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Metric geometry of partial isometries in a finite von Neumann algebra∗

Esteban Andruchow

Instituto de Ciencias, Univ. Nac. de Gral. Sarmiento, Argentina

Abstract

We study the geometry of the set

Ip = {v ∈ M : v∗v = p}

of partial isometries of a finite von Neumann algebra M , with initial space p (p is a projection of
the algebra). This set is a C∞ submanifold of M in the norm topology of M . However, we sudy
it in the strong operator topology, in which it has not a smooth structure. This topology allows
for the introduction of inner products on the tangent spaces by means of a fixed trace τ in M .
The quadratic norms define not a Hilbert-Riemann metric, for they are not complete. Nevertheless
certain facts can be established: a restricted result on minimality of geodesics of the Levi-Civita
connection, and uniqueness of these as the only possible minimal curves. We prove also that (Ip, dg)
is a complete metric space, where dg is the geodesic distance of the manifold (or the metric given
by the infima of lengths of piecewise smooth curves).

Keywords: partial isometries, projections, geodesics, finite von Neumann algebras.

1 Introduction

Let M be a finite von Neumann algebra with fixed trace τ , and let p ∈ M be a projection. Consider
the set

Ip = {v ∈ M : v∗v = p}

of partial isometries in M with initial space p. This set is a C∞ differentiable submanifold of M in
the norm topology, and a homogeneous space of the unitary group UM of M , via the action

u · v = uv , u ∈ UM , v ∈ Ip.

This action is locally transitive: if v, v0 ∈ Ip with ‖v−v0‖ < 1/2, then there exists a unitary valued
C∞ map ω = ω(v, v0) such that ωv0 = v (see [10], [3] and [2] for an account of these facts). In
the case of a general von Neumann algebra the action is not transitive. For instance, in the space
of isometries (initial space equal to 1) in the algebra B(H) of all bounded operators in a (infinite
dimensional) Hilbert space H, the action preserves the Fredholm index, so it cannot be transitive.
However, when M is finite, it is transitive. Indeed, considering the right pMp-Hilbert C∗-module
pM with the inner product < x, y >= x∗y, the space Ip is what in [4] was called the unit sphere
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of the module (i.e. the set of elements x such that < x, x >= p, the unit of pMp). In that paper
it was proved that the unit sphere is connected when the algebra is finite, and therefore the action
is transitive.

Although Ip has a smooth structure only in the norm topology, we shall be mainly concerned
with the strong operator topology in Ip. We introduce a metric in the tangent spaces of Ip, the
inner products defined are computed by means of the action of UM , and in terms of the trace τ of
M . The quadratic norms in the tangent spaces (which are real linear subspaces of M) are equivalent
to the 2-norm of τ . Therefore the Riemannian metric is not complete, the tangent spaces are only
pre-Hilbert spaces, and this setting differs from the clasical Riemann-Hilbert theory of manifolds.
In fact the set Ip is not even a manifold in the strong operator topology. Nevertheless we proceed
with the geometric study of Ip, with ad-hoc as well as classical tools. Our main interest is the
metric space (Ip, dg), where dg is the metric given by the infima of the lengths of curves joining
two given points in Ip, measured with the Riemannian metric.

In section 2 we introduce the metric and compute its Levi-Civita connection. This connection
was previously studied in the general setting of homogenous reductive space [11], where it was
labeled the classifying connection of the homogeneous space. There the geodescis of this connection
were computed. Also in section 2 we transcribe previous results [1], [5], [6] on the geometric
structure of the unitary group in the strong operator toplogy. Our results on minimality of geodesics
of the connection rely on these results, particularly on the convexity properties obtained in [6]. We
prove that there exists a radius R > 0 such that for any v ∈ Ip, the ball (in the usual norm ‖ ‖ of M)
Ev(R) centered at v has the following property: for any v′ ∈ Ev(R) there exists a geodesic joining
v and v′, which is shorter than any other piecewise smooth curve ν(t) inside Ev(R) joining the
same endpoints. Note that this result falls short from saying that Ev(R) is a normal neighbourhood
of v in two aspects: first, Ev(R) is not open in the strong operator topology, second, the geodesic
is minimal only among curves inside Ev(R). Could there be a shorter curve wandering outside
Ev(R)? We do not know the answer to this question. Since Ip is far from being a Riemann-Hilbert
manifold, weaker results than in the classical setting are to be expected. Concerning minimality,
we show that if a piecewise curve is minimal, then it must be a geodesic of the linear connection.
Another question of which we do not know the answer: does there always exist a minimal curve
between two points? In section 3 we prove that (Ip, dg) is a complete metric space.

