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Abstract

A formula for the derivative of the logarithm of the ζ-determinant of the quotient

of two elliptic pseudodifferential operators with the same boundary condition, act-

ing between the fibers of a vector bundle over a n-dimensional manifold M with

boundary X, is here presented.
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1 Introduction

Given a trace class operator A acting on a Hilbert space, the Fredholm determinant of

the operator L = I − A is defined by

det1 L =
∞∏
j=1

(1− λj(A)), (1)

where I is the identity operator and the numbers λj(A) are the eigenvalues of A, repeated

the times indicated by their corresponding multiplicities.

It is a very known fact the necessity of this concept in various areas of mathematics,

as differential geometry [5], and those of physics, for instance in the construction of

quantum theories by means of functional integration ([16], [6], [7], [2], etc.), in where

the calculus of determinants of quotients of some elliptic differential operators recovers a

special interest.

In [5] R. Forman has studied some Fredholm determinant properties of L and the

quotient of regularization of the determinants of two differential operators D0 and D1

by the Riemann ζ-function method, when L = D0D
−1
1 = I − A and A belongs to the

trace class operators. This type of determinant regularization procedure is called the

ζ-determinant regularization and is denoted by Detζ .

In general, for an operator L acting on a Hilbert space H the notions of Fredholm

determinant and the ζ-determinant have no sense. On the other way, in several occasions,

the interest is focalized on the quotient of the determinants of the operators instead of

each determinant individually. On this line the works [6] and [7] fit in perfectly. It

is shown in such papers that the quotient between the ζ-determinants of two elliptic

operators A + εA1 and A, defined on a compact differential manifold without boundary,

is given by

Detζ(A+ εA1)

Detζ(A)
= exp

{
ε
d

ds

∣∣∣∣
s=0

[
s.Tr

(
A−s−1A1

)]
+O(ε2)

}
, (2)

where A is pseudodifferential of positive order and A1 is a differential operator with

order(A1) < order(A).
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Another version about the derivative of the logarithm of the ζ-determinant with res-

pect to a parameter is presented in [5] where it is established that

d

dt
logDetζLtB =

d

ds
Tr

[
s.

(
d

dt
Lt B

)
.L−s−1

tB

]∣∣∣∣
s=0

=
d

dt
log det1

(
LtB.L

−1
0B

)
, (3)

for a quotient of elliptic differential operators belonging to a monoparametric family Lt,

all with identical principal symbol (and, hence, with the same order) and the same elliptic

boundary condition B for each member Lt of the family. For the veracity of this formula

R. Forman requires the restrictive hypothesis that
(
d
dt
LtB

)
L−1
tB is a trace class operator

for all t. It will be shown that this restriction can be removed. So, one aim of this paper

is to extend Forman’s result to the quotient of two classical elliptic pseudodifferential

operators.

The paper has three sections. Next part of the present section is devoted to expose

the principal results. Same basic concepts, notation and definitions as the ζ-determinant

regularization method and some differential properties of the Fredholm determinant are

recalled in section two. In the last section the extended results to pseudodifferential

operators are proved.

1.1 Main results

Now we are in condition to present our principal statements about the logarithm of the

ζ-determinant of the quotient of two (classical) elliptic pseudodifferential operators. The

first theorem refers to the version of operators defined over a compact manifold without

boundary whereas the second treats the case of two elliptic boundary problems, both with

the same boundary elliptic condition.

Theorem 1.1.

Let Ω be an open subset of the complex plane and let z(t) : [0, 1] −→ Ω be a differentiable

curve. Over a compact, n-dimensional, differential manifold M without boundary define

the z-analytic family {Lz}z∈Ω of elliptic, invertible, pseudodifferential operators, having

order m > 0. For simplicity, let it be denoted Lt = Lz(t).
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It is supposed that all the operators of the family have the same principal symbol, which

has a cone of minimum growth rays, that is, a cone of rays on C in which the principal

symbol does not have any eigenvalue.

Then, for all t ∈ [0, 1] it is satisfied

d

dt
lnDetζLt =

d

ds

∣∣∣∣
s=0

Tr

[
s.

(
d

dt
Lt

)
.L−s−1

t

]
, (4)

being the r.h.s. of this equality the “finite part” at s = 0 of the analytic extension of

Tr
[(

d
dt
Lt
)
.L−s−1

t

]
.

Theorem 1.2.

