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Abstract

This study uses individual bank’s balance sheet data from Argentina, Brazil, Mex-

ico, South Africa, and Taiwan, to obtain cross-correlations over the time-series leverage

ratio. A correlation-based filtering procedure is then implemented to obtain leverage-

based networks. Results conclude that topological properties from graph theory de-

scribe a surprising similar pattern inside the network between countries. These lever-

age networks are complex and are characterized by heavy-tailed vertex degree dis-

tribution, which reveals the emergence of hubs and suggests the potential scale-free

nature of the system. Finally, surrogated Monte Carlo simulations confirm that the

complex networks, obtained through the filtering procedure, cannot be explained by

chance alone.
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Creía en infinitas series de tiempos, en una red creciente y vertiginosa de tiempos divergentes,

convergentes y paralelos. Esa trama de tiempos que se aproximan, se bifurcan,

se cortan o que secularmente se ignoran, abarca todas las posibilidades.

No existimos en la mayoría de esos tiempos; en algunos existe usted y no yo;

en otros, yo, no usted; en otros, los dos. En éste, que un favorable azar me depara,

usted ha llegado a mi casa; en otro, usted, al atravesar el jardín, me ha encontrado muerto;

en otro, yo digo estas mismas palabras, pero soy un error, un fantasma.

J. L. Borges (1941)



1 Introduction

Imagine for a second an auditorium occupied by two hundred people, evenly distributed

among men and women, and each holding a tiny remote control. Then imagine the main

speaker asking his audience to use that control to enter the number of sexual partners

they had the previous year. After a few seconds of awkward silence, the room bursts out

laughing. Not deterred, the main speaker, however, asks again, for he is serious about the

question. In the end, since the survey is anonymous –and no one has a particular reason

to lie–, each individual enters his number. Then the panelist types a couple of times on

the keyboard, and the screen pops–up the results in the form of the empirical cumulative

distribution in log–log binning, which can be seen in Figure 1. The image depicts a Pareto

or Zipf’s curve, indicating that only very few people had lots of different sexual partners

and that the majority of the people only had a few, which at first glance sounds intuitive

(how many girlfriends/boyfriends do you have?). This behavior is often referred to as

having a power–law distribution.

Figure 1: Source: Liljeros et al. (2001)

Hold on a second. Although the previous experiment does not exist, the results

are in fact real. Actually, Figure 1 was taken from the famous paper by Liljeros et al.

(2001), who analyzed the number of sexual partners in a random sample of people in
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Sweden. However, while this latter study may seem strange at first, it is just an example

of the emergence of network research in other disciplines. Originally a development from

mathematical graph theory, the methods and topological properties of complex networks

have been applied to a great variety of fields such as computer science, biology, neurology,

social interactions, physics, the Internet, communication, and more recently finance. For

highly recommended surveys on these various developments, see Albert and Barabási

(2002), Boccaletti et al. (2006), or Dorogovtsev and Mendes (2002).

In finance, and serving as a motivation for this study, Axtell (2001) documents that

the size of firms obeys a power–law distribution; Boss et al. (2004), De Masi et al. (2006),

and Bastos e Santos and Cont (2010) showed that the interbank contract size also follows

a Zipf’s distribution. Following these results, we wonder whether banks’ assets –this being

the usual proxy for bank size–, liabilities, and equity also obey the same distribution.

For this, we use individual financial institutions balance sheet data from five emerging

countries: Argentina (2003–2010, quarterly basis, N = 72), Brazil (2001–2010, quarterly

basis, N = 70), Mexico (2004–2010, monthly basis, N = 26), South Africa (2003–2010,

monthly basis, N = 27), and Taiwan (2002–2010, quarterly basis, N = 29). In order to

assure full observations for every bank, we must account for mergers or acquisitions, and

banks with incomplete data are deleted from the sample. It is certainly relevant to notice

that the final sample accounts for more than 80% of total bank assets. Before showing

any result, we must first recall that not only do we have cross–country balance sheet data,

but also time–series data for each of our five countries. Thus a cumulative distribution in

a specific time period will only show a “photograph” of the behavior. Hence our purpose

in this computation is in fact twofold. First, we take a starting year and examine the

distribution; and second, we ask if this distribution is stable with time.

Denote x the quantity of assets (or liabilities) of any bank. Then x obeys a
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power–law if its distribution is of the form

p(x) ∝ x−α (1)

where α is the scaling parameter of the distribution. We consider the continuous

case only (the discrete form preserves the same intuitions and will be derived in Appendix

A). Then the probability distribution of (1) is

p(x)dx = P (x ≤ X ≤ x+ dx) = Cx−αdx (2)

where C and α are the constant and the exponent, respectively. Since the density

diverges as x → 0, it is usually said that a quantity x follows a power–law for values

greater than xmin. Then C is constrained by the fact that (2) must integrate to 1. In

particular, after normalizing the constant for the continuous case

p(x) = α− 1
xmin

(
x

xmin

)−α
(3)

Notice that taking logarithm on both sides of equation (2) yields an important

result: if plotted with the appropriate logarithmic binning, the histogram should be a

straight line. However, as shown in Goldstein et al. (2004) and Newman (2005), this

binning procedure can actually be misleading, which is why the CDF or cumulative distri-

bution function is in general a better way to detect power–law distributions, even though

in this case the exponent α will differ from the former method. In particular,

P (x) =
ˆ ∞
x

α− 1
xmin

(
y

xmin

)−α
dy =

(
x

xmin

)−(α−1)
(4)

Thus the CDF also follows a power–law, but with a new scaling parameter equal
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to α−1. Hence we see why one usually says that p(x) ∝ x−α if a straight line fits the CDF

plot in logarithmic scales. This tool will be used to assess whether a Pareto distribution

is a suitable match for banks’ assets, debt and equity.

Figure 2 illustrates the case of Argentina, where in effect a Zipf’s law can approxi-

mate the behavior of those balance sheet accounts. By using the Kolmogorov–Smirnov test

described in Clauset et al. (2009) and applied, for example, by Bastos e Santos and Cont

(2010) to the interbank exposures in Brazil, we get a p–value greater than 0.2, which in

this test translates into evidence in favor of the power–law fit. The main pitfall in these

distribution tests is the low sample size, which reduces the power of the test (Massey,

1951). Nonetheless, is in itself interesting the fact that the power–law pattern is fairly

stable with time and across–countries. 1 Appendix B depicts the cases of Brazil, Mexico,

South Africa, and Taiwan. The only exception is Taiwan, where the power-law hypothesis

is rejected.
1Plots at intermediate periods show very similar results.
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Figure 2: Left Panels show the CDF of Argentinean banks’ total assets, liabilities and equity in June
2003; middle Panels same variables for September 2007; and right Panels for December in 2010. MLE
yields α̂ ranging from 1.5 to 1.7. Results are robust to different period selection. Simulated exponential
distribution (in green) with equal expected value as sample data depicts the strong difference in the tails
of the distribution.

A typical way to proceed to estimate the scaling parameter α was to estimate a

least–squares regression in the log–log plots, the slope being our parameter of interest.