In Ip, the strong operator topology is metrizable by the 2-norm given by the trace. This fact is
certainly known, let us finish this introduction by giving a proof of it. Recall that

‖x‖2 = τ(x∗x)1/2.

The usual norm of M will be denoted by ‖ ‖.

Lemma 1.1 The 2-norm ‖ ‖2 metrizes the strong operator topology in Ip. The metric space
(Ip, ‖ ‖2) is complete.

Proof. Let H = L2(M, τ) be the Hilbert space obtained by completion of (M, ‖ ‖2), and suppose
M represented in H (by left multiplication). The elements x ∈ M when regarded as vectors in H
will be denoted ξx, and as operators in H they will be denoted by lx. Note that the commutant
of M in this representation consists of right multiplication operators rx, for x ∈ M : rx is the
completion of rxξy = ξyx. Suppose that vn → v strongly in Ip. Note that

‖vn − v‖2
2 = τ((vn − v)∗(vn − v)) = 2τ(p)− τ(v∗nv)− τ(v∗vn).

Then τ(v∗nv) =< ξv, lvn
ξ1 >→< ξv, lvξ1 >= τ(v∗v) = τ(p) and τ(v∗vn) = τ(v∗nv) → τ(p), so

that ‖vn − v‖2 → 0. Conversely, suppose that ‖vn − v‖2 → 0. Clearly this can be read as
‖lvn

ξ1 − lvξ1‖H → 0.
lvnrxξ1 = rxlvnξ1 → rxlvξ1 = lvrxξ1.
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The linear subspace {rxξ1 : x ∈ M} is dense in H (ξ1 is cyclic a separating for M), therefore
lvn

ξ → lvξ for all ξ ∈ H, because the sequence vn is bounded in norm. Let us show now that
(Ip, ‖ ‖2) is complete. Let vn be a Cauchy sequence in Ip for the 2-norm. Then there exists ξ ∈ H
such that ξvn → ξ. every element ξ ∈ H defines a possibly unbounded operator lξ on H, whose
domain includes {ξx : x ∈ M}: lξξx = rxξ. Then for all x ∈ M ,

lvnξx = rxξvn → rxξv = lξξx. (1.1)

Since vn are partial isometries with initial space p, this imples that

‖lpξx‖ = ‖lvn
ξpx‖ → ‖lξξpx‖ = ‖lξlpξx‖.

It follows that lξ acts isometricaly in {ξpx : x ∈ M} which is a dense linear subspace in the range
of lp. Analogously it can be proved that it acts trivially in {ξ(1−p)x : x ∈ M}, which is dense in the
range of I − lp. Thus lξ = lv is a partial isometry with initial space p, and (1.1) above implies that
vn → v strongly. �

2 The metric induced by the reductive structure

Denote by Vv the isotropy group of the action, i.e. the subgroup of unitaries which fix v:

Vv = {w ∈ UM : wv = v},

and denote by Vv its Banach-Lie algebra, which consists of

Vv = {x ∈ Mah : xv = 0}.

Here Mah denotes the real Banach space of antihermitic elements of M , which identifies with the
Lie algebra of UM . Denote by

Lv : UM → Ip, Lv(u) = uv

which is a submersion, and let

`v = d(Lv)1 : Mah → (TIp)v, `v(x) = xv.

Note that the range of `v is (TIp)v = {xv : x∗ = −x} and its kernel is Vv.
There is a natural reductive structure for this homogeneous space ([8] [13]): a smooth distribu-

tion of horizontal spaces {Hv : v ∈ Ip} which are supplements for Vv, v ∈ Ip:

Hv ⊕ Vv = Mah,

which are invariant under the inner action of Vv:

wHvw∗ = Hv , w ∈ Vv.

Let us choose these supplements Hv. Denote by pv = vv∗ the final projection of v. An antihermitic
element x ∈ Vv satisfies xv = 0 or equivalently xpv = 0, and therefore if one represents it as a 2× 2
matrix (in terms of pv), it is of the form (

0 0
0 x0

)
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with x0 anti-hermitic. A natural supplement for Vv, which is apparently τ -orthogonal to Vv, is the
space Hv which consists of antihermitic elements of M whose matrices, in terms of pv, are of the
form (

z11 z12

−z∗12 0

)
.

