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Abstract. Let k be an infinite field, A the polynomial ring k[x1, ..., xn] and F ∈ AN×M a
matrix such that ImF ⊂ AN is A -free (in particular, Quillen-Suslin Theorem implies that KerF
is also free). Let D be the maximum of the degrees of the entries of F and s the rank of F .
We show that there exists a basis {v1, . . . , vM} of AM such that {v1, . . . , vM−s} is a basis of
KerF , {F (vM−s+1), . . . , F (vM )} is a basis of ImF and the degrees of their coordinates are of
order ((M − s)sD)O(n4) .
This result allows to obtain a single exponential degree upper bound for a basis of the coordinate
ring of a reduced complete intersection variety in Noether position.
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1 Introduction

This article deals with the computation of the solutions of linear equation systems over a
polynomial ring. After the seminal paper by E.Mayr and A.Meyer [20], it is well known
the constraints of linear algebra methods as a tool in effective commutative algebra. In
particular, Mayr-Meyer’s monoid leads to an intrinsic hyperexponential growth of the
degrees of the syzygies.
In terms of linear equation systems this fact can be restated saying that there exist families
of polynomial matrices such that every system of generators of their kernels contains a
vector with at least one coordinate of double exponential degree. More precisely, in [7,
Corollaire, pag.10] the following result is shown :
Let ε > 0 . Let n and D be integers such that n ≥ 10 , D ≥ 3 , D ≥ 2 + 1

32ε . There
exists a polynomial sequence P1, . . . , Pn of degree bounded by D in A := k[x1, . . . , xn]
(where P1 := x1 , P2 := x2 ) such that any system of generators of the A -submodule
of An consisting of all the sequences Ui with

∑
i UiPi = 0 , contains at least one vector

whose first coordinate has degree ≥ N , where log2 log2N > (1
8 − ε)n+ log2 log2D − 9

4 .

However, under certain additional hypothesis on the matrix associated to the linear system,
more precise estimations can be done. For example, if the matrix is unimodular (i.e. the
rows can be extended to a basis of the whole space), a single exponential upper bound for
the degree of a basis of its kernel is given in [5, Corollary 3.2].
In the present paper we treat the more general case where the columns of the matrix
generate a free A -module (in particular, Quillen-Suslin Theorem assures that the kernel
is also free). In this case it is not too difficult to show a polynomial upper bound for the
degree of a system of generators of the kernel (see [2, Corollary 10] or Lemma 1 below).
Nevertheless our purpose here is to find bases of low degree for the kernel and the image.

More precisely, let k be an infinite field, A := k[x1, ..., xn] be the polynomial ring in the
indeterminates x1, . . . , xn and F ∈ AN×M be a matrix such that ImF is A -free. Denote
by D the maximum of the degrees of the entries of F and by s the rank of F . Therefore
we have (see Theorem 19 below) :

Theorem There exists a basis {v1, . . . , vM} of AM such that :

• {v1, . . . , vM−s} is a basis of KerF ;

• the coordinates of the vectors vj have degrees of order ((M − s)sD)O(n3) for j =
1, . . . ,M − s .

• {F (vM−s+1), . . . , F (vM )} is a basis of ImF .

• the coordinates of the vectors vj have degrees of order ((M − s)sD)O(n4) for j =
M − s+ 1, . . . ,M .

Under suitable stronger conditions (for instance, if F corresponds to the matrix of a linear
projection) the degree upper bounds of the Theorem can be slightly improved (see Section
6).

2



The methods we use in order to prove the main theorem (developed in Sections 2 to 5) are
strongly inspired on the works of D.Quillen, A.Suslin, L.Vaserstein and M.Hochster related
to the resolution of the so called “Serre’s Conjecture” (on this subject let us mention the
remarkable books of T.Y.Lam [17] and E.Kunz [15]). We combine this approach with the
effective version of Hilbert Nullstellensatz (see [13], [9] and the references given in [3] and
[23]) and its consequences in the quantitative study of polynomial unimodular matrices
following [5]. Other approaches on effective Quillen-Suslin Theorem may be found in [18]
and [19].

The last section is devoted to an application of the mentioned theorem in the frame of
effective commutative algebra : let k be an infinite field and f1, . . . , fn−r be a regular
sequence in k[x1, . . . , xn] of degrees bounded by an integer d . Suppose that the variables
x1, . . . , xn are in Noether position with respect to the polynomials fi (i.e. the natural
map k[x1, . . . , xr]→ k[x1, . . . , xn]/(f1, . . . , fn−r) is an injective and integral morphism).
Write R := k[x1, . . . , xr] and S := k[x1, . . . , xn]/(f1, . . . , fn−r) . It is well known (see for
example [8, Corollary 18.17] or [12, Lemma 3.3.1]) that, under these conditions, S is a
locally free R -module of finite rank (bounded by dn−r following Bezout’s Inequality) and
hence free (Quillen-Suslin Theorem).
This situation appears frequently in problems related to effective elimination theory (see
[21], [12], [6], [1], [14], [11]). In this context it is natural to ask about quantitative prop-
erties of bases of the module S . To our knowledge the only significative result for this
problem deals with the homogeneous case, where a basis whose coordinates have single
exponential degree is obtained with the aid of elementary properties of Gröbner bases.
In this sense we obtain the following result (see Theorem 27 below) :

Theorem Suppose that S is a reduced ring. Then, there exist a basis of S over R
formed by polynomials of degrees of order dO((n−r)r4)) .

The proof of this theorem combines the previous results of linear algebra over the polyno-
mial ring with consequences of Gorenstein duality theory.

The methods of the proofs of both theorems are explicit and they can be easily trans-
formed into algorithmic procedures; however their complexity bounds are too bad, even
for theoretical purposes. Therefore the problem of how to find single exponential algo-
rithms remains open.

Aknowledgements: The third author (P.S.) thanks the Laboratoire GAGE, Ecole Polytechnique,
Palaiseau, specially Prof. Marc Giusti, for its hospitality during the winter season 96-97.