However, although this procedure is commonplace in the literature, it has been shown in

Goldstein et al. (2004) that it often leads to biased estimators; more robust estimates are

typically derived from Maximum Likelihood Estimation (MLE) methods, which yield the

following estimate

α̂ = 1 +N

[
N∑
i=1

ln
(
xi
xmin

)]−1

When applied in Figure 2, MLE yields scaling parameters going from 1.5 to 1.7.
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Although to our knowledge there is no specific evidence on overall balance sheet accounts,

the values found here are similar to other economic variables documented by the litera-

ture (e.g. Axtell, 2001, in the size of firms; Boss et al., 2004, and De Masi et al., 2006, in

interbank lending).

It is the purpose of this study to construct a banking network at the country level.

With a network in hand, one can analyze its connectivity, structure, even consequences

of contagion. One can also compare the banking network among countries and obtain,

for example, policy observations regarding shock resilience. There are many algorithms to

construct networks. For instance, the seminal works of Mantegna (1999), and Bonanno

et al. (2001), and later followed, for example, by Bonanno et al. (2003, 2004), and

Tumminello et al. (2007), construct networks based on cross–correlations in time. In that

sense, Pearson’s correlation coefficient (or a non–linear transformation of it) can be used

as a similarity or distance metric (Gower, 1966), which tries to assess how connected the

nodes in a network are. However, if one were to construct a network based on similarities

in assets, liabilities, or equities, one should first observe that all these variables tend to

increase in time. Thus it would appear that bank A and bank B are herding, when in

fact the increase/decrease in those variables could just be a consequence of a general

macroeconomic trend. An intuitive support can be seen in Figure 3, which depicts the

evolution of these balance sheets accounts for Argentina and Brazil averaged in each

period. They all increase with time.
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Figure 3: Upper panels depict average total assets, average total liabilities, and average total equity for
Argentinean banks in the sample (disregard nominal values). Lower panels depict the same accounts for
Brazilian banks (disregard nominal values). A smooth fit from local regression is added as visual guide.

The literature review in the following section will reveal many economic mech-

anisms which can explain why assets, liabilities, and equity may move similarly across

banks. For that reason, this study proposes using as a variable on which to base the

network the Liabilities–to–Equity ratio –henceforth the leverage ratio. Leverage appears

to be a variable with profound economic meaning in terms of interdependence, but at the

same time a robust statistic to the general trend. Further benefits from this ratio will

also be discussed in Section 2. A first taste of this hypothesis can be seen in Figure 4,

describing that, although the leverage ratio does move within each country, there is no

obvious temporal trend which can account for a global correlation between banks.
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Figure 4: Historical average leverage in the five countries of the sample. No trivial upward or downward
trend is experienced in any country. A smooth fit from a local regression is also added as visual guide.

The rest of the thesis is divided as follows. Section 2 reviews the literature and

provides a better understanding of the leverage ratio, both at the theoretical and empirical

levels. The main Section 3 will get inside the leverage-based network and draw results

both within and among countries. Section 4 concludes.
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2 The Leverage Ratio

For it is, so to speak, a game of Snap, of Old Maid, of Musical Chairs –a pastime in which

he is victor who says Snap neither too soon nor too late,

who passes the Old Maid to his neighbour before the game is over,

who secures a chair for himself when the music stops.

J. M. Keynes (1964)

The literature on the effects of macroeconomic shocks to bank lending or balance

sheets is extensive. As quick as a wink, we can review the major mechanisms. For

instance, if assets are held in local currency, then a strong devaluation will deteriorate

firms’ or banks’ balance sheets, hence reducing their ability to offer collateral and more

lending, respectively. This mechanism is usually referred to as the “balance sheet effect”,

and was extensively studied by the literature, going from the classic models of Kiyotaki

and Moore (1997), Krugman (1999), and Céspedes et al. (2004), and to empiric papers

like Tavar (2006). As suggested in Choi and Cook (2004), it is interesting to note that the

effect of currency devaluation does not have to be of similar magnitude between financial

institutions and private enterprises: if the formers can engage in intense leverage but its

assets are fixed in the local currency, then their balance sheets are much more vulnerable to

exchange rate fluctuations. Furthermore, Burnside, Eichembaum, and Rebelo (2001) note

that implicit government guarantees on deposits reduces the incentives of the financial

institutions to engage in currency hedging, again increasing their exposure.

A second hot topic is that of the “bank–lending channel” (Mishkin, 1995), in which

a contractionary monetary policy in the form of open market operations drains reserves

and deposits (liabilities) from the banking system, therefore limiting the banks’ ability to

increase their loans (assets) to the public (Kashyap and Stein, 1995; and Hubbard, 1995).

An alternative effect is described in Bernanke and Gertler (1995), where if the Federal
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Reserve contracts the money supply and interest rate rises, then it declines the present

value of securities, which can be held by banks as capital requirements. Nonetheless,

one could argue, as Romer and Romer (1990) do, that a bank’s loan supply is neutral

from Fed policy, since it can always offset deposit withdrawals by issuing certificates of

deposit (CD’s). Kashyap and Stein (1994), however, argue that, if bank’s balance sheet

deteriorates, then the cost of issuing CD’s rises. Even more, Kishan and Opiela (2000)

and Altunbaş et al. (2002) document that, in the event of a monetary contraction, the

ability of raising additional funds depends on bank capitalization (leverage ratio) and size

(assets); in particular meaning that small undercapitalized banks are the most negatively

affected by monetary policy. Additional evidence sustaining the bank lending channel can

be found in Bernanke and Blinder (1992), or Kashyap, Stain, and Wilcox (1993), among

others.

Another mechanism where banks’ liabilities can drop simultaneously is during a

bank run. A very familiar example of this situation was experienced in the 2001 Argentine

convertibility crisis, where banks were attacked by massive deposit withdrawals, which in

turn forced the government to freeze deposits. This particular bank run was intensively

analyzed by the literature with the leading documents of Galiani, Heymann, and Tommassi

(2003), Calvo, Izquierdo, and Talvi (2003), D’ Amato et al. (2002), and Gabrielli et al.

(2003).

A final example of aggregate movements is that of the recent experience of the

2007 subprime crisis. In this case, as pointed out by Cochrane (2010a) the reverse situation

occurred in the United States, meaning that overall deposits actually increased, with the

exception of Bear Stearns, Lehman Brothers, and Washington Mutual (Morris and Shin,

2008; Brunnermeier, 2009). However, “flight–to–quality” or “flight–to–liquidity” was also

a major determinant in the widespread drop of financial assets prices. Therefore, when
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banks saw their assets falling, the Federal Reserve took heavy action in flooding the

economy with money and ensuring that banks have enough liquidity (Bernanke, 2009a),

in part because the traditional funding alternatives were not available, especially after the

failure of Lehman Brothers (Gorton and Metrick, 2010; Cochrane, 2010b).

The previous paragraphs tried to review the basic mechanisms widely acknowl-

edged by the literature as ways that monetary policy, macroeconomic shocks, and so,

can cause bank’s balance sheet to move similarly. However, it is worth noting that the

leverage ratio is by no means neutral to macroeconomic shocks. And before explaining

why, it is important to note that such a neutral variable, if it existed, wouldn’t be suitable

either: a variable independent from everything wouldn’t provide any economic intuition

behind a network. The secret here is to find a variable with economic meaning in terms of

bank interconnectedness, but at the same time robust to the economic trend. As Figure

4 showed, plain vanilla leverage happens to be a variable with no obvious trend, but one

that is affected by what happens to other banks. Adrian and Shin (2008, 2010, 2011)

started a very influential literature on the pro–cyclicality of investment bank leverage

ratio. The story goes as follows. Suppose the security dealers and brokers maintain an

optimal leverage. If asset prices jump, banks would be holding too much equity, which will

lead them to re–leverage by taking on more debt, thus increasing their return on equity.