That is
Hv = {z ∈ M : z∗ = −z, (1− pv)z(1− pv) = 0}.

We introduce an incomplete Riemannian metric in Ip by means of the trace τ , and compute
its Levi-Civita connection. The relevant data which encode all the information of the reductive
strucuture are the coordinate maps

κv : (TIp)v → Hv,

which are the inverses of the isomorphisms

`v|Hv
: Hv → (TIp)v.

Explicitely:
κv(x) = xv∗ − vx∗ − pvxv∗.

Consider in (TIp)v the inner product which makes the map κv an isometry, when Hv ⊂ Mah is
considered with the trace inner product:

< x, y >v= τ(κv(y)∗κv(x)) , x, y ∈ (TIp)v. (2.2)

Therefore
‖x‖v = ‖κv(x)‖2.

These norms can be computed explicitely, and they equal (after routine calculations, which involve
the identities xp = x and x∗v + v∗x = 0 valid for x ∈ (TIp)v):

‖x‖2
v = 2τ(x∗x)− τ(pvxx∗pv). (2.3)

Note that this metric in (TIp)v is equivalent to the trace inner product metric, though we claim
that it is geometricaly more relevant to the homogeneous structure. Indeed

‖x‖2
v = τ(x∗x) + (τ(xx∗)− τ(pvxx∗pv)) = τ(x∗x) + τ(x∗(1− pv)x).

Therefore ‖x‖v = ‖(2− pv)1/2x‖2, and thus

‖x‖2 ≤ ‖x‖v ≤
√

2‖x‖2. (2.4)

In [11], Mata and Recht introduced the classifying connection of a homogeneous reductive space.
One of the main properties of this connection is that it has trivial torsion. The geodesics of this
connection are computed explicitely in [11] . The unique curve δ in Ip with δ(0) = v0 and δ̇(0) = xv
is given by

δ(t) = etκv(x)v.

Denote by Pv the map
Pv : Mah → Mah, Pv = κv ◦ `v.

Note that Pv takes values in Hv, and since `v ◦ κv restricted to (TIp)v is the identity map, Pv is
an idempotent. Explicitely

Pv(x) = xpv − pvx∗ − pvxpv = 2xpv − pvxpv.
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This idempotent Pv is in fact the orthogonal projection onto Hv, with respect to the trace inner
product: if x, y ∈ Mah,

τ(y∗Pv(x)) = τ(y∗2xpv − y∗pvxpv) = −τ((2pvy − pvypv)x) = τ(Pv(y)∗x).

The classifying connection ∇c is given as follows. Suppose that x, y are tangent vector fields in
Ip, then ∇c

x(y) is characterized by the value κv(∇c
x(y)) at each point v:

κv(∇c
x(y)) = Pv(x(y)), (2.5)

where x(y) denotes the derivative of y along x.
We shall prove next that this connection is the Levi-Civita connection of the metric (2.2)

introduced above. By this we mean, that it is symmetric (torsion free) and compatible with the
metric.

Lemma 2.1 The classifying connection ∇c is the Levi-Civita connection of the metric < , >v in
Ip.

Proof It was proven in [11] that it is symmetric, let us show that it is compatible with the metric.
Let x(t), y(t) be two tangent fields along the curve ν(t) in Ip. Then

<
Dcx

dt
, y >ν= τ(κν(y)∗Pν(κ̇ν(x))).

Note that since Pv is orthogonal with respect to the trace inner product, and projects onto Hv, it
follows that

τ(κν(y)∗Pν(κ̇ν(x))) = τ(κν(y)∗κ̇ν(x)),

and accordingly for the term < x, Dcy
dt >ν . Then

<
Dcx

dt
, y >ν + < x,

Dcy

dt
>ν= τ(κν(y)∗κ̇ν(x)) + τ(κ̇ν(y)∗κν(x))

=
d

dt
(τ(κν(y)∗κν(x))) =

d

dt
(< x, y >ν).

�

3 Minimality of geodesics

If ν is a smooth curve in Ip with ν(0) = v, there is a unique smooth curve γ in UM with the
following properties

1. The curve γ lifts ν: γ(t)v = ν(t).

2. γ(0) = 1.

3. γ∗γ̇ ∈ Hν .

