consider a simple example derived from the economic development literature.

Consider a simple linear model of the determinants of income inequality. Empir-

ical models of this sort are usually linked to the study of the so-called Kuznets

Hypothesis that predicts an inverted-U relationship between inequality and devel-

opment: countries start their development processes with low inequality and as they

develop, inequality increases up to a point after which it decreases. There is a co-

pious literature on the subject and a detailed analysis of it is beyond the goals of

this paper. Barro (2001) or Gustaffson and Johansson (2001) are recent examples

of this literature.

We considered the case of 17 urban regions in Argentina over the period 1993-

1999. A more detailed analysis of this empirical model can be found in Gasparini

et al. (2001). As explained variable we use the Gini index for each year and region,

and the vector of explanatory variables includes mean income and its square, size of

industrial sector and of public administration, degree of openness, unemployment

rate, population under 64 years old, percentage of population with complete high

school, and family size. Regional disparities in inequality are in general persistent

over time and a first goal of such a model is to explore whether these persistances

can be fully captured by observed factors. The testing procedure is based on a ‘null’

model where there are no persistances in the unobservables. The test statistics are

aimed at learning whether persistence in inequality is still present in its unobservable

determinants, and whether, if so, if they are due to region specific and time invariant

factors, or to the persistence of idiosyncratic shocks, or to both.

We estimated a simple linear error component model using pooled OLS and

implemented several testing procedures. The values of the test statistics and their
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p-values under their corresponding nulls are shown in Table 1.

[ INSERT TABLE 1 HERE ]

The first three statistics are the BSY (2001) robust one-sided tests for random

effects (MBP) and serial correlation (MSC ), respectively, and the Baltagi-Li joint

test for the null of no persistence (JBL). Each of these tests are specifically designed

to detect departures away from their nulls and hence are expected to be informative

about the presence of persistent effects and its source (random effects, serial corre-

lation of both). The results do not offer conclusive evidence about the falseness of

the joint null, in particular, the joint test does not reject the null at a conservative

10% of significance. Next we present results for the new KW and SNS one-sided

statistics proposed in this paper, and now both tests reject the joint null, with much

lower p-values. Interestingly, the one-sided version of the standard Breusch-Pagan

(BP) test rejects its null, with a lower p-value than its robust counterpart, and

slightly lower than the one-sided SNS test. The one-sided version of the test for

serial correlation (SC ) rejects at 10% but not at 5%. According to the results of

the previous section, this may be due to the presence of random effects more than

serial correlation.

The relevant point of this example is the fact that the joint test suggests accept-

ing the null of no persistence, not because of its veracity but very likely because

of its inability to detect its falseness. By focusing on the one-sided alternative, the

more powerful one-sided test strongly suggest rejecting the null. The example also

highlights the fact that ‘contaminated’ tests may serve the purpose of being informa-

tive about departures of the joint null in spite of not being necessarily informative

about the direction of the misspecification.

5 Monte Carlo results

We performed a Monte Carlo study to explore the small sample behavior of the

proposed test statistics. To facilitate comparison, the adopted experimental design

is the same as in previous work on the subject, in particular BSY (2001) and Baltagi

et al. (1992) where a more detailed description can be found.

We use a special case of the error component model with random effects and

positive first order serial correlation

yit = α + βxit + uit, i = 1, 2, . . . , N, t = 1, 2, . . . , T,
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uit = µi + νit,

νit = ρνi,t−1 + εit, 0 ≤ ρ < 1.

We set α = 5 and β = 0.5, and xit was generated as a slightly trended autoregressive

process as in previously quoted work. The strength of the serial correlation effect

is controlled by the parameter ρ whereas that of the random individual effect is

controlled by the variance of the random effect as a proportion of the total variance,

that is, by τ = σ2
µ/σ2 with σ2 = σ2

µ +σ2
ε . We set σ2 = 20. Replications of the model

were generated for τ and ρ varying over (0,0.4) with increments of 0.05. Sample

sizes (N,T ) considered are (25,10), (25,20), (50,10) and (50,20), which are similar to

those found in empirical applications. The test statistics considered are: the King-

Wu (KW ) and the sum of normalized scores (SNS ) one sided joint tests, the Baltagi-

Li two sided joint test (JBL), the one-sided version of the Baltagi-Li test for serial

correlation (SC ) and the corresponding modified version by BSY (MSC ), the Honda

one-sided test for random effects (BP) and its robustified version by BSY (MBP),

the two-sided serial correlation test of Baltagi and Li (SC2 ) and its BSY robustified

version (MSC2 ), and finally the Breusch/Pagan two sided test for random effects

(BP2 ) and the BSY robustified version (MBP2 ). Analytic expressions of these test

statistics are given in the Appendix.