2 A system of generators for the kernel of F

Let k be an infinite field, A := k[x1, ..., xn] and F ∈ AN×M a matrix verifying that ImF
is a free A -module. In this case, Quillen-Suslin Theorem (see for instance [15, Ch.IV,
Th.3.15.]) implies that KerF is also free. Denote by D the maximum of the degrees
of the entries of F and by s the rank of F . The columns of F will be denoted by
C1, . . . , CM .
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With these notations we are able to estimate a system of generators of KerF of low degree
(see also [2, Corollary 10]) :

Lemma 1 The kernel of the matrix F can be generated as an A -module by 3(M −
s)(sD)n polynomial vectors with degrees bounded by sD .

Proof.- Since s = rkF there exists at least one non zero s × s minor; without loss of
generality, let us suppose that the first s× s principal minor δ is non zero (in particular,
the first s columns are linearly independent). Therefore, by Cramer’s rule, we have for
i = 1, ...,M − s :

δ Cs+i = b1iC1 + · · ·+ bsiCs , (1)

where bji are polynomials in A uniquely determined, whose degrees are bounded by sD .
Dividing relation (1) by the GCD of b1i, . . . , bsi, δ we obtain new relations

δi Cs+i = b′1iC1 + · · ·+ b′siCs. (2)

Clearly, the vectors

wi := (b′1i, . . . , b
′
si, 0, . . . ,−δi, . . . , 0),

where −δi occurs in the coordinate s+ i , belong to KerF .
Repeating this construction for all the s × s non zero minors of F , we get a family of
vectors lying in the kernel.
We claim that this family generates KerF .
For this it is enough to show that for any maximal ideal M ⊂ A these vectors span the
kernel of the corresponding localized application F : AMM → ANM .
Clearly, the columns C1, . . . , CM generate ImFM ; by Nakayama’s Lemma, since ImFM/MImFM
is a s -dimensional vector space, we deduce that there exists a basis of ImFM consist-
ing of s suitable columns of the matrix F . Without loss of generality, we may suppose
that C1, . . . , Cs is an AM -basis of ImFM and therefore, there exist p1i, . . . , psi ∈ A and
qi ∈ A \M , such that

qiCs+i = p1iC1 + . . .+ psiCs, (3)

for i = 1, . . . ,M − s .
We now show that no δi in (2) belongs to M : suppose on the contrary that δj ∈ M ,
from the relations (2) and (3) we deduce :

qjb
′
kj = pkjδj

for k = 1, . . . ,M − s . In particular, since qj /∈ M , all the irreducible factors of δj
which belong to M are also factors of all the b′kj ’s. This contradicts the coprimality of
b′1j , . . . , b

′
sj , δj .

We finish the claim remarking that the vectors wi are an AM -basis of KerFM because
they are a basis of the vector space KerFM/MKerFM (they are M − s linearly inde-
pendent vectors).
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In order to shrink the obtained system of generators, for every non zero minor δ we
modify slightly the vectors wi in the following way: let gδ := mcm(δ1, . . . , δM−s) and set
w̃i :=

gδ
δi
wi .

Let us observe that:

• w̃i ∈ AM .

• The coordinates of w̃i have degrees bounded by sD (observe that gδ divides δ ).

• If δi /∈ M for i = 1, . . .M − s , then gδ /∈ M . In particular the vectors w̃i are a
system of generators of KerFM and the ideal generated by the polynomials gδ is
A .

• If δ runs over all the non zero s× s minors, the corresponding vectors w̃i generate
KerF .

Since gδ divides δ , the degrees of the polynomials gδ are bounded by sD and then they

span a k vector space of dimension smaller than
(
n+ sD
sD

)
≤ e(sD)n .

Fix a maximal k -linearly independent family of gδ ’s; for each one of these gδ ’s consider
the M − s vectors associated to it. The collection of all these vectors is also a system of
generators of KerF .

3 A free k[x1, . . . , xn−1]-module related to ImF

From now on we write B for the polynomial ring k[x1, . . . , xn−1] .

Since ImF is a free A -module of rank s > 0 , there is a non zero s× s minor of F ; after
a linear change of coordinates, we may assume that the first s× s principal minor, µ , is
monic with respect to each variable x1, . . . , xn .

Remark 2 Under this assumption the image of the matrix F (0) ∈ BN×M , obtained by
replacing xn by 0 in F , is B -free. Moreover, let h1, . . . , hs ∈ AN be a basis of ImF
and w1, . . . , wt ∈ AM be the system of generators of KerF constructed in Lemma 1.
Then the corresponding vectors h1(0), . . . , hs(0) and w1(0), . . . , wt(0) are a B -basis of
ImF (0) and a B -system of generators of KerF (0) respectively.
In fact, let v ∈ ImF (0) and v′ ∈ BM be such that F (0)(v′) = v ; since F (v′) is an
A -linear combination of the vectors h1, . . . , hs , replacing xn by 0 , one deduces that v
is a B -linear combination of the vectors hj(0) ’s. The assumption about the s× s minor
µ implies that the rank of ImF (0) over the fraction field of B is also s . Therefore
h1(0), . . . , hs(0) are B -linearly independent.
In a similar way the assertion about the generators of KerF (0) follows.

Let L be the free submodule of AN generated by the first s columns C1, . . . , Cs . Consider
the exact sequence

0→ L→ ImF → Q→ 0 (4)
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where Q := ImF/L .

Clearly, Q is generated by the images of the columns Cs+1, . . . , CM and then µQ = 0
(due to the relations (1) for δ = µ ).
We write d := degxn µ− 1 (note that d ≤ sD − 1 ).
Since µ is monic in xn , Q admits a natural B -module structure of finite type generated
by the images of the elements xjnCi with j = 0, . . . , d and i = s+ 1, . . . ,M .

Proposition 3 The B -module Q is free of finite rank.