This curve γ is usually called the horizontal lifting of ν, and is also characterized as the unique
solution of the following linear differential equation{

γ̇ = κν(ν̇)γ
γ(0) = 1 (3.6)

These are standard facts from the theory of homogeneous reductive spaces [11].
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We shall need the following facts concerning the geometric structure of the unitary group UM ,
which we take from [1] and [6]. The first states that if we measure the length of a smooth curve
γ(t), t ∈ [a, b], of unitaries using the ‖ ‖2 induced by τ , i.e.

L2(γ) =
∫ b

a

‖γ̇(t)‖2dt,

then the curves of the form δ(t) = uetx, with x ∈ Mah have minimal length along their paths for
t ∈ [0, 1], provided that ‖x‖ ≤ π. If ‖x‖ < π, the geodesic δ is unique having this property. Note
the fact that the condition is given on the operator norm of x, but the length is measured in the
2-norm. These norms are not equivalent, so this result is a weak form of a Hopf-Rinow theorem.
We remark UM is not a Hilbert-Riemann manifold with the trace inner product. See [1] for the
details.

A straightforward consequence of the definition of the metric in Ip is that the length of a curve
ν in Ip coincides with the length of its horizontal lifting γ. Indeed,

L2(ν) =
∫ 1

0

‖ν̇‖νdt =
∫ 1

0

‖κν(ν̇)‖2dt =
∫ 1

0

‖γ̇γ∗‖2dt =
∫ 1

0

‖γ̇‖2dt = L2(γ).

Thus we shall use the metric structure of the unitary group with the trace metric.
The next results on the metric geometry of UM concern a variation formula for the energy

functional and the local convexity property of the geodesic distance (i.e. the distance given by
the minima of lengths of curves joining two given unitaries, which by the above cited result, are
achieved by one parameter groups of unitaries). These facts were proved in [6].

In Theorem 2.1 of [6] it was shown that if F2 denotes the energy functional

F2(γ) =
∫ 1

0

‖γ̇‖2
2dt =

∫ 1

0

τ(γ̇∗γ̇)dt,

for γ a piecewise smooth curve in UM , and γs(t) is a smooth variation of γ, i.e.

γs(t) ∈ UM , s ∈ (−r, r) , t ∈ [0, 1] , γ0 = γ,

then the first variation of the energy functional is

1
2

d

ds
F2(γs)|s=0 = τ(x0y0)|t=1

t=0 −
∫ 1

0

τ(
d

dt
[x0]y0)dt, (3.7)

where
xs(t) = γs(t)∗

d

dt
γs(t) and ys(t) = γs(t)∗

d

ds
γs(t).

The other result in [6] needed here, is the following lemma. Here dk denotes the geodesic distance
induced by the k-norm.

Lemma 3.1 (Theorem 4.5 of [5]) Let u0, u1, u2 ∈ UM , such that ‖ui − uj‖ <
√

2−
√

2 = r. Let
δ(t) = u1e

tz be the minimal geodesic joining u1 and u2. Then f(s) = dk(u0, δ(s))k is a convex
function (s ∈ [0, 1]), for k an even integer.

We shall use this result for the case k = 2.
Let us return now to Ip.
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Remark 3.2 By virtue of the inverse function theorem, the exponential map

expv : Hv → Ip

is a local diffeomorphism near the origin. For r > 0, denote by Br the ball of radius r centered
at the origin in Hv. Therefore there exists a number R0 such that Ev = expv(BR0) is an open
neighbourhood of v in Ip (in the norm topology) and

expv : BR0 → Ev

is a diffeomorphism. In particular, for any element v1 ∈ Ev, there exists a unique geodesic δ of Ip

inside Ev with δ(0) = v and δ(1) = v1. Namely, v1 = expv(z), for z ∈ BR0 , and δ(t) = expv(tz) =
etzv.

In [2] a lower bound for R0 was given: R0 ≥ 0.0034. In what follows we assume that R0 <√
2−

√
2.

For any r ≤ R0, let us denote by Ev(r) = expv(Br), which is also an open neighbourhood of v ∈ Ip.
Let us denote by L∞ the length of curves, either of unitaries or partial isometries, measured

with the operator norm ‖ ‖: if α(t), t ∈ [a, b], is a curve (in UM or Ip)

L∞(α) =
∫ b

a

‖α̇‖dt.

Lemma 3.3 Let ν(t), t ∈ [0, 1] be a smooth curve in Ip, and let γ be its horizontal lifting. Then

L∞(γ) ≤
√

2 L∞(ν).

Proof. Note that

L∞(γ) =
∫ 1

0

‖γ̇‖dt =
∫ 1

0

‖κν(ν̇)‖dt.

