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Abstract

A particles system approach is presented to study the stochastic cluster model
presented in (3). We focus in buffer regulation.

The spatio-temporal properties of signals arising through IP3R ’s have been
extensively characterized by optical imaging in Xenopus laevis oocytes (1).
These studies have revealed a hierarchical organization of release events, rang-
ing from [Ca2+] liberation from single IP3R’s (”blips”), through the concerted
opening of several IP3R’s within a cluster (”puffs”) to global waves involv-
ing cluster-cluster interactions via [Ca2+]induced [Ca2+] liberation (2). Puffs
appear to represent ubiquitous ”elementary events” of intracellular [Ca2+] sig-
naling, which can both have local signaling functions in their own right, and
serve as building blocks from which global signals are constructed. It is, there-
fore, important to understand the mechanisms underlying the generation and
modulation of puffs.

In our previous work (3), we extracted the main from experimental data, a
sequence of amplitudes, A (maximum amplitude in the puff event), and inter-
puff times, τ (time between events), (A1, τ1, A2, τ2, , , ) and presented rigorous
evidence that An and τn are not independent variables, neither τn and An+1.
We have shown that for experiments the amplitude (An) modifies the next
inter-puff time, moreover large An gives large τn in mean, while small An

generate small τn, we will call this dependence “inhibitory”. The same type of
behavior is observed when conditioning the amplitudes (An+1) to the previous
inter-puff times (τn). An+1 increase as τn increases, this dependence will be
denominated by “frustration”.
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Fig. 1. Model of cluster dynamics in terms of individual channels presented in (3).
Random binding events of Ca2+ ions to activating sites on IP3R are marked by
crosses. If the channel is inhibited (depicted with dashed lines), nothing happens. If
the channel is uninhibited (depicted with solid lines), it opens, resulting in opening
of all other uninhibited channels in the cluster to generate a puff. During each puff,
some of the uninhibited channels become inhibited, with a probability that is a
(saturating) increasing function of the puff amplitude (characterized by the number
of channels that opened during the puff, N o). At any time, an inhibited channel
may spontaneously become uninhibited (indicated with a solid black circle) with
a probability per unit time, λ2. The schematic illustrates a cluster of 5 channels,
which generates 3 puffs involving varying numbers of open channels.

In this letter, we apply a particles system approach to study the properties of
the stochastic cluster channels model presented in (3). In particular, we focus
on the conditions at which the model capture the “inhibitory”and “frustra-
tion” dependencies, and study buffers regulation.

Based on fluorescent data, applying the algorithm in (13) is possible to convert
amplitude in number of channels that participate in the event, N o. In this way,
is possible to construct a new sequence with N o′s,(N o

1 , τ1, N
o
2 , τ2, , , ), which is

analogous to the amplitude one. In order to understand the conditions at which
“inhibitory” dependence is expected in the cluster model of Fig. 1, we calculate
the inter-puff time distribution, conditional to N o

n channels opened previously,
Fτn/No

n
(t) = P (τn < t/N o

n). Eq. 1 shows this conditional distribution.

Fτn/No
n
(t) = 1− P (Y > t)N (pi + (1− pi)

P (X > t)

P (Y > t)
)No

n (1)

Where pi is the probability of inhibition when N o
n channels opened, pi =

pinh(N
o
n), P (X > t) = e−λ1t, and P (Y > t) given by Eq. 2

P (Y > t) =











λ2e−λ1t−λ1e−λ2t

λ2−λ1

if λ1 6= λ2

(1 + λ1t)e
−λ1t if λ1 = λ2

(2)

The Fτn/No
n
(t) calculus is based on three main points: 1) finding a minimum

distribution of many random variables, 2) memoryless property for exponen-
tial distributions, and 3) Bayes total probability theorem. Fig. 2A) show an

example of the conditional inter-puff time density, fτn/No
n
(t) =

∂Fτn/No
n
(t)

∂t
, with

2



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

Time [s]

f τ
N

o (t
)

No = 1
No = 2
No = 3
No = 4
No = 5

(a)

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

pinh(No)

E
(τ

N
o )

No = 1
No = 2
No = 3
No = 4
No = 5

(b)

0.2 0.4 0.6 0.8 1.0

0.
1

0.
2

0.
3

0.
4

pinh(No)

V
ar

(τ
N

o )

(c)

Fig. 2. Inter-puff time conditional: 1) density (fτn/No
n
(t)) for a particular in-

hibitory probability mapping (pinh(1, 2, 3, 4, 5) = 0.4, 0.8, 0.9, 0.95, 1), 2) expectation
(E(τn/N o

n)), and 3) variance (V ar(τn/N o
n)) respectively as a function of pinh(N o).