Their leverage would then rise. In downturns, banks are more vulnerable since part of

their equity has gone, and they would probably be interested in reducing their exposure.

Their leverage would then come down. Adrian and Shin (2011) argue that banks, due to

both regulation on banks’ capital and the method in which credit rating agencies assign

their credit grades, banks are usually interested in targeting a fixed Value–at–Risk (VaR).

In particular, they show that leverage can be written as a decreasing function of VaR,

which means that if VaR rises in turmoil, banks deleverage. On the other hand, if VaR
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decreases on the upside, then banks adjust their leverage upwards. Therefore, targeting

a fixed probability of failure causes their leverage ratio to be procyclical, through adjust-

ments in the balance sheet size. This is a very interesting finding, but that doesn’t hold

for commercial banks –which are present in the sample of this study. Adrian and Shin

(2010) show that, although the relation is positive for investment banks, it is neutral for

commercial banks. They suggest those banks may be targeting a fixed leverage ratio.

But movements in the leverage ratio can also be a consequence of bank interdepen-

dence. Battinston et al. (2009) explain that if two banks are involved in interbank lending,

a shock to the borrower’s assets affecting its debt service probability can also hit on the

credit quality of the other bank’s loans. In particular, banks will be affected through two

distress propagation channels: the first one is the financial accelerator (Morris and Shin,

2008). It says that a negative shock to an institution at time t hurts back on t+1, deep-

ening the shock. When the borrower is experiencing a hard time, creditors may request

its funds back (or deny a debt roll over), forcing the bank to reduce its balance sheet size

by selling assets. The second distress propagation effect is referred to as interdependence

(Battiston et al, 2009). It simply says that if two banks are engaged in interbank lend-

ing, a shock to the borrower’s assets affecting its debt service probability, can also hurt

the market value of the creditor’s loans. Thus, bank A’s fragility spreads to bank B. In

addition, Morris and Shin (2008) and Brunnermeier (2009) explain that leverage is also

affected when liquidity dries up in the system. By definition, the ability of a bank to

fund itself defines its maximum possible leverage. We already saw that banks may want

to increase their leverage on the upside and/or when interest rates are low for at least

two reasons: i) if moral hazard exists and banks expect an implicit bailout by the Central

Bank, they will increase their leverage to maximize the return on equity; ii) if other banks

start increasing their leverage, competition forces other banks to start doing so. However,
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this behavior makes financial institutions very vulnerable to an increase in funding costs:

on the downside, haircuts in collateralized borrowing transactions such as repo contracts

will typically increase (Gorton and Metrick, 2010). The bank, facing funding shortage,

can be forced to sell its assets. Furthermore, if this happens in times of falling prices,

fire sales will cause a contraction in equity –leverage rises–, since assets fall by more than

liabilities (Chan–Lau, 2010). Therefore fears concerning stability and solvency lead banks

to demand higher haircuts or margins in repurchase agreements, which in turn reinforces

a generalized tightening in liquidity and interbank lending, again pushing haircuts up,

and so on. Brunnermeier and Pedersen (2008) called this contagious phenomenon as the

margin spiral.

In this regard, given the importance of the leverage ratio but still recalling its high

empirical dispersion, a valid question is whether there an optimal fixed leverage ratio. The

seminal work of Modigliani and Miller (1958) showed that under certain conditions the

value of the firm is irrelevant from the point of view of the capital structure. However,

once taxes are added to the equation, things change because interest payments on the

debt are tax deductible. Thus, other things equal, the value of the firm is maximized if

the leverage ratio is 100%. However, there are some trade–offs involved (Leland, 1994):

at some point, as firms leverage up, its bankruptcy risk from a financial distress offsets its

gain in firm value through a higher debt interest rate and equity return demanded by debt

and equity holders, respectively, and also possibly through a funding shortage. Therefore

the cost of capital rises and the value of the institution declines. In addition, the investors’

disadvantage from a higher personal income tax can eventually exceed those of corporate

taxes, further offsetting the gain from higher debt financing (Miller, 1977). In a nutshell,

the optimal leverage is somewhere in between. But the central point here is that ex–ante

there is no clear indication regarding what the optimal leverage should be.
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Figure 5: Leverage boxplots on a time basis. Points in red indicate the average in that period. Plots
describe an overall relatively stable leverage ratio. The y-axis is limited to 35, and hence greater outliers
do not appear.

With these ideas in mind, we can have a detailed look at the evidence. Figure

5 depicts a rather striking dispersion in leverage ratios across banks, a result in itself

interesting. One could suggest that size matters: bigger banks may be allowed to sustain

more leverage without raising concerns from counterparties. Nonetheless, this hypothesis

is not sustained once we separate between big and small banks –size being proxied by total

assets. A further step in the analysis of the empirical distribution of leverage is through

the CDF. The CDF is plotted in Figure 6 for the last observation of every country –i.e.

December 2010. Rather than a power–law –which usually demands data to range more

than two decades, and is rejected by the Kolmogorov-Smirnov test–, an alternative dis-

tribution is the exponential distribution. Recall that if X ∼ Exp (λ), then its probability

density function is
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f (x, λ) =


λ e−λx, if x ≥ 0

0 otherwise

(5)

1 2 5 10 20

Leverage

P
(X

≥
x)

0.0

0.2

0.4

0.6

0.8

1.0

Leverage Distribution

Argentina
Brazil
Mexico
South Africa
Taiwan
Exponencial
Power−Law

Figure 6: Leverage CDF in December 2010 with x-axis in logs scale. An exponential distribution (in
blue) with λ = 1/8 and a power-law with α = 1.5 are added to the plot to assess goodness-of-fit. The
plot depicts that the leverage distribution decays more rapidly than both an exponential or power-law
distribution.

Applying Maximum Likelihood Estimation in (5) to estimate λ yields λ̂ = 1
x .

Kolmogorov–Smirnov and Anderson–Darling goodness–of–fit tests (Stephens, 1974) are

then applied to test the sample data against the theoretical exponential distribution with

the corresponding λ̂. Results from these tests reject the null hypothesis, further supporting

the visual notion from Figure 6 in that the exponential is not a good fit. As observed

in Figure 6, the empirical leverage distribution decays more rapidly than a power-law or

exponential, therefore suggesting a potential fit with a Log-normal or Gamma distribution.

In summary, this Section has showed the economic importance of the leverage

ratio as a robust variable in which a potential network between financial institutions can
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be based on. This Section also revealed that, although the absolute level of leverage is very

heterogeneous between countries, inside each country the high dispersion and the light-

tailed distribution are common findings. The next Section will engage in the construction

of a leverage-based network.

16



3 Leverage Networks

Once begun, a financial crisis can spread unpredictably.

Bernanke (2009b)

Using leverage panel data at individual bank level for Argentina, Brazil, Mexico,

South Africa, and Taiwan, the network is constructed as follows. After accounting for

mergers and acquisitions, banks with incomplete observations are deleted from the sample

–a condition that is necessary for correlation-based networks (Tumminello et al, 2007).

