Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10908/635
Título : Principal components for multivariate functional data
Autor : Barrendero, J.R
Justel, Ana
Svarc, Marcela
Fecha de publicación : 2011
Editor: Universidad de San Andrés. Departamento de Matemáticas y Ciencias
Resumen : A principal component method for multivariate functional data is proposed. Data can be arranged in a matrix whose elements are functions so that for each individual a vector of p functions is observed. This set of p curves is reduced to a small number of transformed functions, retaining as much information as possible. The criterion to measure the information loss is the integrated variance. Under mild regular conditions, it is proved that if the original functions are smooth this property is inherited by the principal components. A numerical procedure to obtain the smooth principal components is proposed and the goodness of the dimension reduction is assessed by two new measures of the proportion of explained variability. The method performs as expected in various controlled simulated data sets and provides interesting conclusions when it is applied to real data sets.
Descripción : Fil: Barrendero, J.R. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina.
Fil: Justel, Ana. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina.
Fil: Svarc, Marcela. Universidad de San Andrés. Departamento de Matemática y Ciencias; Argentina.
URI : http://hdl.handle.net/10908/635
Aparece en las colecciones: Publicaciones profesores y profesoras del Departamento de Matemáticas y Ciencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
[P][W]Barrendero-Justel-Svarc.pdf957.87 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.