Proof.- Let ℘ ⊂ B be a maximal ideal; tensoring the exact sequence (4) (as a sequence of
B -modules) by B/℘ , we claim that the sequence of B/℘ -vector spaces

0→ L/℘L→ ImF/℘ImF → Q/℘Q→ 0 (5)

is exact.
To prove our claim it is enough to show that the injection L ↪→ ImF is preserved after
tensoring. In fact, let w := α1C1 + · · ·+ αsCs be an element in L ∩ ℘ImF .
Then w may be written as a linear combination of the columns C1, . . . , CM with coeffi-
cients in ℘A .
Then we have :

α1C1 + · · ·+ αsCs = w = β1C1 + · · ·+ βMCM

with αj ∈ A and βi ∈ ℘A . Multiplying this equality by µ and using (1) we deduce the
relations :

µαj = µβj +
M−s∑
i=1

βs+ibji

for j = 1, ..., s.
Regarding this formula as a polynomial identity in B[xn] and comparing coefficients (recall
µ is monic) we observe that the αj ’s belong to ℘A and then w ∈ ℘L , i.e. w = 0 in
L/℘L .
From the exactness of (5) we deduce that Q is a locally projective B -module and then
projective (see [15, Ch.IV, Prop.3.4]). Therefore it is a free B -module of finite type, by
Quillen-Suslin.

Definition 4 For k = 0, . . . , d and i = s + 1, . . . ,M , let xknCi be the canonical system
of generators of Q over B , and let m := (d+ 1)(M − s) .
Let e0,s+1, e1,s+1, . . . , ed,s+1, . . . , ed,M be the canonical basis of Bm . Therefore, we have
a surjective map ϕ : Bm → Q , defined as ϕ(eki) := xknCi (observe that Kerϕ is B -free).

We are interested now in the computation of a system of generators for Kerϕ of low degree.
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Let w1, . . . , wt be a system of generators of KerF as in Lemma 1 (in particular, t ≤
e(M −s)(sD)n ). Since µ is monic in xn , we can compute the euclidean division in B[xn]
for each coordinate, and we write :

wj = µqj + rj (6)

where qj and rj are in AM and the degree in xn of each coordinate of rj is bounded
by d , meanwhile, the total degree is bounded by (sD)2 .

For each xknrj ∈ AM with j = 1, . . . , t and k = 0, . . . , d , we compute again the euclidean
division :

xknrj = µqkj + rkj (7)

where rkj ∈ AM , deg rkj = 2(sD)3 and degxn rkj ≤ d .

For each vector rkj , we consider the vector Vkj consisting of the M − s last coordinates.
We replace the multi-index kj by h = 1, . . . , t(d+ 1) .
For each h , Vh can be decomposed :

Vh = Vh,0 + xnVh,1 + · · ·+ xdnVh,d

and each Vh,k , being a vector in BM−s , can be written

Vh,k = (Vh,k,s+1, . . . , Vh,k,M ).

Proposition 5 The vectors (Vh,0,s+1, Vh,1,s+1, . . . , Vh,d,s+1, . . . , Vh,d,M ) ∈ B(d+1)(M−s) ,
with h = 1, . . . , t(d+ 1) , are a system of generators of Kerϕ .

Proof.- First, we show that these vectors belong to Kerϕ .
Applying the definition of ϕ , we have

ϕ(Vh,0,s+1, Vh,1,s+1, . . . , Vh,d,s+1, . . . , Vh,d,M ) =
∑
i,k

Vh,k,ixknCi =
N∑

i=s+1

Qh,iCi.

with Qh,i :=
∑
k Vh,k,ix

k
n .

It suffices to show that
∑M
i=s+1Qh,iCi ∈ L .

With the notations above; Vh = (Qh,s+1, . . . , Qh,M ) , and then, reversing the euclidean
divisions (7) and (6), there exist P1, . . . , Ps ∈ A such that :

(P1, . . . , Ps, Qh,s+1, . . . , Qh,M ) = xknw + µr

where k ∈ IN , w ∈ KerF and r ∈ AM .
Multiplying this identity by the “column vector” (C1, . . . , CM ) we obtain :

s∑
i=1

PiCi +
M∑

i=s+1

Qh,iCi = µ
M∑
i=1

riCi,

because w ∈ KerF .
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Since µCi ∈ L for all i = 1, . . . ,M , we deduce that
∑
iQh,iCi ∈ L , and so, the vectors

are in Kerϕ .

Now, we will show that they are a system of generators of Kerϕ .
Let (q0,s+1, q1,s+1, . . . , qd,M ) be an element in Kerϕ ⊂ B(d+1)(M−s) ; that is to say

q0,s+1Cs+1 + q1,s+1xnCs+1 + . . .+ qd,Mx
d
nCM ∈ L.

Writing Qi :=
∑
k qk,ix

k
n , we know that there exist P1, . . . , Ps ∈ A such that

Qs+1Cs+1 + · · ·+QMCM = P1C1 + · · ·+ PsCs.

This means that the vector (−P1, . . . ,−Ps, Qs+1, . . . , QM ) ∈ AM belong to KerF , and
then, if {w1, . . . , wt} is the system of generators of KerF constructed in Lemma 1, there
exist α1, . . . αt ∈ A such that

(−P1, . . . ,−Ps, Qs+1, . . . , QN ) =
∑

αjwj .

Dividing the αj ’s and wj ’s by µ , we can write, for a certain w ∈ AM

(−P1, . . . ,−Ps, Qs+1, . . . , QM ) = µw +
∑

βjrj

where degxn βj ≤ d and rj are the ones defined in (6).
Repeating the division (7) we obtain

(−P1, . . . ,−Ps, Qs+1, . . . , QM ) = µw′ +
∑

βkjrkj

with βkj ∈ B (see (7)).
Comparing the last M − s coordinates, and simplifying the notation, we have

(Qs+1, . . . , QM ) = µv +
∑

βhVh

for a certain v ∈ AM−s .
Since βh ∈ B for all index h , and since degxn Qi and degxn Vh are strictly lower than
degxn µ , we obtain that v is zero from the uniqueness of the euclidean algorithm in B[xn] .
Then

(Qs+1, . . . , QM ) ∈ BV1 + · · ·+BVt(d+1).

The proof finishes developing this identity in powers of xn .

With the notations above, we observe that t ≤ e(M − s)(sD)n , d ≤ sD and deg Vh =
2(sD)3 , and then we have the following result:

Lemma 6 There exists a matrix G ∈ Bm×p , where m := (M−s)(d+1) , p := t(d+1) ≤
e(M − s)(sD)n+1 and degG = 2(sD)3 , such that ImG = Kerϕ .