Using leverage time-series data we calculate all possible cross-correlations according to

Pearson’s sample correlation coefficient

ρi,j =
(
T−1)∑T

t=1 (xi,t − x̄i) (xj,t − x̄j)√
(T−1)

∑T
t=1 (xi,t − x̄i)2

√
(T−1)

∑T
t=1 (xj,t − x̄j)2

which is the sample version of the population correlation coefficient defined as

ρ̃i,j = E [xixj ]− E [xi]E [xj ]√
E
[
x2
i

]
− E [xi]2

√
E
[
x2
j

]
− E [xj ]2

where xi,t and xj,t are the leverage ratios of banks i and j at time t in the same country.

This procedure results in a correlation matrix ψN×N . Recall that ρi,j ∈ [−1, 1] , and that

ρi,j = 1 when i = j; also that ψ is both square and symmetric, with 1 in the main diagonal.

Therefore the relevant information is stored in N(N−1)
2 different pairs, where N denotes

the number of banks in the country. In order to measure the similarity between two

banks, a threshold on ρi,j is used as a filtering procedure to distinguish association levels.

A negative correlation between bank i and bank j implies that when bank i increases

its leverage, the opposite is true for bank j, and vice versa. And a positive correlation

between banks i and j implies that both increase or decrease their debt-to-equity ratio
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simultaneously. Notice that the economic mechanisms behind both cases are very different.

In the first case, a possible economic rationale would be that of the fly-to-safety: in times

of worries, people might withdraw their deposits from a small bank, and transfer it to a

bigger (perceived as “safer”) bank. Thus liabilities decrease in the small bank, but increase

in the other bank. As documented by Oliveira et al. (2011), this effect occurred in Brazil

in late 2008, with depositors running from smaller banks to larger banks, the latter ones

perceived as too-big-to-fail institutions with implicit guarantees from the Central Bank.

An alternative possible mechanism comes from what the literature calls the depositors

discipline: depositors may punish banks with poor performance either by demanding

higher interest rates or by withdrawing their deposits. In that regard, Martínez-Peria and

Schmukler (2001) find evidence in Argentina, Chile, and Mexico of the depositors discipline

mechanism, in particular that bank deposits growth falls as risk exposure increases. In

this line of research, Maechler and McDill (2006), and Imai (2006), for example, find that

depositors favor big banks, although it is hard to differentiate whether depositors base their

decisions on too-big-to-fail sentiments or bank fundamentals. Levy Yeyati et al. (2004)

also document that during the 2001 Argentine convertibility crisis deposit withdrawals

were more pronounced in banks with higher risk taking, thus providing further evidence

of negative (but uneven) changes in balance sheet accounts across banks. See Flannery

(1998) for a review of the U.S. literature on market discipline. Another possibility, though

less plausible, is that since the panel data omits information from banks with incomplete

data (such as bankrupt or acquired banks), if assets are falling in the overall economy and

bank A acquires bank B, bank A would exhibit stronger financial ratios in a time where

the rest are having a hard time. This could explain an inverse movement in the leverage

ratios. This situation however is not very likely to occur many times, thus its influence

on the correlation coefficient should be secondary.
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A very different case arises if the correlation coefficient on the leverage ratio be-

tween two banks is positive. Under this scenario a common dynamic affecting their bal-

ance sheets is more in line with the theories of leverage procyclicality and/or bank lending

channels, both of which were discussed in Section 2.

Thus it is evident that both scenarios (negative and positive ρi,j) should be incor-

porated in the filtering procedure. This results in two different networks: i) we establish

that there is a link between bank i and j whenever the sample correlation is greater than

a certain positive threshold τ+; and ii) we establish that there is a link between bank i

and j whenever the sample correlation is lower than a certain negative threshold τ−. As

we shall see later, this threshold is allowed to vary between τ+
min and τ+

max in case i), and

between, τ−min and τ−max in case ii), each of these thresholds leading to a different network.

In particular, we set τ to be [−0.85,−0.1] ∪ [0.1, 0.85]. It is important to emphasize that

both intervals are analyzed separately, that is, the procedure considers the negative cor-

relation as a different network from the positive correlation-based network. With the aim

of using more friendly names, we shall refer to case ii) as the non-herding network, and

to case i) as the herding network. In what follows we will continue the construction for

the positive case only, which can trivially be translated to the negative case.

Let a be a binary variable such that whenever ρi,j > τ , ai,j = 1, indicating there is

an undirected link between the vertices i and j. If not, then ai,j = 0. The only exception

is if i = j, in which case ai,j = 0. More succinctly,

ai,j =



1 if ρi,j ≥ τ, i 6= j

0 if ρi,j < τ, i 6= j

0 if i = j

(6)

Each of these ai,j are stored in an adjacency matrix AN×N , which can fully rep-
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resent an undirected graph. Notice that A is also a symmetric matrix, for ai,j = aj,i, with

0 in the main diagonal. If ai,j = 1, then bank i and bank j (vertices or nodes of the net-

work) are said to be adjacent or neighbours. Notice that the edge is undirected, meaning

that we can’t say in which direction the link is being established. This is different from

interbank lending networks (e.g. Boss et al., 2004; or Iori et al., 2008), where particular

information regarding the lender and borrower bank can be used to establish a directed

edge following the flow of the money. It is also possible to construct weighted edges (in

the previous example, edges can be weighted according to the amount of the interbank

loan). For simplicity, this thesis only considers undirected and unweighted edges.

Once τ ∈
[
τ+

min, τ
+
max

]
is determined, the network is defined. Thus it seems that

the correlation threshold is a key parameter. To see why, think that a very low τ will

result in a highly connected network, whereas a high τ results in the opposite. Intuitively,

consider the extreme cases: if we impose a very low τ = 0.01, the soft filtering procedure

will be assigning a huge number of edges. For instance, two uncorrelated banks, due to

mere chance alone, will be connected by a link. On the other hand, if we impose τ = 0.99,

it is clear that only very few banks (if any) will be so highly correlated.

This argument can be perceived in Figure 7, which shows the dispersion of the

N(N−1)
2 cross-correlation pairs using the traditional boxplot tools (Panel A), and the aver-

age vertex degree 〈k〉 of the network as a function of the threshold correlation, respectively

(Panel B). Where 〈k〉 is simply defined as

〈k〉 = 1
N

N∑
i=1

ki = 1
N

N∑
i≥j

aij

where ki is the degree of vertex i. In other words, ki is the number of edges

reaching vertex i (one can also think of the number of neighbours), and then 〈k〉 is the

average over all vertices. By definition, there is no edge between vertex i and itself. And

20



since ki ∈ [0, N − 1], then 〈k〉 also ranges from 0 to (N − 1). With these ideas in mind,

one can anticipate that, starting from τmin, as we increase τ the degree of the network

should be decreasing, for existing links are now being removed.
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Figure 7: Panel A depicts real cross-correlations boxplots in each country, obtained from all elements
above (or below) the main diagonal of the correlation matrix. Panel B shows 〈k〉 as a function of correlation
threshold τ : as we allow a lower (in absolute value) correlation to establish an edge, more links are added
to the network, and hence connectivity is increased. Panel C and D repeats for one surrogated realization,
and the Monte-Carlo simulated data, respectively. Green dots in boxplots indicate average correlation.