Thus it suffices to show that for any tangent vector x ∈ (TIp)v, ‖κv(x)‖ ≤
√

2‖x‖. Recall that
κv(x) = xv∗ − vx∗ − pvxv∗ = (1 − pv)xv∗ − vx∗. Since pv is the range projection of v, it follows
that the operators (1− pv)xv∗ and vx∗ have orthogonal ranges. Then, if ξ is a unit vector in any
representation of M ,

‖κv(x)ξ‖2 = ‖(1− pv)xv∗ξ‖2 + ‖vx∗ξ‖2

so that
‖κv(x)‖2 ≤ ‖(1− pv)xv∗‖2 + ‖vx∗‖2 ≤ 2‖x‖2.

�

Lemma 3.4 Let ν(t) , t ∈ [0, 1] be a smooth curve in Ip joining v and ezv, z∗ = −z. Suppose that
‖z‖ < R0/2 and L∞(ν) < R0/2

√
2. Denote by γ the horizontal lifting of ν. Then 1, ez and γ(1)

lie at (norm) distance less than
√

2−
√

2.

Proof. First note that from the assumption on the size of R0, clearly ‖z‖ ≤ π/4, and therefore

‖1− ez‖ =
√

2− 2cos(‖z‖) <

√
2−

√
2.

Also it is clear that L∞(γ) ≤
√

2L∞(ν) < R0/2. Let d∞ denote the geodesic distance in UM given
by the usual norm. It follows that d∞(1, γ(1)) < R0/2. Therefore γ(1) = ey, with y∗ = −y and
‖y‖ < R0/2. Then, similarly as above,

‖1− γ(1)‖ = ‖1− ey‖ =
√

2− 2cos(‖y‖) <

√
2−

√
2.
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Finally
d∞(γ(1), ez) ≤ d∞(γ(1), 1) + d∞(1, ez) ≤ ‖y‖+ ‖z‖ < R0,

Then there exists w ∈ Mah, ‖w‖ < R0 < π/4 such that γ(1) = ezew, and then again

‖γ(1)− ez‖ = ‖1− ew‖ <

√
2−

√
2.

�

The next result states that among curves in Ip which are sufficiently short for the L∞ functional,
the geodesics have minimal L2 length.

Lemma 3.5 Let ν be a smooth curve in Ip such that L∞(ν) < R0/2
√

2. Then there exists a
geodesic δ with the same endpoints as ν, such that

L2(δ) ≤ L2(ν).

Proof. Put v = ν(0). Note that L∞(ν) < R0/2
√

2 implies in particular that ν(1) ∈ Ev(R0/2),
and therefore there exists z ∈ Hv with ‖z‖ < R0/2 such that expv(z) = ezv = ν(1). Let γ be the
horizontal lifting of ν. By the lemma above, the unitaries γ(1), ez and 1 differ in norm less than√

2−
√

2. Let µ(s) = ezesy be the minimal geodesic (for the ‖ ‖2 metric ) of UM joining µ(0) = ez

and µ(1) = ezey = γ(1) (note that indeed ‖y‖ < π).
Consider the map

f(s) = d2(1, µ(s))2, s ∈ [0, 1].

By (3.1), f(s) is convex. We claim that f ′(0) = 0, so that f has an absolute minimum at s = 0.
Indeed, note that

‖µ(s)− 1‖ = ‖1− esy‖ ≤ ‖1− ey‖ = ‖ez − γ(1)‖ <

√
2−

√
2 < 2.

Therefore the antihermitic logarithm

log : {u ∈ UM : ‖u− 1‖ < 2} → {x ∈ Mah : ‖x‖ < π}

is well defined and smooth. Let εs(t) = etlog(µ(s)). Note that εs(t) is a smooth variation of ε0 = etz.
Also note that at each s it consists of minimizing geodesics, because ‖log(µ(s))‖ < π. Then

f(s) = L2(γs)2 = ‖log(µ(s))‖2
2 = F2(εs).

Then f ′(0) can be computed using the first variation formula (3.7). In our case

xs = ε∗s
d

dt
εs(t) = log(µ(s))

is independent of t, and therefore (3.7) reduces to

f ′(0) = 2{τ(zy0(1))− τ(zy0(0))}.