Let Ω be an open subset of the complex plane and let z(t) : [0, 1] −→ Ω be a differentiable

curve. Over a compact, n-dimensional, differential manifold M with boundary X define

the z-analytic family {Lz}z∈Ω of elliptic, invertible, pseudodifferential operators, having

order m > 0. Let B be the same elliptic boundary condition for each Lz. Let denote with

Lt the elliptic problem (Lz(t), B), for all t ∈ [0, 1].

It is supposed that all the operators of the family have the same principal symbol, which

has a cone of minimum growth rays.

Then, for all t ∈ [0, 1] it is satisfied

d

dt
lnDetζLt =

d

ds

∣∣∣∣
s=0

Tr

[
s.

(
d

dt
Lt

)
.L−s−1

t

]
, (5)

being the r.h.s. of this equality the “finite part” at s = 0 of the analytic extension of

Tr
[(

d
dt
Lt
)
.L−s−1

t

]
.

Next, the corresponding integrated version will be enunciated. In order to deduce the

first corollary it is enough to take the exponential function after integrating from 0 to to

in equations (4) or (5) of the previous theorems.

Corollary 1.3. (Integrated version)

Under the hypotheses of theorem 1.1 or theorem 1.2, it is true that

DetζLto
DetζL0

= exp

{∫ to

0

d

ds

∣∣∣∣
s=0

{
s.Tr

[
d

dt
(Lt).L

−s−1
t

]}
dt

}
.
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Corollary 1.4. (Logarithmic derivative trace class case)

Under the hypotheses of theorem 1.1 or theorem 1.2, if besides
(
d
dt
Lt
)
.L−1

t is a trace class

operator for all t, it is valid that

d

dt
logDetζLt =

d

ds
Tr

[
s.

(
d

dt
Lt

)
.L−s−1

t

]∣∣∣∣
s=0

=
d

dt
log det1

(
Lt.L

−1
0

)
, (6)

and also
DetζLto
DetζL0

= det1
(
Lto .L

−1
0

)
.

Remark 1.5. It should be noted that the previous corollary is just one of the results

established in [5].

2 Fredholm determinant and ζ-determinant regula-

rization method

2.1 Basic concepts, technical explanations and notation

As usual, N will denote the set of the positive integers, R the set of real numbers and C

the set of complex numbers. If ω ∈ C, its real and complex parts are denoted by Re(ω)

and Im(ω), respectively. The greek letters α, β, ... are used for multi-indexes of numbers

in N; in this way

α = (α1, α2, . . . , αn) , β = (β1, β2, . . . , βn)

α + β = (α1 + β1, α2 + β2, . . . αn + βn)

α! = α1!α2! . . . αn! , |α| = α1 + α2 + · · ·+ αn.

The letters x, y, ξ denote points in the Euclidean space Rn. Then,

x = (x1, x2, . . . , xn) , y = (y1, y2, . . . , yn)

< x, y >= x1y1 + x2y2 + · · ·+ xnyn

xα = xα1
1 x

α2
2 . . . xαnn

∂αx =
( ∂
∂x

)α
=
( ∂

∂x1

)α1
( ∂

∂x2

)α2 . . .
( ∂

∂xn

)αn
.
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LetM be a differential manifold equipped by a measure µ. The space of all the complex

valued functions defined over M having derivatives of every order will be denoted by

C∞(M) = {f : M −→ C / f is infinitely differentiable}.

In general, H will be understood a Hilbert space and the set of all the linear and

continuous operators T : H −→ H will be denoted L(H). In particular, the Hilbert space

of the square integrable functions f : M −→ C will be denoted by H = L2(M).

The letters L, L1, Lt, etc. indicate differential or pseudodifferential operators, and A,

B, etc. boundary conditions. For the vector bundles over M it will be written (E,M, πE)

and (F,M, πF ).

A classical pseudodifferential operator L of order m defined from the C∞ sections of

the vector bundle (E,M, πE) to the C∞ sections of another vector bundle (F,M, πF ) is a

linear operator that, for each local patch (O, ϕ) of M and for each local section f over O,

can be expressed

Lf(x) =
1

(2π)n

∫

Rn
e−i<ϕ(x),ξ> σ(L)(ϕ(x), ξ) f̂ ◦ ϕ−1(ξ) dξ,

where ĝ(ξ) indicates the Fourier transform of the function g, and σ(L)(y, ξ) is the so called

(full) symbol of L and is a C∞(Rn × Rn) function satisfying

∣∣∂αy ∂βξ σ(L)(y, ξ)
∣∣≤ Cαβ(1 + |ξ|)m−|β|,

for all pair of multi-indexes α, β and some constant C only depending on them.