Proof.- Take G as the matrix whose columns are the vectors (Vh,0,s+1, Vh,1,s+1, . . . , Vh,d,s+1, . . . , Vh,d,M ) ,
h = 1, . . . , p .

Observe that m ≤ p since M − s = rk (KerF ) ≤ t .
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4 Another local presentation for ImF

This section is devoted to exhibit a presentation of ImF under a suitable localization in
an element of the ring B (Lemma 14 below).

Let G ∈ Bm×p be the matrix from Lemma 6 and let q ≤ m be the rank of the B -module
Kerϕ (which is free because Q is free and B is a polynomial ring). The q × q minors
of G generate the ring B (since ImG = Kerϕ is a direct summand of Bm ) and their
degrees are bounded by 2q(sD)3 (therefore by 2(M − s)(sD)4 ).
Let ξ be a non zero q × q minor. Without loss of generality we may suppose that ξ
involves the first q columns of G that we will denote by K1, . . . ,Kq .

For the m− q rows not used in the construction of the minor ξ , let ek1,i1 , . . . , ekm−q ,im−q
be the corresponding m− q vectors of the canonical basis of Bm (see Definition 4). For
the sake of simplicity we will denote ekj ,ij by uj , j = 1, . . . ,m− q .
Clearly K1, . . . ,Kq, u1, . . . , um−q are a basis of Bm

ξ since the determinant of the corre-
sponding m×m matrix Z is ±ξ .
Then we have

Proposition 7 The vectors ϕ(ekj ,ij ) = x
kj
n Cij , j = 1, . . . ,m − q , are a basis of the

Bξ -module Qξ .

Meanwhile consider the vectors xk1
n Ci1 , . . . , x

km−q
n Cim−q , C1, . . . , Cs .

From Proposition 7 and the definition of the B -module Q (see (4)), for each index ` ,
` = 1, . . . ,m−q , there exist unique β̃(`)

1 , . . . , β̃
(`)
m−q ∈ Bξ and α̃

(`)
1 , . . . , α̃

(`)
s ∈ Aξ such that

−xn xk`n Ci` =
m−q∑
j=1

β̃
(`)
j x

kj
n Cij +

s∑
i=1

α̃
(`)
i Ci. (8)

We will analize this relations more deeply.

First assume k` < d : then −x1+k`
n Ci` = −ϕ(e) for a certain vector e of the canonical

basis of Bm (see Definition 4).
On the other hand we can write in Bm

ξ :

−e = λ1K1 + · · ·+ λqKq + λq+1u1 + · · ·+ λmum−q (9)

for certain (λ1, . . . , λm) ∈ Bm
ξ .

Hence, applying ϕ we have

−ϕ(e) = −x1+k`
n Ci` = −xnϕ(u`) =

m−q∑
j=1

λq+jϕ(uj)

(recall that ϕ(Kl) = 0 for all l ). Therefore in (8) we can take β̃
(`)
j := λq+j , for all j .

In order to estimate the degree of λq+j we consider the product of (9) by the matrix
Z−1 :

9



−Z−1 e =

 λ1
...
λm

 .
In particular, the λq+j ’s are the last m − q entries of a column of the matrix −Z−1 .
Since Z belongs to Bm×m and det(Z) = ±ξ we can write

β̃
(`)
j =

β
(`)
j

ξ
(10)

where, by Cramer’s rule, the β
(`)
j ’s are polynomials in B whose degrees are bounded by

(m− 1)2(sD)3 ≤ 2m(sD)3 .
For the case k` = d , instead of −x1+k`

n Ci` , we write (xd+1
n − µ)Ci` and the argument

runs similarly. Here the upper bound for the polynomials β(`)
j is 2(m− 1)(sD)3 + (sD) ≤

2m(sD)3 .

In order to obtain an estimation for the degrees in (8) it remains only to bound the degrees
of the α̃

(`)
i ’s.

Rewriting formula (8), we construct Q1, . . . , QM−s ∈ Bξ[xn] such that the equality

Q1Cs+1 + · · ·+QM−sCM =
s∑
i=1

α̃
(`)
i Ci

holds in ANξ and ξQl ∈ A for all l = 1, . . . ,M − s are polynomials of degree bounded by
d+ 2m(sD)3 .
On the other hand, relation (1) for the first s × s minor µ of the matrix F yields the
equality :

Q1Cs+1 + · · ·+QM−sCM = Q1

s∑
r=1

br1
µ
Cr + · · ·+QM−s

s∑
r=1

br,M−s
µ

Cr.

Taking into account that the columns C1, . . . , Cs are linearly independent, we deduce :

α̃
(`)
i =

∑M−s
l=1 bilQl
µ

.

Let h be the minimal exponent such that ξhα
(`)
i ∈ A . Since ξQl ∈ A for all l and the

polynomials µ and ξ are relatively primes (because µ is monic in all the variables and ξ
belongs to B ), we deduce that h ≤ 1 , and then

ξα̃
(`)
i ∈ A and µ divides ξ

M−s∑
l=1

bilQl in A. (11)

Therefore, by (1) , (10) and (11) :

deg(ξα̃(`)
i ) ≤ max

l
{deg(bilξQl)} ≤ (sD) + max

j
{deg β(`)

j }+ d ≤ (sD) + 2m(sD)3 + d.
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Since m ≤ (M − s)sD , we are able to rewrite (8) as follows :

−xn xk`n Ci` =
m−q∑
j=1

β
(`)
j

ξ
x
kj
n Cij +

s∑
i=1

α
(`)
i

ξ
Ci , (12)

where β(`)
j ∈ B , α(`)

i ∈ A and deg β(`)
j , degα(`)

i ≤ 4(M −s)(sD)4 for all indices j , i and
` .

The following definition allows to show a new local presentation of ImF which we will
consider in the sequel.