To convince ourselves that results are not driven by spurious correlations, for every

calculation using real data, we additionally provide results from shuffled or surrogated data

at the country level. This method can be seen as a combination of bootstrap sampling

with no replacement at the country-time level and Monte Carlo methods. This serves both

as a robustness check as well as a comparison basis: one can compare the real banking
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system with what one could expect from a random system. The random (or surrogated)

case is constructed using the following algorithm. 2

Let θx,i be the time-series (ordered) vector of the leverage ratio for bank i from

country x. Thus θx,i =
[
λxi,1, λ

x
i,2, ..., λ

x
i,T

]
, with t ∈ [1, T ] and i ∈ [1, N ]. And λxi,1 for

example denotes the leverage ratio (Debt-to-Equity) for bank i from country x at time

t = 1. In our sample, x = {Argentina, Brazil, Mexico, South Africa, Taiwan}.

1. Create a new surrogated vector θ∗x,i by randomly shuffling the observations in

the real θx,i. This step can be seen as a bootstrap re-sampling with no replacement.

Notice that the observations in θ∗x,i are exactly the same as in θx,i, but with a random

order.

2. Repeat Step 1 for every bank in country x.

3. Take the surrogated collection θ∗x,1, θ∗x,2, ..., θ∗x,N and calculate a new correlation

matrix ψ∗x between every two pairs of banks.

4. Apply the above mentioned filtering procedure to ψ∗x. For every threshold in[
τ−min, τ

−
max

]
∪
[
τ+

min, τ
+
max

]
a network is obtained, from which one calculates a given

metric, e.g. 〈k〉∗. Since the time-series vector is now random, a softer threshold

must be imposed. Typically we set τ ∈ [−0.35,−0.01] ∪ [0.01, 0.35].

5. Repeat Steps 1-4 R times, and store the metric obtained in each simulation when

setting a given τ . In this study the number of simulations R = 100.

6. End by Monte Carlo principles: for every metric obtained in Step 4, calculate its

average at the threshold level over all simulations. For example, take the collection

〈kτ 〉∗ = {〈kτ1 〉∗, 〈kτ2 〉∗, ..., 〈kτR〉∗} , where this vector stores the metric 〈kτr 〉∗ obtained

in simulation r ∈ [1, R] by setting correlation threshold τ . And finally, averaging
2For additional information on Monte Carlo and Bootstrapping methods see Robert and Casella (2004).
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one obtains the surrogated Monte Carlo metric 〈kτ 〉∗ =
∑R

r=1〈k
τ
r 〉∗

R . This is done for

every metric showed in this project.

An example of this procedure can be seen in the lower Panels of Figure 7, which confirm

two basic notions: that the correlations for the surrogated case are more intensively con-

centrated around 0, and that it takes a considerable lower correlation threshold for the

network to obtain a given 〈k〉. Kernel-based (Terrel and Scott, 1992) correlation density

estimates given in Figure 20 in Appendix C reinforce the difference in the correlation

distribution peakedness.

From the above Figures it is clear that thresholds τ are not interchangeable across

countries, meaning that in order to compare the networks it is not fair to establish a

uniform τ in all countries: a low correlation level in country A might be very high for

country B standards, or vice versa. This is similar that what we saw in Panel B of Figure

7, where, for example, it takes a ρ = 0.4 in Argentina to obtain a 〈k〉 = 10, whereas

it takes a ρ = 0.1 in South Africa to reach the same average vertex degree. It is also

interesting to note that the network is not symmetric to the correlation threshold: for a

given 〈k〉 the non-herding case always needs a softer barrier than the herding case. This

finding gains more power once we compare it with the shuffled networks: the positive and

negative correlation scenarios are a mirror of the other.
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Figure 8: A graphical representation of the Argentinean networks when 〈k〉 = 2. Upper left Panel depicts
real network by setting τ− = −0.63; Upper right Panel the case of τ+ = 0.82; Lower left and right Panels
depict one realization of a surrogated network: 〈k〉 = 2 is achieved by setting τ− = −0.34 and τ+ = 0.34.

Figure 8 shows the graphical representation of the undirected Argentinean network

with 〈k〉 = 2. For this to happen, the filtering procedure must set τ− = −0.63 and

τ+ = 0.82 for the negative and the positive case, respectively. It is found a remarkable

difference between real and random: in the former networks, the presence of hubs dominate

the system, whereas in the random networks vertices tend to have homogeneous degree.

These graphs provide evidence that higher connectivity may be desirable to increase risk

sharing and reduce hub exposure. In other words, if a low-degree bank is attacked, its

influence in the overall network might be negligible, whereas if a hub fails it can cause an

entire breakdown in the system. Neither heavy leveraged banks (whose leverage exceeds

the 0.8 sample quantile at t = 1) nor big banks (whose total assets exceed the 0.8 sample
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quantile at t = 1) account for high degree vertices. In other words, the emergence of hubs

(heavily connected nodes) in the system is not directly related to their size or their ability

to leverage up over their peers. Hubs are a mixed combination of small and big banks, and

strongly and moderately indebted banks. This effect is also found in the other countries to

the constraint 〈k〉 = 2. Notice that although Figure 8 might illustrate a similar behavior,

the underlying economic dynamic is completely opposite. Recall that in the non-herding

case there exist a few banks heavily linked that do the opposite of the majority of the

banks, whereas in the herding case banks copy each other. As rational agents there must

be some reason behind the polar dynamic. Unfortunately, the data available does not

permit to tell which specific activity is triggering the polar relationship between A and

B, but it is a finding that should be continued in further studies using interbank financial

data.

Once the similarities networks are constructed, we are interested in describe and

compare them. For instance, does connectivity increase or decrease systemic risk? As

explained in Battiston et al (2009) and Minoiu and Reyes (2011), there isn’t a monotonic

decreasing relationship between systemic risk and connectivity. The economic rationale

is that there is a trade-off involved between shock absorption and shock diffusion: as

connectivity increases, individual (idiosyncratic) risk declines thanks to risk sharing, but

systemic risk may rise due to higher propagation. One could think that a very unconnected

network is somewhat sensible when hubs are shocked, and thus greater interconnectedness

may be safer. But as more and more edges are drawn in the network, it might reach

the point where its degree is so high that a single attack may spread through the entire

system.

In order to address these sorts of things it is necessary to describe the topological

properties of the networks. The classic metrics are the average path length, clustering
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coefficient, assortativity coefficient, degree distribution, entropy, density, among others

(Caldarelli, 2007). However, many of these metrics are not neutral to sample size, thus

leading to wrong conclusions if one compares same metric between two networks of differ-

ent size. A very simple way to illustrate that size-dependence is present is by constructing

random networks with increasing size. Here we consider two classic models of random net-

works: Erdős and Rényi (1960), and Barabási and Albert (1999). For a friendly discussion

of these (and other) random network models see for example Caldarelli (2007).

But first we must introduce the basic mathematics of graph theory. The number

of links connecting vertices i and j is called the length of the path. From those possible

paths, the shortest one between them is called the geodesic path. And its length is the

geodesic distance di,j . Thus the average geodesic distance is just the average over those

di,j . In particular,

` = 1
N(N − 1)

∑
i6=j

di,j (7)

where di,j is the shortest distance from vertex i to vertex j. In other words, it

is the lowest number of edges (or bridges) that vertex i has to cross to reach vertex j.

Notice that formula (7) omits the distance from one vertex to itself. A correction to

formula (7) must be done if di,j = 0 with i = j is included in the sum (Newman, 2003).