In the case in which the (full) symbol σ(L)(x, ξ) of L admits an asymptotic expansion

∑
j≥0

am−j(x, ξ),

being am−j(x, ξ) the C∞(Rn × Rn) functions which are homogeneous in |ξ| ≥ 1 of degree

m − j, we say that the operator L belongs to the class Imh (M). The principal symbol

of L, denoted by σ0(L), is the function am(x, ξ) of the last asymptotic expansion of the

symbol.

The composition of two operators L1 and L2 belonging to Im1
h (M) and Im2

h (M), res-

pectively, is another classical pseudodifferential operator in the class Im1+m2
h (M). Its (full)
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symbol is given by the expression (cf. [3], [9]).

σ(L1 L2) = σ(L1) ◦ σ(L2) ∼
∞∑
j=0

∑

|α|=j

i|α|

α!

(
∂αξ p
)(
∂αx q
)
,

with p = σ(L1) and q = σ(L2). In particular, for the principal symbol we have the simple

relationship σ0(L1 L2) = σ0(L1)σ0(L2).

A k×k matrix of pseudodifferential operators L ∈ Imh (M) is called (uniformly) elliptic

if its principal symbol σ0(L) satisfies

|det σ0(L)(x, ξ)| ≥ C|ξ|mk, for |ξ| > N and C > 0.

When M is supposed a differential manifold with boundary X, for each (classical)

elliptic pseudodifferential operator L acting between the fibers of two vector bundles over

M , there exists a km × km matrix Q of pseudodifferential operators in the class of the

homogeneous zero order symbols I0
h(X), named the Calderón’s proyector over the modified

Cauchy data of the C∞ functions belonging to the kernel of L (cf. [3], [9]). The principal

symbol q of Q only depends on σ0(L) ([3]) and is a km × km matrix, which rank is

supposed r (constant). This is always true for n ≥ 3.

An elliptic boundary condition for the operator L is meant a r × km matrix B of

pseudodifferential operators in the class I0
h(X) such that

B : C∞(X,E)⊗ · · · ⊗ C∞(X,E)︸ ︷︷ ︸
m−times

−→ C∞(F̃ ),

where F̃ is a r-dimensional vectorial sub-bundle of F ⊗ · · · ⊗ F︸ ︷︷ ︸
m−times

, and the matrix bq has

constant rank equal to r ([3]). The principal symbol b of B is a r × km matrix. For

those L and B it is said that the boundary problem LB(L,B) is elliptic. Actually, LB

is the closed unbounded operator on L2(M), obtained as the closure of L acting on C∞

sections of E satisfying the boundary condition B on X ([3], [9]) . By L−1
B we mean the

bounded operator which is the inverse of LB, when it exists, and in this case we say that

the problem LB is invertible.
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Let us denote with T the linear application which gives the Cauchy data

T : C∞(M,E) −→ C∞(X,E)⊗ C∞(X,E)⊗ · · · ⊗ C∞(X,E)︸ ︷︷ ︸
m−times

u(x) = u(x′, xn) 7→ Tu(x) =
(
u(x′), ∂νu(x′), . . . , ∂m−1

ν u(x′)
)
,

where ν is unitary outward normal vector to the boundary X. For each point x in a

local chart of M intersecting X, it is written x = (x′, xn) ∈ M with x′ ∈ X and xn the

X-normal coordinate.

The unique function

G(x, y) : M ×M −→ Hom(F,E)

which is linear from the F -fiber over y to the E-fiber over x satisfying

(i) L(G(x, y)) = δ(x, y), being δ(x, y) the Dirac delta function, and

(ii) T (G(x, y)) ∈ Ker(B) , i. e. the Cauchy data of G(x, y) belong, as function of x,

to the kernel of the boundary operator B,

is called the Green function for the boundary problem LB = (L,B). This function G(x, y)

is the kernel of the inverse operator L−1
B . In what follows, G(x, y) will be written L−1

B (x, y)

when no confusion arises.

2.2 Trace class operators and Fredholm determinant

A compact operator A defined on a Hilbert space H is called to be a trace class operator

if

Tr(|A|) =
∞∑
j=1

µj(A) <∞, (7)

where µj(A), the singular values of A, are the eigenvalues of |A| =
√
A∗A. The set of the

trace class operators on H form an ideal denoted J1. If I denotes the identity operator

on H, the Fredholm determinant of L = I − A was defined by (1) as

det1 L =
∞∏
j=1

(1− λj),
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where {λj(A)}j denotes the proper values of A when A is a trace class operator. Of

course, its trace is given by

Tr(A) =
∞∑
j=1

λj(A) <∞.