Definition 8 Let ψ : Am−q+s → ImF be the linear application defined by :
– ψ(ej) = x

kj
n Cij , for all j = 1, . . . ,m− q,

– ψ(ej) = Cj−m+q , for all j = m− q + 1, . . . ,m− q + s .
Observe that ψ depends on the choice of the minor ξ .
The localized morphism ψξ is surjective (Proposition 7 and the definition of Q ), and then
Kerψξ is a projective Aξ -module because ImFξ is Aξ -free

With the notations above we have the following result borrowed from [15, Ch.IV, page
115]:

Proposition 9 The matrix U ∈ A(m−q)×(m−q+s)
ξ , where the ` -th row is the vector

(
β

(`)
1
ξ
, . . . ,

β
(`)
m−q
ξ

,
α

(`)
1
ξ
, . . . ,

α
(`)
s

ξ
) + xne`

( e` is the ` -th vector of the canonical basis of Am−q ), is a unimodular matrix in Aξ (i.e.
the (m−q)× (m−q) minors generate the ring Aξ ) and its rows are a basis of Kerψξ (in
particular Kerψξ is free). Moreover ξU ∈ A(m−q)×(m−q+s) and deg ξU ≤ 4(M−s)(sD)4 .

Proof.- Let S ⊂ Am−q+sξ be the submodule generated by the rows of the matrix U . From
the relations (12) it is clear that S ⊂ Kerψξ .
In order to see the other inclusion, we observe the following : for all ` = 1, . . . ,m− q and
for all p ∈ Aξ there exist γ1, . . . , γm−q ∈ Bξ and γm−q+1, . . . , γm−q+s ∈ Aξ (depending
on ` and p ) such that

pe` −
m−q+s∑
j=1

γjej ∈ S.

This can be done developing p in powers of the variable xn .
Therefore, if (p1, . . . , pm−q+s) ∈ Kerψξ , we can rewrite it as follows

(p1, . . . , pm−q+s) = w +
m−q+s∑
j=1

γjej

where w ∈ S , γ1, . . . , γm−q ∈ Bξ and γm−q+1, . . . , γm−q+s ∈ Aξ .
Applying ψ we have the following identity in ImFξ :
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0 =
m−q∑
j=1

γj x
kj
n Cij +

m−q+s∑
j=m−q+1

γjCj−m+q. (13)

Looking this equality modulo the free Aξ -module Lξ (see (4) in Section 3) one deduces
the relation in Qξ :

0 =
m−q∑
j=1

γj x
kj
n Cij ,

and, since the elements xkjn Cij , j = 1, . . . ,m− q , are a Bξ -basis of Qξ (see Proposition
7), we have γj = 0 for j = 1, . . . ,m− q .
Thus, the linear combination (13) can be reduced to

0 =
m−q+s∑
j=m−q+1

γjCj−m+q.

Since the vectors C1, . . . , Cs are linearly independent we have also γj = 0 for j = m −
q + 1, . . . ,m− q + s . Then (p1, . . . , pm−q+s) ∈ S and therefore S = Kerψξ .
Moreover, the rows of the matrix U are a Aξ -basis of Kerψξ : ImFξ is Aξ -free of rank
s and then Kerψξ is locally free of rank m− q ; since the rows of the matrix U generate
Kerψξ , by Nakayama’s Lemma, they are a basis for the localization in any maximal ideal
of Aξ and then they are Aξ -linearly independent.
The unimodularity of the matrix U follows from the decomposition Am−q+sξ ' Kerψξ ⊕
ImFξ .

Following [15, Ch.IV, Lemma 3.12] we are able to simplify the matrix U using “xn -
division with remainder” between the matrix formed by the last s columns of U and the
matrix consisting of the first m− q columns of U in the obvious way :

Proposition 10 There exists an invertible matrix C ∈ A(m−q+s)×(m−q+s)
ξ verifying

UC =

 |
xnIdm−q + U1 | U2

|


where ξU1 ∈ B(m−q)×(m−q) , ξ4(M−s)(sD)4

U2 ∈ B(m−q)×s , et ξ4(M−s)(sD)4
C ∈ A(m−q+s)×(m−q+s)

are matrices whose entries have degrees bounded by 16(M − s)2(sD)8 .

The matrix U can be modified by another change of coordinates in such a way that all its
entries belong to a suitable localization of the ring B . For this purpose it is convenient
to consider the matrix UC in Proposition 10 as a k(x1, . . . , xn−1)[xn] -unimodular matrix
in order to apply Suslin’s reduction procedure following [17] and [5] (see the next two
lemmas). Unfortunately this approach requires the introduction of certain polynomials in
B playing the rôle of the ξ ’s. Fortunately their amount and degrees can be appropriately
controlled (Corollary 13 below).

In the following two lemmas V will denote the matrix UC from Proposition 10.
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Lemma 11 (cf. [5, Lemma 4.4]) For each z ∈ IAn−1 \ {ξ = 0} there exists an invert-
ible matrix Λz ∈ k(m−q+s)×(m−q+s) such that: if V ′ := V Λz , ∆1 := det[V ′1 , . . . , V

′
m−q] ,

(the (m − q) × (m − q) minor built from the first m − q columns of V ′ ), ∆2 :=
det[V ′1 , . . . , V

′
m−q−1, V

′
m−q+1] and cz := Resxn(∆1,∆2) the resultant of ∆1 and ∆2 with

respect to the indeterminate xn , then cz(z) 6= 0 .

Proof.- Let z = (z1, . . . , zn−1) ∈ IAn−1 \ {ξ = 0} be given; let k[yij ; 1 ≤ i, j ≤ m− q + s]
be the polynomial ring in (m− q + s)2 new indeterminates over k . By Y we denote the
m−q+s square matrix [yij ] with columns Y1, . . . , Ym−q+s . We write Y ′ and Y ′′ for the
(m− q+ s)× (m− q) matrices [Y1, . . . , Ym−q] and [Y1, . . . , Ym−q−1, Ym−q+1] respectively.
Let V ′ := V Y .
From the Binet-Cauchy formula ([10, Ch.2]) we see that:

∆1 := det[V ′1 , . . . , V
′
m−q] =

∑
I

det(VI) det((tY ′)I) (14)