Note that γ(1) and ez verify that γ(1)v = ezv = ν(1), i.e. e−zγ(1) ∈ Vv. Also note that Vv ⊂ UM is
geodesically convex: the minimal geodesic joining 1 and e−zγ(1), namely esy, lies in Vv. Therefore
y ∈ Vv.

At t = 0, εs(0) = 1 for all s, therefore ys(0) = 0, and in then τ(zy0(0)) = 0. At t = 1,
εs(1) = µ(s), so that ys(1) = µ∗(s)µ̇(s) and y0(1) = y. Then

τ(zy0(1)) = τ(zy) = 0

8



because z ∈ Hv and y ∈ Vv are τ -orthogonal subspaces.
Thus f(0) ≤ f(1), and therefore

L2(ε0) = dg(1, ez) ≤ dg(1, γ(1)) = L2(γ) :

Since ε0 and γ are the horizontal liftings of δ and ν, respectively, we have that

L2(δ) ≤ L2(ν).

�

We call a piecewise smooth curve a geodesic poligonal if it is a continuous path in Ip, and
consists of geodesic paths glued together. The next result states that given any piecewise smooth
curve, there is a geodesic poligonal joining the same endpoints which is shorter than the original
curve.

Proposition 3.6 Let ν(t), t ∈ [0, 1] be a piecewise smooth curve, then there is a geodesic poligonal
ρ such that ρ(0) = ν(0), ρ(1) = ν(1) and

L2(ρ) ≤ L2(ν).

Proof. Clearly it suffices to consider the case when ν is smooth. Then there exists a partition
t0 = 0 < t1 < . . . < tn+1 of the unit interval such that for all i = 1, . . . , n, ‖ν(ti)−ν(ti−1)‖ < R0/2.
Thus each curve ν|[ti−1,ti] satisfies the hipothesis of the preceding lemma, therefore there exists a
geodesic ρi with the same endpoints as ν|[ti−1,ti] with

L2(ρi) ≤ L2(ν|[ti−1,ti]).

Clearly the curve ρ which consists of gluing together the paths ρi is a continuous poligonal which
is shorter then ν. �

Theorem 3.7 Given any point v′ ∈ Ev(R0/4
√

2), there exists a unique geodesic δ(t) = etzv with
δ(1) = ezv = v′ which is shorter than any other piecewise smooth curve ν ⊂ Ev(r0/4

√
2) joining v

and v′.

Proof. Clearly, by remark (3.2), there exists z ∈ Hv such that ezv = v′. As in the proof of the
preceeding proposition, we may obtain a geodesic poligonal with vertices v0 = v, v1, . . . , vn = v′

in Ev(R0/4
√

2), with edges of L∞-length less than R0/4
√

2, which is shorter than ν for the L2

functional. Let us denote by εi the edges of this poligonal (joining vi−1 and vi), and by εi#εi+1

the path formed by adjoining two consecutive edges. Note that

L∞(ε1#ε2) ≤ L∞(ε1) + L∞(ε2) < R0/2
√

2.

Therefore, by lemma (3.5), the geodesic poligonal which consits of replacing ε1#ε2 by the minimal
geodesic ε′1 joining v0 and v2 in the original poligonal, is shorter than this poligonal for the L2

functional. Note that the new edge ε′1 lies inside Ev(R0/4
√

2). Proceeding inductively, one arrives
at the desired result. �

We say that a curve ν(t), t ∈ [0, 1], is minimal along its path if for any 0 ≤ t0 < t1 ≤ 1, the
curve ν|[t0,t1] has minimal length among all curves in Ip joining ν(t0) and ν(t1). Note that we have
proved that the geodesics of the connection that are miniaml, are in fact minimal along their paths.

Next let us show that the geodesics of the connection are the only possible curves which have
minimal length.
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Theorem 3.8 Suppose that ν is a piecewise smooth curve which has minimal L2-length along
smooth curves in Ip joining the same endpoints. Then ν is a geodesic of the linear connection.

Proof. By the previous proposition, there exists a geodesic poligonal ε with edges εi, i = 1, . . . , n,
which is not longer than ν. Then ε is also minimal. Moreover, by construction, the elements
t0, t1, ..., tn of the partition provide points ν(ti) which lie both in ν and ε. We claim that ε is
smooth, i.e. a geodesic. This proves our result, since the partition can be arbitrarily refined to
contain as many (finite) points in common between ν and ε, and the smoothness of ε proves that
all these polygonals are in fact the same geodesic, and coincides with ν.