For each sample size and each parameter setting we generated 1000 replications

of the model, computed all the test statistics, and counted the proportions of rejec-

tions using a nominal size of 0.05 for the corresponding quantiles of the asymptotic

distributions of each test statistic under the null.

Under the null hypothesis H0 : σ2
µ = ρ = 0, the proposed one-sided statistics

have asymptotic standard normal distribution. The statistics generated for these

values of the parameters were used to evaluate the accuracy of the normal approx-

imation for the samples sizes considered in the experiment. Table 2 presents the

estimated empirical sizes of the tests, using a nominal size of 0.05, that is, we used

the 0.95 quantile of the standard normal distribution as the lower limit of the crit-

ical region and counted the proportion of rejections. All estimated values are close

to the nominal. Since we used 1000 replications, the maximum standard errors for

the estimates are
√

0.5(1− 0.5)/1000 ∼= 0.015 so for all cases, a 90% confidence

interval includes the nominal value. We also computed Kolmogorov-Smirnov tests

(not shown) to explore the null of no differences between the empirical distribution

and the standard normal for both tests, and in all cases we do not find significative
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differences, so the normal approximation seems to be accurate even for very small

samples like those considered in the experiment.

[ INSERT TABLE 2 HERE ]

Regarding power, Table 3 presents results for a sample size of N = 25, T = 10, for

selected values of the parameters. Estimated rejection probabilities for higher values

of τ and ρ are all very close to one, so they are not reported. Besides, the optimality

properties of the tests are expected to hold in a small neighborhood of the null

hypothesis, so we concentrate the analysis on small values of the alternative. Also,

results for sample sizes (25,20), (50,10) and (50,20) only reinforce the conclusions of

the (25,10) case, so they are not shown in order to save space, and can be obtained

from the author.

[ INSERT TABLE 3 HERE ]

Table 3 shows the estimated rejection frequencies for different tests. First we

compare the power performance of the proposed one-sided statistics (KW and SNS )

with that of the two-sided LM test of Baltagi and Li (JBL). Results are shown

graphically in Figure 1. Each plot presents differences in power for selected tests,

for several relevant values of the alternative hypothesis. Regarding the compari-

son between the KW and the JBL tests, overall the difference in power is positive,

suggesting a power gain by focusing on the one sided alternative, except along the

τ > 0, ρ = 0 axis (random effects but no serial correlation), where the JBL proce-

dure dominates. Similarly the SNS test induces, overall, positive power differences

when compared to the JBL test, except along the positive serial correlation but no

random effects axis. It is important to remark that along each axis of the alterna-

tive hypothesis, all the joint tests are, obviously, dominated by the single parameter

procedures designed specifically for that purpose. When both serial correlation and

random effects are present, the one-sided joint tests unambiguously dominate the

two-sided joint version, with the SNS test inducing larger power gains in the direc-

tion of random effects and the KW in the direction of serial correlation.

[ INSERT FIGURE 1 HERE ]

As stressed in section 2, single parameter tests have power against random effects

and serial correlation and hence may compete against the joint tests. We concentrate
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the analysis on the Honda one-sided test for random effects (BP), and the one-sided

version of the Baltagi-Li test for serial correlation (SC ). Since these tests are by

construction optimal in the presence of the misspecification they were designed

to test for (solely random effects in the Honda test and serial correlation for the

Baltagi/Li test), the relevant comparison with the joint test is when both sources of

misspecification are present. Figure 2 presents these comparisons graphically. The

KW and SNS tests have larger power than both the SC and the BP tests when both

misspecifications are present. It is interesting to see that the KW overall dominates

the sc test in most directions away from the null, and that the SNS does similarly

with the BP test.

[ INSERT FIGURE 2 HERE ]

To summarize, the montecarlo experiment suggests that the KW test favors the

presence of serial correlation, with almost no power costs compared to the SC test,

specifically designed to detect this type of misspecification. The SNS favors random

effects, and performs no worse than the Honda test, the one with highest power along

this direction. When both sources of persistence are active, the proposed one-sided

tests have the highest power.

6 Concluding remarks

This paper proposes simple tests for the null of no serial correlation and random

effects in the error component model. As stressed in Davidson and MacKinnon

(1993, pp. 428), tests that do not reject the null are more reliable if they are known

to have high power against relevant alternatives. Since the presence of random

effects is essentially a one-sided matter, and given that in the context of persistence

models researchers are usually worried about positive serial correlation, the proposed

statistics exploit this one-sided character of the alternative hypothesis, in contrast

to existing procedures that take the alternative as two-sided.