Since di,j = ∞ if there is no actual path between vertices i and j, then ` diverges. To

circumvent this issue only vertices with existing path are included in the sum. However,

in highly disconnected networks this corrected coefficient will be small, thus not reflecting

the actual average distance, for it is only including a few vertices. Fortunately, there is

an alternative distance measure which derives from the global efficiency metric defined by

Latora and Marchiori (2001) as
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E = 1
N (N − 1)

N∑
i6=j

1
di,j

(8)

Since this variable measures how efficiently information is exchanged between ver-

tices, the maximum value occurs when the graph has all the N(N−1)
2 possible edges. Since

1
di,j

= 0 when no path connects vertices i and j , the alternative geodesic distance called

the harmonic mean (Marchiori and Latora, 2000) is defined as follows

h = 1
E

= N (N − 1)∑N
i6=j

1
di,j

(9)

Another interesting coefficient is that of betweenness centrality, which tries to

identify the importance of a vertex (Freeman, 1977). If a certain node serves as a bridge

to connect two separate clusters, then its function to transfer information inside a network

is essential. The betweenness (or load) point centrality of node i is defined as

bi =
N∑
j 6=u

ηj,u (i)
ηj,u

(10)

where ηj,u is the number of shortest paths connecting vertices j and u, and ηj,u (i)

is the number of those paths that pass through node i. Notice that since bi is a proportion,

0 ≤ bi ≤ 1. Using formula (10) Freeman (1977) also defines a global measure of dominance

of the most central point as

C ′B = 1
N − 1

N∑
i=1

(b? − bi) (11)

where b? is the maximum value of betweenness centrality in the graph.

Another best-seller metric from graph theory is the clustering coefficient. There

are two well-known definitions. The first variant, proposed by Watts and Strogatz (1998),
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starts by defining a local clustering for each vertex as

ci = NM (i)
N3 (i) (12)

where NM (i) is the number of triangles involving vertex i, and N3 (i) is the number

of connected triples centered on vertex i. Put differently, since a triangle is simply a set

of three vertices fully connected (three edges), then NM (i) is the number of direct links

between neighbours of node i. In particular,

NM (i) =
∑
j>u

aikaiuaju

N3 (i) =
∑
j>u

aikaiu = ki (ki − 1)
2

Thus Ci is the ratio of actual links between the neighbours of i to possible links

between these neighbours, and 0 ≤ ci ≤ 1. By definition, in cases where ki is either 0 or 1

(causing ci = 0
0), ci = 0. The clustering coefficient is obtained by taking the average over

these local ci:

C̄ = 1
N

N∑
i

ci (13)

and again, 0 ≤ C̄ ≤ 1.

The second clustering coefficient definition originally proposed by Barrat and

Weigt (2000) and then extended by Newman (2003) is often referred to as transitivity,

and is calculated as

C̃ = 3NM

N3
(14)
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where NM is the number of triangles in the network, and N3 is the number of

connected triples of vertices. C̃ can be understood as the mean probability that any two

vertices (neighbours of the same node) are themselves neighbours. Consider the following

example from social networks: if A is friend of B and B is friend of C, then a high C̃ will

indicate a high probability that A and C are also friends. The 3 in the numerator of (14)

assures that 0 ≤ C̃ ≤ 1.

A couple of paragraphs above we said that some of these metrics are size-dependent,

and now it’s time to show it. In the random model of Erdős-Rényi one sets a number of

vertices N and an edge is placed between each pair with a certain probability p. The simu-

lation here is done by increasing N but holding constant the mean degree 〈k〉 = p (N − 1).

We shall see later that degrees in this method end up following a Poisson distribution. The

Barabási-Albert model, on the other hand, is based on the ideas of growth and preferential

attachment, meaning that, starting with a set of nodes, as new nodes are added to the

network, high-degree vertices will establish new links at faster rates than their low-degree

peers. The network is constructed as follows: start with a (small) number m0 of vertices.

At each time step, a new node is added with m edges. In other words, this new node is

linked to m existing vertices in the system. In order to capture the idea of preferential

attachment, the probability that the new vertex will establish a edge with vertex i is lin-

early proportional to ki. In particular, p = ki∑
j
kj
. This step is repeated t times, leading

to a random network with t + m0 vertices and mt edges, and a mean degree 〈k〉 = 2m

once the network has stabilized. The latter is true for large t because each new vertex

brings together m undirected edges, which count double. One of the attractiveness of

the Barabási-Albert model is that the degree distribution ends up being a power-law with

exponent α = 3. And the network is said to be a scale-free system because the distribution

is time-independent.

29



0 20 40 60 80 100

2.
5

3.
5

4.
5

N

L

0 20 40 60 80 100

5e
−

01
1e

+
01

5e
+

02

N

C
B

B−A
E−R

0 20 40 60 80 100

2
5

10
20

50

N

h

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

N

E

Erdos−Renyi and Barabasi−Albert Random Network Models

Figure 9: Erdos-Renyi random model (in blue) and Albert and Barabási random model (in orange).
From left to right, these panels illustrate that metrics such as L, Central Point Dominance (y-axis in log
scale), Harmonic mean (y-axis in log scale), and Efficiency are sensible to network size N .

The above graphs depict that some metrics do depend on network size. For that

reason, in this study it is more appropriate to compare Argentina (N = 72) and Brazil

(N = 70) in one side, and Mexico (N = 26), South Africa (N = 27), and Taiwan (N = 29)

on the other side.

As we saw a few lines ago, the harmonic mean circumvents the problem when

there are many unconnected nodes in the network. Since h is the reciprocal of global

efficiency (Latora and Marchiori, 2000), an interpretation of Figure 21 in Appendix C is

that the efficiency in sending information between any two vertices is very similar in the
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negative and positive ρ scenarios. In other words, a network in which nodes connect each

other by doing the opposite of their neighbours do not defer in terms of efficiency from a

network where nodes herd each other. In fact, Figure 21 shows that the efficiency is very

similar from simulated networks as well. However, although the harmonic distances may

be similar, the vertex degree dispersion measured by its standard deviation is not.
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Figure 10: Upper panels depict the standard deviation as a function of 〈k〉. Real networks exhibit
considerable higher dispersion than the simulated networks. Since the lowest degree vertices are similar
across countries, lower panels show that the difference in node connectivity is due to hubs. In particular,
Argentina stands over Brazil as having a highly uneven bank connectivity; and Taiwan stands over Mexico
and South Africa for same reasons.

Upper Panels in Figure 10 illustrate that if a network of this kind were to be a

consequence of chance, then it should exhibit a much more stable and lower dispersion.

Another rather surprising result is the difference in hubs between Argentina and Brazil:
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in spite of having a very similar size N , for a network with given 〈k〉 the vertex degree

is much more uneven in Argentina, with some banks concentrating most of the edges in

the system. We know that this difference is not due to different kmin (because they are

similar, and close to zero), but because the hubs are stronger in Argentina. A similar

pattern appears in Taiwan relative to South Africa and Taiwan. Notice again that all

these patterns are lost in a spurious network: actually, it is impossible to disentangle any

difference inside both subgroups of countries.

Previous findings talk about the parameters of the degree distribution but nothing

concrete on the distribution itself. The existence of hubs in a system indicate that a heavy-

tailed distribution is needed to support the fact that there exists a non-trivial probability

of finding nodes intensively linked. One distribution that satisfies that is a power-law

or Pareto distribution. This effect has been shown to appear in many situations: in the

hyperlink connections in the World Wide Web (Barabási and Albert, 1999), number of

sexual partners (Liljeros et al., 2001), number of scientific papers connected by citations

(Redner, 1998), science collaboration, where two authors are connected if they have written

a paper together (Newman, 2001a, 2001b, 2001c), and even in Hollywood movie networks,

where two actors connect if they casted together in the same movie (Watts and Strogatz,

1998; Barabási and Albert, 1999; Albert and Barabási, 2000). A list of other degree

power-law examples can be consulted, for example, in Albert and Barabási (2002).