∆2 := det[V ′1 , . . . , V
′
m−q−1, V

′
m−q+1] =

∑
I

det(VI) det((tY ′′)I)

where I runs through all sequences (i1, . . . , im−q) such that 1 ≤ i1 < · · · < im−q ≤
m− q + s .
Let c := c(x1, . . . , xn−1, Y ) := Resxn(∆1,∆2) be the resultant of ∆1 and ∆2 with respect
to the indeterminate xn .
Claim.- c(z, Y ) = c(z1, . . . , zn−1, Y ) 6= 0 .
Proof of the claim. From Proposition 10 we have that the polynomial det[V1, . . . , Vm−q]
is monic in xn and m− q = degxn(det[V1, . . . , Vm−q]) > degxn(det(VI)) for all sequences
of natural numbers I = (i1, . . . , im−q) with 1 ≤ i1 < · · · < im−q ≤ m − q + s and
I 6= (1, . . . ,m− q) .
Thus (14) implies that c(z, Y ) = c(z1, . . . , zn−1, Y ) = Resxn(∆1(z, xn, Y ′),∆2(z, xn, Y ′′)) .
Suppose now that c(z, Y ) = 0 . Then there exists p ∈ k[xn, Y ] with degxn(p) ≥ 1
such that p divides both ∆1(z, xn, Y ′) and ∆2(z, xn, Y ′′) . In particular we have p ∈
k[xn, Y1, . . . , Ym−q−1] . Let h ∈k[xn, Y ′] be such that

ph = ∆1 =
∑
I

det(VI(z, xn)) det((tY ′)I). (15)

Let I ⊂ k[xn][Y ′] be the ideal generated by all the determinants det((tY ′)I) ; I is a
homogeneous prime ideal (see [4, Ch.2, Th.2.10]). From (15) we see that p and h must
be homogeneous in Y ′ and that degY ′(p) + degY ′(h) = m− q . The polynomial p doesn’t
belong to I since it is independent from Ym−q .
Since ∆1 ∈ I by (15) and I is prime we conclude h ∈ I and degY ′(h) ≥ m − q . Thus
degY ′(p) = 0 , i.e. p ∈k[xn] . Now, again by (15), we see that p divides all det(VI(z, xn)) .
The unimodularity of V (Propositions 9 and 10) implies that the ideal generated by
all polynomials det(VI(z, xn)) is trivial in k[xn] . Therefore p ∈ k , which contradicts
degxn(p) ≥ 1 . This finishes the proof of the claim.
Since k is infinite and since c(z, Y ) 6= 0 there exists Λz ∈ GLm−q+s(k) such that
c(z,Λz) 6= 0 .
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Lemma 12 (cf. [5, Lemma 4.5]) Let z ∈ IAn−1 \ {ξ = 0} , Λz ∈ GLm−q+s(k) , V ′ =
V Λz , ∆1 , ∆2 and cz ∈ Bξ be as in Lemma 11. Then there exists an invertible matrix
Ω ∈ A(m−q+s)×(m−q+s)

czξ
such that V Ω = V (0) (where V (0) denotes the matrix V after

the evaluation xn 7→ 0 ) and (czξu)lΩ is a polynomial matrix in A(m−q+s)×(m−q+s) . The
degrees of the entries of (czξu)lΩ and the integers u and l are of order ((M−s)sD)O(1) ,
independently of z .

Proof.- Let z ∈ IAn−1 \{ ξ = 0 } , c := cz and g, h ∈ Bξ[xn] be such that c = g∆1 +h∆2.
From Proposition 10, without loss of generality, we may assume that there exists a constant
η ∈ IN independent of z , of order ((M−s)sD)O(1) , such that ξηg , ξηh are polynomials in
A , ξηc belongs to B , and the total degrees of these polynomials are bounded by another
constant of size ((M − s)sD)O(1) .
For each j , m− q+ 2 ≤ j ≤ m− q+ s , there exists a column vector Gj ∈ A(m−q)×1

cξ with
controlled degrees such that V ′j (0)−V ′j = cGj . Therefore V ′j (0)−V ′j = g∆1Gj +h∆2Gj .
Let B1 := adj[V ′1 , . . . , V

′
m−q] be the adjoint matrix of the (m− q) × (m − q) matrix

[V ′1 , . . . , V
′
m−q] . Simmilarly, let B2 be the adjoint of the matrix [V ′1 , . . . , V

′
m−q−1, V

′
m−q+1] .

Thus:
∆1gGj = [V ′1 , . . . , V

′
m−q](B1gGj)

and
∆2hGj = [V ′1 , . . . , V

′
m−q−1, V

′
m−q+1](B2hGj) .

From these equalities we conclude that

V ′j (0)− V ′j = g1V
′

1 + · · ·+ gm−q+1V
′
m−q+1

for suitable g1, . . . , gm−q+1 ∈ Acξ .
This holds for all m− q+ 2 ≤ j ≤ m− q+ s . Therefore there exists a unimodular matrix
Ω′ in Acξ which is a product of (m− q + 1)(s− 1) elementary matrices and such that:

V Ω′ = [V ′1 , . . . , V
′
m−q+1, V

′
m−q+2(0), . . . , V ′m−q+s(0)].

Let T be the (m− q + 1)× (m− q + 1) matrix defined by

T :=
1
c

adj
(V ′1 .... V ′m−q V ′m−q+1

0 .... −h g

)(V ′1(0) .... V ′m−q(0) V ′m−q+1(0)
0 .... −h(0) g(0)

)
.

Since c does not depend on xn it is easy to see that T ∈ A(m−q+1)×(m−q+1)
cξ and det(T ) =

1 . Therefore T ∈ SLm−q+1(Acξ) . Moreover, we have

[V ′1 , . . . , V
′
m−q+1]T = [V ′1(0), . . . , V ′m−q+1(0)].

One easily checks now that Ω := Ω′
(
T 0
0 Ids−1

)
verifies the assertion.

From Lemma 11 and Lemma 12 one deduces:

Corollary 13 For each non zero q × q minor ξ of the matrix G (see Lemma 6) there
exist polynomials ξ1, . . . , ξL ∈ B whose degrees are of order ((M − s)sD)O(1) and L =
((M − s)sD)O(n) , such that
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1. The ring B is generated by the polynomials ξξj where ξ runs over all the non zero
q × q minors of G and j = 1, . . . , L .