Monte Carlo results show that, as expected, the use of one-sided tests imply

a power gain with respect to the two-sided Baltagi and Li (1991) test, specially

when the alternative moves in the direction of both serial correlation and random

effects. In all cases the two-sided test is dominated in power by at least one of the

one-sided alternative procedures. Also, the results suggest that ‘single parameter’

tests for random effects and serial correlation, though unable to detect the source
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of misspecification, may serve the purpose of indicating deviations away from the

joint null.

We share with some recent literature, in particular Inoue and Solon (2006), the

concern that checks for serial correlation in panel data are not as popular as their

time series regression counterparts, where such tests are part of the toolkit that

accompanies standard regression output. As dramatically highlighted by Bertrand

et al. (2006), neglected correlations in the error term may affect statistical inference

severely, for which we believe it is relevant to check the validity of standard methods

using powerful tests.
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Table 1: Empirical Example

Statistic P-value

Random Effect One-Sided Robust: MBP 1.492 0.067
Serial Correlation One-Sided Robust: MSC 0.433 0.332
Joint Two-Sided: JBL 4.350 0.113

Joint One-Sided: KW 2.040 0.020
Joint One-Sided: SNS 2.085 0.018

Random Effect One-Sided: BP 2.040 0.020
Serial Correlation One-Sided: SC 1.456 0.072

Table 2: Empirical Sizes (nominal size=0.05)

Tests

(N,T) KW SNS

(25,10) 0.053 0.054
(25,20) 0.051 0.045
(50,10) 0.059 0.057
(50,20) 0.049 0.047
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Table 3: Estimated rejection probabilities of different tests
Sample size: N=25; T=10

τ ρ KW SNS JBL SC MSC BP MBP SC2 MSC2 BP2 MBP2

0.00 0.00 0.052 0.036 0.074 0.056 0.078 0.042 0.038 0.098 0.086 0.032 0.042
0.05 0.00 0.200 0.124 0.134 0.216 0.216 0.096 0.060 0.142 0.152 0.074 0.064
0.10 0.00 0.438 0.298 0.326 0.456 0.438 0.194 0.074 0.346 0.320 0.136 0.092
0.15 0.00 0.706 0.466 0.566 0.708 0.666 0.300 0.094 0.612 0.550 0.218 0.106
0.20 0.00 0.882 0.624 0.778 0.892 0.824 0.390 0.084 0.838 0.762 0.298 0.116
0.25 0.00 0.988 0.834 0.946 0.988 0.978 0.558 0.166 0.982 0.958 0.484 0.170

0.00 0.05 0.200 0.364 0.268 0.184 0.074 0.388 0.354 0.128 0.076 0.294 0.250
0.05 0.05 0.520 0.590 0.444 0.484 0.208 0.528 0.372 0.370 0.152 0.426 0.290
0.10 0.05 0.708 0.682 0.578 0.688 0.398 0.578 0.338 0.572 0.288 0.490 0.298
0.15 0.05 0.882 0.806 0.780 0.870 0.682 0.682 0.372 0.820 0.534 0.610 0.334
0.20 0.05 0.966 0.898 0.914 0.962 0.870 0.766 0.400 0.936 0.796 0.690 0.326
0.25 0.05 0.996 0.962 0.986 0.996 0.962 0.854 0.440 0.994 0.932 0.806 0.374

0.00 0.10 0.574 0.810 0.704 0.496 0.070 0.814 0.768 0.380 0.052 0.752 0.672
0.05 0.10 0.728 0.864 0.778 0.696 0.210 0.854 0.716 0.592 0.150 0.790 0.624
0.10 0.10 0.892 0.916 0.844 0.864 0.416 0.876 0.728 0.786 0.290 0.818 0.648
0.15 0.10 0.968 0.964 0.948 0.962 0.696 0.922 0.714 0.934 0.568 0.878 0.646
0.20 0.10 0.988 0.978 0.972 0.986 0.868 0.932 0.732 0.980 0.786 0.910 0.668
0.25 0.10 0.998 0.988 0.996 0.998 0.958 0.956 0.756 0.996 0.932 0.932 0.688