We assumme that ε is not smooth to arrive to a contradiction. Namely, suppose that there are
points vi ocurring at instants ti of the poligonal ε where ε̇(t−i ) 6= ε̇(t+i ). The edges εi and εi+1 of ε

at the vertex vi can be parametrized εi(t) = etz+
i vi and εi+1(t) = etz−i vie

−tz− , then the jumps of
the derivative of ε are

0 6= ∆ε̇i = ε̇i+1(0+)− ε̇i(1−) = z+
i vi − z−i vi

is a nonzero vector in Hq. We may choose a variation γs of ε = γ0 which is constantly identical to ε
except in small neighbourhoods of qi (so that they do not overlap), and such that the variation field
V (t) = ∂

∂s |s=0 γs equals these jumps (which are tangent vectors) at t = ti, namely V (ti) = ∆ε̇i.
According to the classic first variation formula in a Riemannian manifold (cf. [9] for example),

d

ds
|s=0L2(γs) = −

∫ 1

0

〈V,Dc
t γ̇〉dt−

∑
〈V (ti),∆iγ̇〉 .

Since ε consists of piecewise geodesics, and is also a critical point of the length distance (it is
minimizing for the 2-metric) we obtain

0 =
d

ds
|s=0 L2(γs) =

∑
i

< z+
i vi − z−i vi, z

+
i vi − z−i vi >1/2

vi
=

∑
i

‖z+
i − z−i ‖2,

which is a contradiction. �

4 Completeness of the Riemannian metric

In this section we shall prove that the geodesic distance dg induced by the Riemannian metric is
complete. An interesting fact, given that the tangent spaces of Ip are themselves non complete.
This fact is related to the completness of the space

P = {q ∈ M : q2 = q∗ = q}

of selfadjoint projections of M , also called Grassmannian of M . The Grasmannian of a C∗-algebra
is a well studied space, there are several papers considering the geometric aspects of this set: [?],
[7], [12]. In [5] we considered the Grassmannian of a finite von Neumann algebra, and endowed
their tangent spaces with the uncomplete Riemannian metric given by the 2-norm, in the same
spirit as in the present paper. Let us list a few properties obtained there:

1. The Levi-Civita connection of the ‖ ‖2 at every tangent space of P is the reductive connection
introduced in [?]. The geodesics of this connection are the curves of the form

ρ(t) = etxqe−tx,

where x∗ = −x is co-diagonal with respect to q: x = xq + qx.

2. Given to projections q1, q2, there is always a geodesic joining them.
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3. The geodesic above can be chosen minimal. Nnamely, a minimal geodesic verifies that ‖x‖ ≤
π/2. If ‖q1− q2‖ < 1 (in general one has ‖q1− q2‖ ≤ 1), then the minimal geodesic is unique.

4. The geodesic distance (i.e. the metric given by the infima of lengths of curves in P joining
the giving endpoints) is complete, and equivalent to the norm ‖ ‖2.

We shall use these facts to prove completeness of (Ip, dg). There is one more property of P
which shall be needed, and is not contained in [5]. It is the following sequential lifting property for
the strong topology.

Proposition 4.1 Let qn be a sequence in P which converges strongly to q. Then there exist uni-
taries un ∈ UM such that

unqu∗n = qn and un → 1 strongly.

Proof. Since the norm ‖ ‖2 metrizes the strong topology in P, and it is equivalent to the geodesic
distance, there exist minimal geodesics ρn(t) = etxnqe−txn joining q to qn, such that

L2(ρn) = ‖xnq − qxn‖2 → 0.

Note that since xn = xnq + qxn, then ‖xnq − qxn‖2 = ‖xn‖2. Moreover, the norms ‖xn‖ are
bounded by π/2. In [1], it was proven that if ‖xn‖ ≤ π, then ‖xn‖2 → 0 if and only if exn → 1 in
UM strongly. �

The link between these facts and the topology of Ip is the map

Φ : Ip → P , Φ(v) = vv∗ = pv (4.8)

which assigns to each partial isometry its final projection. Since the algebra is finite, it is clearly
strongly continuous. Also, when regarded between the smooth structures (given by the usual norm)
it is C∞. For our purposes, the relevant property of Φ is the following:

Proposition 4.2 The differential dΦv of Φ is contractive, when the tangent space of Ip is endowed
with the Riemannian metric ‖ ‖v, and the tangent space of P is endowed with the norm ‖ ‖2.