It is interesting to note that although this distribution may emerge in real net-

works, Erdős and Rényi (1959) showed that the degree ki of node i in a random network

(with no preferential attachment) follows a binomial distribution:
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p (ki = k) =

 N

k

 pk (1− p)N−k (15)

where N is the number of vertices, and p is the probability of establishing a link

between any pair of vertices are connected. By that setting 〈k〉 = p (N − 1) constant, in

the limit of large N , p (ki = k) approximates

p (ki = k)→ 〈k〉
ke−〈k〉

k! (16)

which is a Poisson distribution with expected value λ = 〈k〉.

With this literature backup we wonder whether the degree distribution of the

leverage-based networks also follows a power-law dynamic. What we know beforehand is

that the degree distribution in the surrogated Monte Carlo network should approximate

a Poisson distribution. Figures 11-12 depict the CDF of the real networks, along with

their corresponding Monte Carlo simulated version. Overplotting in Figure 13 a Pois-

son distribution with expected value λ equal to sample 〈k〉 provides robust evidence that

banks’ degree in the surrogated networks indeed follow a Poisson distribution. In addi-

tion, both non-parametric Kolmogorov-Smirnov and Anderson-Darling tests do not reject

the hypothesis of the Poisson distribution. What regards to the real network, although

a geometric distribution is rejected, Kolmogorov-Smirnov methods for fitting power-law

distributions (Clauset et al., 2009; Goldstein et al., 2004; and Newman, 2005) fail to de-

tect a Zipf’s law. However, the power-law null hypothesis might be rejected because the

test is not taking into consideration finite size effects, a specific problem that should be

addressed in further studies with alternative methodologies. Intuitive results in the form

of CDF plots for the Argentinean case appear in Figure 13.

Notice that we are fitting a geometric distribution because it is the analogue of
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the exponential distribution but for discrete values. The probability density function is

given by

P (X = k) = (1− p)k−1p

for k > 0. But a correction must be made to the usual formula because the degree

data can (and certainly does) take k = 0, and not taking this into account would be

incomplete. The modified PDF is P (X = k) = (1 − p)kp, for k ≥ 0; and its CDF is

P (X ≥ k) = (1 − p)k+1, for k ≥ 0, which is which is what is plotted in Figure 13. Since

E [X] = 1−p
p , p in the simulation is chosen to match the desired mean degree 〈k〉 = 2

and 〈k〉 = 8. It can be observed that the geometric distribution decays faster than the

empirical degree CDF, therefore providing evidence of a heavy-tailed degree distribution.

This finding further supports both the importance of a potential scale-free nature and

that extremely connected vertices can be found with non trivial probability.
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Figure 12: Cumulative distribution function in real (upper Panels) and random (lower Panels) in Mexi-
can, South African, and Taiwanese networks.
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d

As previously discussed, an interesting measurement is the clustering coefficient

of a network, this one being a measure of “cliquishness” (Watts and Strogatz, 1998): the

extent to which neighbours of i are themselves neighbours to each other. By definition,

recall that the dynamic inside a non-herding network is completely different from a herding

network, and this will be reflected in an asymmetric clustering coefficient: for a given

〈k〉, C̃ρ− < C̃ρ+ . That is, banks j and u linking bank i will have much higher chance of

being neighbours in the positive correlation-based network than in the negative correlation

scenario. Why is that? Consider the following example: imagine a small network (N = 3)

constructed with the positive correlation filtering procedure. If bank A and B are both

neighbours of C, it must be because ρA,C and ρB,C are both greater than τ+. But if A

and C move together, and B and C also move together, couldn’t we guess that ρA,B is

also somewhat significant? Now imagine the same network but constructed by applying
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the negative correlation filtering procedure. If there is a edge connecting banks A and C,

and another edge between B and C, then it must be because whenever C leverages up,

A and B deleverages, and vice versa. Thus, though it is possible (e.g. provided a very

soft threshold is imposed), it is very unlikely that A and B are also connected (for it will

be almost “contradictory”). In summary, in terms of the clustering coefficient it simply

means that this parameter will be higher in the herding network. Figure 14 confirms the

previous intuition by examining at the numerical value of the clustering coefficient C̃ as

defined by Newman (2003), which corresponds to the one of equation (14). Results remain

practically identical if one uses the C̄ of equation (13) proposed by Watts and Strogatz

(1998).
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Figure 14: Panel A depicts clustering coefficient in real networks; Panel B depicts clustering coefficient
in simulated networks.

From Figure 14 one can extract two interesting results. The first one is the sur-

prising high transitivity in the Mexican banking network, as opposed to South Africa and

Taiwan. A similar thing occurs in Argentina, whose transitivity is always higher than
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Brazil. The second result is that this behavior cannot be explained by chance, because

the pattern in the simulated random networks are entirely different. In particular, not only

should transitivity be the same for same-size networks, but it should also be considerably

lower. This comparison thus says that the pattern in the left Panel is indeed providing

key information regarding the intrinsic dynamic inside the network. We can’t know in

which direction causality is going, but we can say that in these compact or condensed

networks (in particular Argentina and Mexico) propagation channels should be of policy

interest. Identifying critical nodes can be crucial to reduce rates of contagion if a negative

shock attacks the herding network. We will come back to this once we talk about the

implications in terms of financial institution regulation.

The last metric used in this study to describe the financial banking system is the

diameter of the network. If di,j is the shortest (or geodesic) distance between vertex i and

vertex j, the diameter of the network is simply the longest geodesic of all possible di,j . In

order to avoid divergence when di,j =∞, it is supposed that if a network has unconnected

vertices, then its diameter is N (the number of nodes). A very elegant and robust pattern

emerges if one compares real networks versus simulated networks. Figure 15 depicts that,

for very low 〈k〉, both real and random networks have same diameter equal to N . However,

as the absolute value of the threshold level decreases, nodes in the surrogated graph are

“activated” randomly, and hence the probability of having no connected nodes decreases.

This explains why the diameter decay is very smooth. In contrast, the diameter decay in

real networks is extremely violent, mainly reflecting the presence of hubs in the system. As

the correlation threshold gets softer, it is more probable that previously connected nodes

will establish new links between them than unconnected nodes will establish their first

link. These results illustrate not only that the networks proposed in this study capture a

similar dynamic in the leverage ratio between countries, but that chance cannot rule these
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networks.
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Figure 15: The smooth diameter (longest geodesic) decay in simulated networks differentiates sharply
from the violent decay in real leverage-based networks, since nodes are activated randomly. The persistence
of the diameter in real networks to stay at the maximum possible value may shed light on the nature of
the emergence of hubs.