Dot points in B) and C) correspond to the A) case.All graphs with parameters
N=5,λ1 = 1 and λ2 = 0.5.

λ1 = 1, λ2 = 0.5, N = 5, pinh(N
o
n) = 0.4, 0.8, 0.9, 0.95, 1 for N o

n = 1, 2, 3, 4, 5
respectively. We observe that by increasing N o

n the density moves to the right,
showing that a large amplitude puff, equivalent large N o

n, gives a inter-puff
time large in mean, as observed in experiments (3). Entering more in details,
in the experiments not only < τn/No

n > increases with N o
n, also the conditional

standard deviation, στn/No
n
, increases. Fig. 2 B shows the τn/No

n expectation,
E(τn/No

n), and in Fig. 2 C the variance, V ar(τn/No
n), for various pinh(N

o).
Choosing an appropriate pinh(N

o) mapping, as the one proposed for Fig. 2 A,
both E(τn/No

n) and V ar(τn/No
n) increases as N o

n increases (black points in Fig.
2 B) and C), same as experimental data. As we will discuss later, this mapping
is related to the buffers kinetic and concentrations in each experiment.

We first study the conditions for obtaining a maximum in the density, fτn/No
n
(t).

It is not difficult to see that if:

λ2N − (N o)2λ1(1− pi)
2 −N o(1− pi)(λ2 + λ1pi) > 0 (3)

the density has a maximum similar, and in the contrary case the fτn/No
n
(t) is

monotonically decreasing, similar to a Gamma distribution. For pi = 1 (for all
No) the distribution have a maximum. This is expected because all channels
will be inhibited immediately after a puff event in this case.

The next objective is to respond: How many channels opens in a puff event? For
this, we define a stochastic process N act(t) as the number of activable channels
at time t from the last event. Eq. 4 (see Appendix for details) describes the
probability of having k (k = {0, 1, 2, , , N}) activables channels at time t,
conditional that at t=0 there was a event in where N o channels participate.

P (Nact(t) = k/N o) = (eλ2t)N−k(1−eλ2t)k−No

(1−pi)
j

No
∑

j=max{0,j−k}

(No

j )(N−No+j
N−k )(

pi(1− e−λ2t)

1− pi

)j

(4)
From Eq. 4, we obtain the conditional variance and expectation of N act(t): .
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The following equation shows these expressions:

E(Nact(t)/N o) = N − (N −N o(1− pi))e
−λ2t

V ar(Nact(t)/N o) = N − E(Nact(t)/N o)− h(t, N o)
(5)

with h(t, N o) = (N − N o(1 − p2
i ))e

−2λ2t. The Nact(t) process is independent
of λ1, this is expected, because the number of activable channels, or the op-
posite, the number of inhibited channels, N inh(t) (N inh(t) = N − Nact(t)),
can only depend on the number of channels that opened previously (N o), the
probability of inhibition and the time to get out from inhibition.

Nact(t) process is the foundation process for responding how many channels
opened in a puff event. In the same way as N act(t), we define the N o(t) process,
like the number of channels that opens in a puff event at time t from the last
event. N o(t) take values between 1 and N, while N act(t) between 0 and N.
However, Nact(t) and N o(t) will be very similar, if there exist a puff event at
time t, in this one all the activable channel will participate. Eq. 6 describes the
probability of having a event of j (j = {1, 2, , , N})channels, knowing that the
previous event of N o

n channels occur at an arbitrary time, and the inter-puff
time is τn.

P (No
n+1(τn) = j/N o

n) =
P (Nact(τn) = j/N o

n)

1− P (Nact(τn) = 0/N on)
(6)

The N o
n+1(τn) conditional variance and expectation are presented in Eq. 7.

E(N o
n+1(τn)/N o

n) =
E(Nact(τn)/N o

n)

1− g(τn, No
n)

V ar(N o
n+1(τn)/N o) =

V ar(Nact(τn)/N o
n)

1− g(τn, No
n)

− g(τn, No
n)(

E(Nact(τn)/N o
n)

1− g(τn, No
n)

)2

(7)

Where g(τn, N
o) ≡ P (Nact(τn) = 0/N o

n) = pNo

i e−Nλ2τn . Fig. 3 shows P (N o
n+1(τn) =

j/N o
n = 2) as a function of the inter-puff time, for the same parameters used

in Fig. 2. For small times, lesser that 0.5s, the most probable is that only
one channel contribute to the event, while for longer times (greater than 8s)
the most probable is that all N channels that build the cluster participate. In
times of the order of 8s all inhibited channels become activable, that is way
the N o

n+1 conditional expectation is a monotonically increasing function of τn

(from 1 to N), and the conditional variance (eq. 7) is a convex function of τn

(with lim
t→0

V ar(N o
n+1(t)/N

o) = V ar(N o
n+1(1/t)/N

o) = 0)