0.00 0.15 0.770 0.926 0.884 0.676 0.070 0.934 0.900 0.580 0.044 0.906 0.876
0.05 0.15 0.888 0.960 0.916 0.834 0.236 0.952 0.906 0.754 0.136 0.934 0.866
0.10 0.15 0.968 0.984 0.960 0.948 0.462 0.976 0.890 0.918 0.340 0.960 0.856
0.15 0.15 0.992 0.994 0.984 0.988 0.680 0.978 0.874 0.976 0.560 0.960 0.844
0.20 0.15 0.996 0.988 0.994 0.994 0.856 0.980 0.878 0.992 0.772 0.974 0.844
0.25 0.15 1.000 1.000 1.000 1.000 0.962 0.994 0.884 1.000 0.910 0.986 0.862

0.00 0.20 0.918 0.992 0.980 0.850 0.094 0.992 0.986 0.784 0.060 0.984 0.974
0.05 0.20 0.954 0.988 0.980 0.940 0.216 0.986 0.980 0.906 0.108 0.986 0.966
0.10 0.20 0.988 0.994 0.980 0.982 0.460 0.994 0.968 0.966 0.324 0.984 0.944
0.15 0.20 1.000 1.000 0.994 1.000 0.696 0.994 0.964 0.994 0.572 0.992 0.948
0.20 0.20 1.000 0.998 0.998 1.000 0.868 0.992 0.954 1.000 0.784 0.990 0.946
0.25 0.20 1.000 1.000 1.000 1.000 0.958 0.994 0.966 1.000 0.908 0.994 0.956

0.00 0.25 0.966 0.996 0.998 0.934 0.080 0.998 1.000 0.894 0.038 0.998 0.998
0.05 0.25 0.988 0.996 0.992 0.986 0.252 0.998 0.990 0.970 0.148 0.992 0.982
0.10 0.25 0.996 0.998 0.996 0.994 0.486 0.998 0.988 0.994 0.336 0.998 0.984
0.15 0.25 1.000 1.000 0.998 1.000 0.680 0.998 0.982 1.000 0.526 0.996 0.978
0.20 0.25 0.998 0.998 0.998 0.998 0.872 0.996 0.984 0.998 0.786 0.994 0.976
0.25 0.25 1.000 1.000 1.000 1.000 0.942 1.000 0.992 1.000 0.898 1.000 0.986
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Figure 1: Power Comparisson with Joint Two-Sided Test
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Figure 2: Power Comparisson with Single Parameter One-Sided Tests
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Appendix: Algebraic Details and Test Statistics

This appendix gives the analytic expressions used to derive the new test statistics
in the paper.

I(θ̃)−1 =
2σ̂4

ε

N(T − 1)(T − 2)




1 −1/σ2
ε −1

−1/σ2
ε T/2σ4

ε −1/σ2
ε

−1 −1/σ2
ε

T 2−2T+2
T




G1(θ̃) =
2σ̂4

ε

N(T − 1)(T − 2)

[
1 −1/σ2

ε

−1/σ2
ε T

]

G1(θ̃)−1 =
N(T − 1)(T − 2)

2σ̂4
ε

[
T 2σ2

ε

σ2
ε σ4

ε

]

For the square root matrix we used the Cholesky factor P of G1(θ̃):

P =
√

2σ̂2
ε√

N(T − 1)(T − 2)

[
1 1/σ2

ε

0
√

T − 2/
(√

2σ2
ε

)
]

Regarding analytic expressions for the test statistics used in this paper, besided
the ones decribed in Section 3, we used the following. The two-sided LM statistic
test for random effects of Breusch and Pagan (1980) is

BP2 =
NTA2

2(T − 1)
,

and its adjusted version in BSY (2001) is

MBP2 =
NT (A + 2B)2

2(T − 1)(1− 2
T )

,

where A and B are defined as in Section 3. The one-sided version of the Breusch-
Pagan statistic was derived by Honda(1985) and is given by:

BP = −
√

NT

2(T − 1)
A

and the corresponding one-sided version is derived by BSY(2001):

MBP = −
√

NT

2(T − 1)(1− 2
T )

(A− 2B).

The two-sided LM statistic to test the null of no serial correlation assuming no
random effects is given in Baltagi and Li (1991):

SC2 =
NT 2B2

T − 1
,
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and its adjusted version by BSY (2000), valid under random effects, is

MSC2 =
NT 2(B + A

T )2

(T − 1)(1− 2
T )

.

The one-sided versions are derived following BSY (2001), by taking the signed
squared roots of the two-sided statistics, and are given by

SC =
√

NTB√
T − 1

,

and

MSC =

√
NT 2

(T − 1)(1− 2/T )

(
B +

A

T

)
.
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