The next (and final) Section will resume the main findings of this thesis, and will

suggest potential policy regulation implications from network theory as well as inconclusive

topics that may be continued in further studies.
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4 Final thoughts

Remember what we originally tried to accomplish in this study. In the first place, we

asked whether we could describe the banking system, and whether its features were too

dissimilar across countries. One of the merits of graph theory is that it provides tools

which can be used to describe both the nature inside the system and across networks. In

addition, it allows to identify patterns of interconnectedness that may not be possible to

find with usual econometric methodologies, which will surely be optimal to characterize

the mean behavior, but might not be sufficient to study interconnection between agents

or institutions. In order to engage in a network study, we introduced the key role of

leverage (as defined by Debt-to-Equity). In Section 2, after reviewing the literature on

the importance of the leverage ratio as a variable subject to both the business cycle and

bank interconnectedness, some findings were outlined regarding the intrinsic empirical

nature of leverage. Those results can be summarized in three central things: i) in spite

of the extensive literature on optimal capital structure, the leverage ratio exhibits a great

deal of dispersion within countries; ii) bank’s leverage do not seem to follow a heavy-

tailed distribution (a Gamma or a Log-Normal are reasonable guesses); and iii) that after

acknowledging the robustness of the Debt-to-Equity ratio to the general macroeconomic

trend, there was significant dependence measured by cross-correlations (for some negative,

for some positive) in the time-series leverage of individual banks.

Following previous studies, Pearson’s correlation coefficient can be interpreted

as a measurement of distance, and hence was used to construct a filtering procedure to

detect linear associations between banks in a given country. Banks in the network were

then linked according to their correlation relative to an adjustable correlation threshold.

As the absolute value of the threshold decreases, more and more edges are added to the

network. We then addressed the topic of whether networks across countries are similar
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or not. The main findings suggest that although the topology in the hearding and non-

hearding networks are different, its patterns tend to sustain across countries. For example,

although finite size problem might be at the heart of the power-law rejection, the vertex

degree in all cases does follow a heavy-tailed distribution, which in turn give place to the

critical importance of hubs in the network. Additional methods should be thought and

implemented to analyze degree distribution in small-size networks.

Surrogating (shuffling) historical data at the individual bank level and then Monte

Carlo methods were instrumented to provide a clear indication of what things would

have to be under a pure random scenario. In particular, real complex networks were

characterized by high and unstable clustering coefficient, high standard deviation, and

sharp diameter decay, which provided ample evidence that the systems obtained by the

correlation-based filtering procedure cannot be explained by chance; many complex eco-

nomic mechanisms must be ruling these networks. For instance, a common finding was

the persisting emergence of hubs in the different real networks, an effect completely re-

versed in the simulated random networks. Identifying the direction of causality on this

association will certainly be useful, and should be addressed in further studies by using

interbank historical information.

Some observations in terms of policy can still be made. Interestingly, neither in-

dividual size nor leverage ratio can predict a hub in the system. This suggests that, in

the case an attack or financial shock is made to a (e.g. non-leveraged outlier) hub, the

financial system may be much less vulnerable. As we saw in Section 2, the degree of

indebtedness and interdependence is fundamental to understand contagion between finan-

cial institutions. In a nutshell, it is possible to think in terms of two channels of distress

propagation: interdependence (across-banks) and financial accelerator (through-time). In

order to reduce risk and increase shock resilience, regulators should recognize a trade-off:
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as connectivity and clustering increases, individual (idiosyncratic) risk may decrease due

to risk sharing, but global or systemic risk could increase thanks to faster channels of prop-

agation. The evidence in this study suggests that in particular the networks in Argentina,

Taiwan, and to some extent Brazil, might be too vulnerable to hubs. And in that regard,

in the event of a bank-specific shock one should consider both the non-hearding and heard-

ing networks, for the interbank implications are entirely different. For instance, Central

Bank intervention in attacked hubs may be desirable to prevent a mayor breakdown.

d

As in J. L. Borges’ short story, potential ramifications are no less than infinite.

A given network may itself be part of another network, and so on. Therefore a thorough

understanding of the financial network is fundamental to both players and regulators of

the system. For the regulators the objectives (but not the methods) are clear. But for the

players inside the game the question is a bit trickier: when the music stops, will you find

your chair, or will you be a ghost?
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Appendix A

From equation (2) we saw that C is a normalizing constant. In the continuous case, it can

be derived as follows

ˆ ∞
xmin

Cy−αdy = C
(

1
α−1

)
x−α+1

min = 1

Then if α > 1, C = (α− 1)xα−1
min .

In the discrete case,

p(X = x) = Cx−α (17)

Since this probability distribution also diverges as x→ 0, one says that the power-

law behavior starts from lower bound xmin. Then C is constrained by the fact that (17)

must sum to 1. In particular, for x > xmin > 0,

∞∑
x=xmin

Cx−α = 1

Let ζ (α, xmin) be the Riemann zeta ζ–function. Then C = 1
ζ(α,xmin) , and

p(X = x) = 1
ζ (α, xmin)x

−α

Which finally gives us the cumulative distribution function for the discrete case

P (x) = ς (α, x)
ς (α, xmin)
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Appendix B
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Figure 16: Left Panels show the CDF of Brazilian banks’ total assets, liabilities and equity in 2003;
middle Panels same variables for 2007; and right Panels in 2010. MLE yields α̂ ranging from 1.5 to 1.75.
Results are robust to different period selection. Simulated exponential distibution (in green) with equal
expected value as sample data depicts the strong difference in the tails of the distribution.

53



Mexico

10
2

10
3

10
4

10
5

10
6

10
-2

10
-1

10
0

P
(X

 ≥
 x

)
Assets

10
3

10
4

10
5

10
6

10
7

10
-2

10
-1

10
0

Assets
10

3
10

4
10

5
10

6
10

7
10

-2

10
-1

10
0

Assets

10
2

10
3

10
4

10
5

10
6

10
-2

10
-1

10
0

Debt

P
(X

 ≥
 x

)

10
3

10
4

10
5

10
6

10
-2

10
-1

10
0

Debt
10

3
10

4
10

5
10

6
10

7
10

-2

10
-1

10
0

Debt

10
2

10
3

10
4

10
5

10
-2

10
-1

10
0

P
(X

 ≥
 x

)

Equity
10

2
10

3
10

4
10

5
10

6
10

-2

10
-1

10
0

Equity
10

2
10

3
10

4
10

5
10

6
10

-2

10
-1

10
0

Equity

Figure 17: Left Panels show the CDF of Mexican banks’ total assets, liabilities and equity in 2004;
middle Panels same variables for 2007; and right Panels in 2010. MLE yields α̂ ranging from 1.53 to 1.7.
Results are robust to different period selection. Simulated exponential distibution (in green) with equal
expected value as sample data depicts the strong difference in the tails of the distribution.
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Figure 18: Left Panels show the CDF of South Africa banks’ total assets, liabilities and equity in 2003;
middle Panels same variables for 2007; and right Panels in 2010. MLE yields α̂ ranging from 1.33 to 1.55.
Results are robust to different period selection. Simulated exponential distibution (in green) with equal
expected value as sample data depicts the strong difference in the tails of the distribution.
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Figure 19: Left Panels show the CDF of South Africa banks’ total assets, liabilities and equity in 2003;
middle Panels same variables for 2007; and right Panels in 2010. MLE yields α̂ ranging from 1.9 to 4.9.
Results are robust to different period selection. In this country, simulated exponential distribution (in
green) with equal expected value as sample data depicts that size, debt, and equity of Taiwanese banks do
not follow a power-law.
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Appendix C: Additional Figures
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Figure 20: Kernel Densities reveal the difference in correlation concentration for real and simulated
networks.
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Figure 21: Harmonic mean in real (left Panel) and simulated networks (right Panel)
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