The next is to try to advance in the direction of the stationary or marginal dis-
tributions. With all the information presented above, we construct a Markov
chain in discrete time for the number of channels that open in the events. The
state space is N o = {1, 2, , , N}, and the transition probabilities are given by
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Fig. 3. Number of channels that participate in a event: P (N o
n+1(τn) = k/N o

n = 2)
as a function of τn For N = 5, λ1 = 1, λ2 = 0.5, and
pinh(1, 2, 3, 4, 5) = 0.4, 0.8, 0.9, 0.95, 1

Eq. 8.

P (No
n+1 = k/N o

n = j) =
∫ ∞

o
P (No

n+1(t) = k/N o
n = j)fτ/No=j(t)dt (8)

Once we have the transition probabilities, solving (finding a eigenvector of
eigenvalue 1) Eq. 9, we obtain the stationary measure, P (N o = k).

P (No = k) =
N

∑

j=1

P (No
n = k/N o

n−1 = j)P (N o = j) (9)

From the N o stationary probability given by Eq. 10 we calculate the inter-puff
time marginal distribution.

fτ (t) =
N

∑

j=1

fτ/No=j(t)P (N o = j) (10)

Now with the stationary probabilities we explore some “buffers scenarios”. In
all puff experiments reported, experimentalists use some exogenous buffers to
impede wave propagation. As a buffer, basically is a loosing term in the [Ca2+]
reaction diffusion equation, it is expected that as the concentration is increase
the fluorescence amplitude decreases, that is way the result presented in (12)
was surprising. Basically, they observed that if they increase a little the buffer
concentration the amplitude increases. In the theoretical argument, exposed
before, in favor of the contrary effect, no channels dynamics was taken into
account. In order to try to reveal this “paradox” we explore the particle model
for different buffers scenarios. In particular we propose various scenarios, or
equivalent various pinh(N

o) mappings (see Fig 4 A)) and calculate the expec-
tation of N o, τ and their respectively variance. As the [Buffer] increases the
Ca2+ free microdomain ([Ca2+] in the mouth of the channel) decreases, and
as the IP3R inhibits at high [Ca2+] (4; 7) the probability of inhibition will be
smaller. In this way a pinh(N

o) mapping as the one depicted with circles in
Fig. 4 A) will be a scenario with a cytosol with less [Buffer] than the one with

5



1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No

p i
nh

(N
o )

0.6 0.7 0.8 0.9

2.
60

2.
65

2.
70

2.
75

E(τ)
E

(N
o )

0.25 0.30 0.35 0.40

1.
45

1.
50

1.
55

1.
60

1.
65

Var(τ)

V
ar

(N
o )

Fig. 4. Buffers scenarios: A) Probability of inhibition (pinh(N o)) as a function of
No , B) N o Expectation (E(N o)), and C) N o Variance (V ar(N o)) for the different
pinh(N o) scenarios of A). With λ1 = 1, λ2 = 0.5 and N=5

diamonds. Fig. 4 B) shows the E(N o) versus E(τ) for the different buffers
scenarios, the expected N o (“amplitude”) increases as the buffer concentra-
tion is increased, while the expected inter-puff time decreases. Although we
are not talking about fluorescence amplitude, only number of channels that
participate of a puff event, it seems reasonable that for some regime (no se
como ponerlo pero es muy importante) the effect of the increment in the N o

(calcium flux) will be more important than the buffering effect (less Ca2+ free
and less Ca2+ bound to the fluorescent indicator) and so the amplitude will
increase. Besides the buffer effect over pinh, in the case where [Buffer] is in-
crease with no calcium free added, the change in the basal [Ca2+] contribute
to have greater E(N o) and E(τ). Es decir, a decrease only in the basal concen-
tration (3) result to be similar to increase only the [Buffer]. Quizas decir algo
de que asi no fueron hechos los experimentos, pero es la mejor manera de am-
plificar el efecto. Fig. 4 C) we show the respectively variances for each buffer
scenario, interestingly both variance decreases when the [buffer] is increased.

We believe that the process studied here can have many other applications,
such as infection processes. From a modeling point of view, we see our model
as a necessary step from which more sophisticated models may be built for
understanding buffers regulation in puff events.
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