Proof. Note that
dΦv(x) = xv∗ + vx∗ , x ∈ (TIp)v.

Then
‖dΦv(x)‖2

2 = ‖xv∗ + vx∗‖2
2 = τ(xpx∗) + τ(xv∗xv∗) + τ(vx∗vx∗) + τ(vx∗xv∗).

Tangent vectors x at v satisfy x∗v + v∗x = 0 (for instance, differentiate the equation v∗v = p).
Also, since Ip ⊂ Mp, xp = x. Therefore

‖dΦv(x)‖2
2 = 2τ(xx∗)− 2τ(pvxx∗pv) ≤ 2τ(xx∗)− τ(pvxx∗pv) = ‖x‖2

v.

�

Our main result of this section follows:

Theorem 4.3 The metric space (Ip, dg) is complete.

Proof. Let vn be a Cauchy sequence in Ip for the geodesic distance. Then, by the above proposi-
tion, qn = vnv∗n is a Cauchy sequence for the geodesic distance in P. Therefore there exists q ∈ P
such that qn → q strongly. By the sequential lifting property there exist x∗n = −xn ∈ M with
‖xn‖ ≤ π such that exnqe−xn = qn and ‖xn‖2 → 0.
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We claim that e−xnvn is also a Cauchy sequence in Ip for the geodesic distance. Indeed,

dg(e−xnvn, e−xmvm) ≤ dg(e−xnvn, vn) + dg(vn, vm) + dg(vm, e−xmvm).

Note that e−xnvn can be joined to vn by means of the curve νn(t) = e−txnvn, whose length is

L2(νn) =
∫ 1

0

‖ν̇n‖νn
dt =

√
2

∫ 1

0

‖ν̇n‖2dt =
√

2‖xnvn‖2 ≤
√

2‖xn‖2.

It follows that dg(e−xnvn, vv) ≤ L2(νn) → 0. Analogously, dg(e−xmvm, vm) → 0.
Note that e−xnvn are partial isometries with (initial space p and) final space equal to q:

e−xnvn(e−xnvn)∗ = e−xnvnv∗nexn = e−xnqnexn = q.

Since q = upu∗ for some unitary u, this subset of Ip can be made homeomorphic with the set
Ip

p ⊂ Ip of partial isometries with final and initial space equal to p, by means of

v 7→ u∗v.

We may change the metric in Ip
p considering the 2-norm at every tangent space. By (2.4), the new

metric is equivalent to the former, in particular, thay have the same Cauchy sequences Now this
set Ip

p , clearly identifies isometrically the unitary group of pMp. In [1] it was shown that this space
is complete with the geodesic distance. Completeness of Ip follows.

�

A similar type of argument shows that the mapping

Lv : UM → Ip , Lv(u) = uv

has also the sequential lifting property for the strong topology. Recall that in the norm topology
it is a submersion, and therefore a fibration.

Proposition 4.4 Let vn be a sequence in Ip converging strongly to v. Then there exist unitaries
un ∈ UM such that unv = vn and un → 1 strongly. In particular, Ip is homeomorphic to UM/Vv,
when all the spaces involved are considered with the strong operator topology.

Proof. The action of UM on Ip is transitive, the maps Ip 3 v 7→ uv ∈ Ip are homeomorphisms
for the stron topology, therefore we may suppose without loss of generality that v = p. Since M
is finite and vn are uniformly bounded, qn = vnv∗n → p strongly. By the analogous result above
for P, there exist unitaries wn in M which converge strongly to 1, such that qn = wnpw∗n. Then
one can choose un = vn + wn(1 − p). Indeed note that un → 1 strongly, and unp = vnp = vn. It
remains to show that they are unitary elements:

unu∗n = vnv∗n + wn(1− p)w∗n + vn(1− p)w∗n + wn(1− p)v∗n = qn + 1− qn = 1,

because vn(1− p)w∗n = 0 = (vn(1− p)w∗n)∗ = wn(1− p)v∗n.
The map Lv : UM → Ip which is continuous in the strong operator topology, induces a contin-

uous bijection
L̄v : UM/Vv → Ip,

where Ip is considered with the strong operator topology. Thge sequential lifting property unplies
that it is open, i.e. a homeomorphism. Indeed, if vn → v strongly, then there exist unitaries un

such that unv = vn and un → 1 strongly. Therefore [un] → [1] in UM/Vv. �
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