The expression (7) defines a norm on J1, called the trace norm and denoted ‖A(z)‖1 =

Tr(|A|).
Also, the integral representation of the Fredholm determinant given in [8] will be used

det1(I − A) = exp

{
−
∫

γ

Tr
[
A (1− zA)−1

]
dz

}
, (8)

with γ : [0, 1] −→ C a continuous path such that γ(0) = 0 , γ(1) = 1 and that the

operator (1− zA)−1 exists and is bounded for all z in γ.

Differentiability properties of the Fredholm determinant

In this paragraph some properties connected with the differentiability of the Fredholm

determinants are recalled. The corresponding proofs can be found in [1].

Lemma 2.1.

Let A(z) : G −→ J1 a holomorphic application over an open subset G of C taking values

on the ideal J1 of the trace class operators equipped with the norm of L(H). Let us suppose

that the trace norm ‖A(z)‖1 of A(z) is bounded over each compact subset of G.

Then, the funtion det1(I − A(z)) : G −→ C is holomorphic.

Lemma 2.2.

Under the hypotheses of lemma 2.1 we have

• the derivative of A(z) is a trace class operator for all z ∈ G;

• the funtion Tr(A(z)) is holomorphic on G, and

• d
dz

[Tr(A(z))] = Tr
[
d
dz
A(z)

]
.

Remark 2.3. Since J1 is not a closed subspace of L(H) in the norm of the bounded

operators, the first statement is not evident at all.
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Lemma 2.4.

Under the hypotheses of lemma 2.1 it results

d

dz
ln(det1(I − A(z)) = −Tr

[
(I − A(z))−1 d

dz
(A(z))

]
.

Remark 2.5. Let us notice the very close connection between this last lemma and the

formula (8) given in [8].

2.3 ζ-determinant

Let L be an endomorphism on a vectorial space of finite dimension. If λ1, λ2, . . . , λk are

the eigenvalues of L repeated the times indicated by their multiplicities, the determinant

of L is defined by det1 Ldet L =
∏k

j=1 λj.

So much,

ln det L =
k∑
j=1

lnλj =
d

ds

[
−

k∑
j=1

λ−sj

]∣∣∣∣∣
s=0

= − d

ds

[
Tr
(
L−s

)]∣∣
s=0

,

for a suitable determination of the logarithm. From here it results

det L = exp

{
− d

ds

∣∣∣∣
s=0

[
Tr
(
L−s

)]}
. (9)

Let us treat the case of a classical elliptic pseudodifferential operator L of order m > 0

defined over the Hilbert space L2(M), if M is a compact manifold without boundary; or

an elliptic differential operator with elliptic boundary conditions also defined over L2(M),

when M is a compact differential manifold with boundary. Since L is an unbounded op-

erator, it is clear that the product of the eigenvalues is divergent. In order to establish for

this case a similar expression to (9) that allows to obtain a finite quantity as a function of

these eigenvalues, it is necessary to define the generalized Riemann ζ-function, associated

to the operator L. To that end it is imperative to precise the notion of complex powers

of L. Given a complex number s, one of the ways to define the operator L−s is ([12], [13]

and [15])

L−s = i
2π

∫
Γ
λ−s(L− λI)−1 dλ, if Re(s) > 0

L−s = Lk.L−(k+s), if − k < Re(s) ≤ −(k − 1) ≤ 0,



 (10)
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with k ≥ 1 an integer number and Γ = Γ1∪Γ2∪Γ3 the path on the complex plane, where

for some angle θ each path is defined by

Γ1 = {teiθ}, varying t from ∞ to ε > 0,

Γ2 = {|λ| = ε} clockwise oriented, and (11)

Γ3 = {teiθ}, varying t from ε to ∞,

assuming that there exists a cone of directions around the ray argλ = θ in such a way

that no eigenvalue of L belongs to the cone. In [12], [13] and [14] it was proved that the

function Tr
(
L−s

)
is holomorphic in a half-plane and that admits a meromorphic extension

to the whole complex s-plane, being analytic at s = 0. Then, the generalized Riemann

ζ-function, associated to L is defined by

ζ(L, s) = Tr
(
L−s

)
.