2. The image of the localized map ψξξj (Definition 8) is ImFξξj .

3. The kernel of ψξξj is a free module generated by m−q polynomial vectors in Bm−q+s

of degrees of order ((M − s)sD)O(1) .

Proof.- For each minor ξ we construct the polynomials ξj as follows : consider the k -
linear space generated by the polynomials czξ

u ∈ B of Lemma 12, where z runs in the
set IAn−1 \ {ξ = 0} ; since deg(czξu) = ((M − s)sD)O(1) , the dimension of this space is
bounded by ((M − s)sD)O(n) . The polynomials ξj ’s are chosen as a basis of this space.
From Lemma 11 and Hilbert Nullstellensatz one deduces that the polynomials ξξj generate
Bξ ; on the other hand the minors ξ generate the ring B (recall that ImG is a direct
summand of Bm ) and then the first condition is verified.
The second condition follows from Definition 8.
Fix ξξj and let z ∈ IAn−1 be such that ξj = czξ

u . Let Ω ∈ A(m−q+s)×(m−q+s)
ξξj

be the
matrix from Lemma 12 associated to z . Therefore the rows of V Ω = V (0) form a basis
of Kerψξξj . Multiplying these vectors by a suitable power of ξ as in Proposition 10 we
finish the proof.

Consider now a polynomial ξξj and let W ∈ B(m−q)×(m−q+s) be the matrix whose rows
are a basis of Kerψξξj as in the previous corollary. Since W is Bξξj -unimodular (because
Imψξξj is free) its (m−q)×(m−q) minors γi, i ∈ I , generate the ring Bξξj . The degrees
of these minors are clearly bounded by ((M−s)sD)O(1) , and then, we may consider again
only ((M − s)sD)O(n−1) of them.
For each γi it is easy to exhibit a basis of the image of the map ψ localized in the polyno-
mial γiξξj : it suffices to take the image by ψ of those vectors ek of the canonical basis,
where the k -th column of W is not considered in the construction of γi . In this way we ob-
tain a basis for the image of F localized in γiξξj of degrees bounded by ((M−s)sD)O(1) .

Summarizing, we are able to show local estimations for the degree of a basis of the image
of F . We emphasize the fact that the localizing polynomials involve only the variables
x1, . . . , xn−1 .

Lemma 14 There exist polynomials π1, . . . , πH ∈ B such that

1. 1 ∈ (π1, . . . , πH) .

2. deg πj = ((M − s)sD)O(1) .

3. H = ((M − s)sD)O(n) .

4. for all j = 1, . . . , H there exists a basis of ImFπj formed by polynomial vectors of
degree ((M − s)sD)O(1) .

Proof.- Take the polynomials πk as the polynomials γiξξj where ξ runs over all the q× q
minors of G , ξj as in Corollary 13, and γi as in the previous argument.
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Definition 15 Let F̃ ∈ AÑ×M̃ be the matrix whose columns are the generators of KerF
constructed in Lemma 1. Therefore we have :
– deg F̃ ≤ sD .
– Ñ := M .
– M̃ ≤ 3(M − s)(sD)n .
– Im F̃ is A -free.
– s̃ := the rank of F̃ (we have s̃ = M − s ).
Analogously, let F̂ ∈ AN̂×M̂ be the matrix whose columns are the generators of Ker F̃
constructed applying Lemma 1 to F̃ .
– deg F̂ ≤ (M − s)sD .
– N̂ ≤ 3(M − s)(sD)n .
– M̂ = ((M − s)sD)O(n2) .
– Im F̂ is A -free.
– ŝ := the rank of F̂ (where ŝ = M̃ − s̃ ).

For technical reasons we need a similar lemma for F̃ and F̂ . This can be done repeating
the arguments used for F . We note that the change of coordinates in Section 3 that
assures the existence of a minor monic in all the variables can be made simultaneously for
the three matrices F , F̃ and F̂ .

Lemma 16 There exist polynomials π̃1, . . . , π̃H̃ ∈ B such that

1. 1 ∈ (π̃1, . . . , π̃H̃) .

2. deg π̃j = ((M − s)sD)O(n) .

3. H̃ = ((M − s)sD)O(n2) .

4. for all j = 1, . . . , H̃ there exists a basis of Im F̃π̃j = KerFπ̃j formed by polynomial

vectors of degree ((M − s)sD)O(n) .

Lemma 17 There exist polynomials π̂1, . . . , π̂Ĥ ∈ B such that

1. 1 ∈ (π̂1, . . . , π̂Ĥ) .

2. deg π̂j = ((M − s)sD)O(n2) .

3. Ĥ = ((M − s)sD)O(n3) .

4. for all j = 1, . . . , Ĥ there exists a basis of Im F̂π̂j = Ker F̃π̂j formed by polynomial

vectors of degree ((M − s)sD)O(n2) .

Remark 18 Taking the products πiπ̃j π̂k , we will suppose that the polynomials πj , π̃j
and π̂j are the same in Lemma 14, 16 and 17, with the last estimations for the degree
and the number of the polynomials.
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5 The main Theorem

This section is devoted to the proof of our main result :

Theorem 19 Let F ∈ AN×M be a polynomial matrix whose image is an A -free module
of rank s and whose entries have total degrees bounded by an integer D . Then there exists
a basis {v1, . . . , vM} of AM such that:

• {v1, . . . , vM−s} is a basis of KerF .

• the coordinates of the vectors vj , for j = 1, . . . ,M − s , have degree of order ((M −
s)sD)O(n3) .

• {F (vM−s+1), . . . , F (vM )} is a basis of ImF .

• the coordinates of the vectors vj , for j = M − s + 1, . . . ,M , have degree of order
((M − s)sD)O(n4) .

On our way to prove this theorem, we will make use mutatis mutandis of the local-global
techniques due to Vaserstein (see for example [15, Ch.IV, Th.1.18.]) in combination with
the effective version of Quillen-Suslin Theorem given in [5].

Recall that for any matrix G with entries in a polynomial ring, G(0) denotes the new
matrix obtained by replacing the last variable by 0 .

With the notations introduced in the previous section, we will prove the following local
result :

Proposition 20 For all πj ∈ B chosen after Remark 18 (for j = 1, . . . , H ), there exist
a non negative integer η and invertible matrices Pj ∈ AM×Mπj and Qj ∈ AM̃×M̃πj such
that :

1. η = ((M − s)sD)O(n2) .