Note its similitude with the numerical Riemann ζ-function. In this way formula (9) gives

the definition of the regularized determinant of the operator L by means of the generalized

Riemann ζ-function and that, in what follows, it will be denoted DetζL. Therefore,

DetζL = exp

{
− d

ds

∣∣∣∣
s=0

ζ(L, s)

}
. (12)

3 Proofs

Proofs of theorems 1.1 and 1.2

Next, both proofs are jointly exhibited since they have the same structure.The reader is

advised about the necessity of keeping in mind the meaning of the notation Lt in each

theorems.

Under the hypotheses the complex powers of Lt are given by ([12], [13] and [15])

L−st = i
2π

∫
Γ
λ−s(Lt − λ)−1 dλ, if Re(s) > 0

L−st = Lkt .L
−(k+s)
t , if − k < Re(s) ≤ −(k − 1) ≤ 0,

where k ≥ 1 is an integer and Γ is the curve described in (10).

Let k > n
m

be an integer and s ∈ C such that Re(s) ≥ k. According to [12], [13], [14],

[15] and [17], L−st is a trace class operator and its kernel is continuous on the diagonal of
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M . Since the complex powers depend analytically on the parameter s ([10], [12]), from

lemma 2.2 it follows for Re(s) > k that

d

dt
Tr
(
L−st

)
=

d

dt
Tr
[
Lk−st L−kt

]

=
d

dt
Tr

[
i

2π

∫

Γ

λk−s(Lt − λ)−1 L−kt dλ

]

= Tr

{
i

2π

∫

Γ

λk−s
[
−(Lt − λ)−1 d

dt
(Lt) (Lt − λ)−1 L−kt +

+ (Lt − λ)−1

(
k∑
j=1

L−j+1
t

d

dt
(L−1

t )L−k+j
t

)]
dλ

}

= − i

2π

∫

Γ

λk−sTr
[
(Lt − λ)−1 d

dt
(Lt) (Lt − λ)−1 L−kt dλ

]
+

+
i

2π

k∑
j=1

∫

Γ

λk−sTr
[
−(Lt − λ)−1 L−j+1

t L−1
t

d

dt
(Lt)L

−1
t L−k+j

t

]
dλ.

By the cyclic property of the trace it can be written as

d

dt
Tr
(
L−st

)
= − i

2π

∫

Γ

λk−sTr
(

(Lt − λ)−2 d

dt
(Lt)L

−k
t

)
dλ−

− i

2π

k∑
j=1

∫

Γ

λk−sTr
[
(Lt − λ)−1 d

dt
(Lt)L

−k−1
t

]
dλ

= Tr

[
− i

2π

∫

Γ

λk−s(Lt − λ)−2 dλ
d

dt
(Lt)L

−k
t

]
− kTr

[
Lk−st

d

dt
(Lt)L

−k−1
t

]
.

Integrating by parts and taking into account that Re(s) > k, we have

d

dt
Tr
(
L−st

)
= Tr

[
(k − s) d

dt
(Lt)L

−s−1
t − k d

dt
(Lt)L

−s−1
t

]

= Tr

[
−s d

dt
(Lt)L

−s−1
t

]

= (−s).T r
[
d

dt
(Lt).L

−s−1
t

]
. (13)

As a function of s the r.h.s. of (13) has a meromorphic extension to the whole complex

plane ([12], [13], [14], [15] and [17]) with only simple poles possibly localized at

s = n− j
m

, for j = 1, 2, . . . . In particular, at s = 0 such extension is analytical.
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Eventually, in virtue of definition of ζ-determinant given by formula (12) and expression

(13), it is clear that

d

dt
lnDetζLt =

d

dt

{
− d

ds

∣∣∣∣
s=0

Tr
(
L−st

)}

= − d

ds

∣∣∣∣
s=0

{
d

dt
Tr
(
L−st

)}

=
d

ds

∣∣∣∣
s=0

{
s.Tr

[
d

dt
(Lt).L

−s−1
t

]}
. (14)

�
Proof of corollary 1.4

In fact, from the integral representation (8) of the Fredholm determinant det1 it results

that

d

ds

∣∣∣∣
s=0

{
s.Tr

[
d

dt
(Lt).L

−s−1
t

]}
= Tr

[
d

dt
(Lt).L

−1
t

]
=

d

dt
ln det1

(
Lt.L

−1
0

)
.

The conclusion follows straightforward after integrating the last equality from 0 to to and

taking the exponential function. �
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