2. πηjPj ∈ AM×M and deg(πηjPj) = ((M − s)sD)O(n2) .

3. πηjQj ∈ AM̃×M̃ and deg(πηjQj) = ((M − s)sD)O(n2) .

4. F̃ = PjF̃ (0)Qj .

Proof.- Fix an index j . From Remark 18 one can take the polynomials πj unifying the
Lemmas 14, 16 and 17 and obtains bases for ImFπj , Im F̃πj , and Im F̂πj of appropriate
degrees.
Consider now the exact sequences associated to the matrices F and F̃ :

0→ Im F̃πj → AMπj → ImFπj → 0

0→ Im F̂πj → AM̃πj → Im F̃πj → 0
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From the first sequence, one obtains a basis of AMπj lifting the s vectors of the basis of
ImFπj and adding the M − s vectors of the basis of Im F̃πj . Write Bj for this basis.

In the same way one obtains a basis Cj of AM̃πj from the second exact sequence completing

the basis of Im F̂πj with the preimages of the basis of Im F̃πj in AM̃πj . From the previous
results one infers that all the polynomial vectors of Bj and Cj have degree bounded by
((M − s)sD)O(n2) .
For all integer q , denote by Eq the canonical basis of Aq .
Then, we have

F̃ = P C Q,

where

• P := [ Id ]BjEM ∈ AM×Mπj ,

• Q := [ Id ]E
M̃
Cj ∈ AM̃×M̃πj

• C is the diagonal matrix :
(

IdM−s 0
0 0

)
.

Moreover, the matrices πηjP and πηjQ have all their entries in A and their degrees of
order ((M − s)(sD))O(n2) , for a certain η ∈ IN of order ((M − s)sD)O(n2) .
Finally, replacing xn by 0 , one has :

F̃ (0) = P (0) C Q(0).

And then :
F̃ = Pj F̃ (0) Qj

where Pj := PP−1(0) and Qj := Q−1(0)Q are invertible matrices in Aπj , with controlled
degrees (recall that πj ∈ B ).

Now we make use of the argument of [15, Ch.IV, Th.1.18.] in order to “glue” the matrices
Pj ’s and the matrices Qj ’s.

Lemma 21 There exist two invertible matrices P ∈ AM×M and Q ∈ AM̃×M̃ of degrees
of order ((M − s)sD)O(n3) such that F̃ = PF̃ (0)Q.

Proof.- Fix an index j, j = 1, . . . , H , and let y be a new variable. Consider the matrices
with entries in Aπj [y] :

Pj(xn + y)P−1
j , PjP

−1
j (xn + y) , Q−1

j (xn + y)Qj , Q−1
j Qj(xn + y).

From Proposition 20 (modifying slightly η , if necessary), we may suppose that the matrices

Pj(xn + πηj y)P−1
j , PjP

−1
j (xn + πηj y) , Q−1

j (xn + yπηj )Qj , Q−1
j Qj(xn + πηj y)

have all the entries in A[y] (it suffices to take an appropriate power of πj in order to
eliminate the denominators).
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Then, the matrices

Γj := Pj(xn + πηj y)P−1
j and Λj := Q−1

j Qj(xn + πηj y)

are invertible in A[y]M×M and A[y]M̃×M̃ respectively, with entries of degree of order
((M − s)sD)O(n2) .
Again after Proposition 20 we have the relation :

F̃ (xn + πηj y) = Γj F̃ Λj (16)

for j = 1, . . . , H .
From item 1 of Lemmas 14-17 and Remark 18, we have 1 ∈ (πη1 , . . . , π

η
H) and, applying

the effective Nullstellensatz (see [13] or [9]), there exist α1, . . . , αH ∈ xnB such that :

xn = α1π
η
1 + · · ·+ αHπ

η
H and degαj = ((M − s)sD)O(n3) ∀j.

Considering the identity (16) for j := H and replacing xn 7→
H−1∑
q=1

αqπ
η
q and y 7→ αH , we

get :

F̃ = ΓH(
H−1∑
q=1

αqπ
η
q , αH) F̃ (

H−1∑
q=1

αqπ
η
q ) ΛH(

H−1∑
q=1

αqπ
η
q , αH).

Applying once again the formula (16), with j := H − 1 , and replacing xn 7→
H−2∑
q=1

αqπ
η
q

and y 7→ αH−1, we have

F̃ (
H−1∑
q=1

αqπ
η
q ) = ΓH−1(

H−2∑
q=1

αqπ
η
q , αH−1) F̃ (

H−2∑
q=1

αqπ
η
q ) ΛH−1(

H−2∑
q=1

αqπ
η
q , αH−1),

and then F̃ can be written

ΓH(
H−1∑
q=1

αqπ
η
q , αH)ΓH−1(

H−2∑
q=1

αqπ
η
q , αH−1) F̃ (

H−2∑
q=1

αqπ
η
q ) ΛH−1(

H−2∑
q=1

αqπ
η
q , αH−1)ΛH(

H−1∑
q=1

αqπ
η
q , αH).

Thus, we obtain for all index u, u = 0, . . . , j , where j = 1, . . . , H a relation of the type :

F̃ =
[ j∏
u=0

ΓH−u(
H−u−1∑
q=1

αqπ
η
q , αH−u)

]
F̃ (

H−j∑
u=1

αqπ
η
q )
[ j∏
u=0

ΛH−u(
H−u−1∑
q=1

αqπ
η
q , αH−u)

]
.

In particular, for j = H , the assertion follows.

Applying the same argument in a recurrent way on the number of variables, one deduces :
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Corollary 22 There exist two invertible matrices V ∈ AM×M and W ∈ AM̃×M̃ of
degrees of order ((M − s)sD)O(n3) such that

F̃ = V F̃ (0, . . . , 0)W.

In particular, there exists a basis of Im F̃ formed by vectors of degree of order ((M −
s)sD)O(n3) .

Proof.- From Remark 2 we have that F (0) verifies the same conditions as F and that
F̃ (0) = F̃ (0) (since the vectors wj(0) are a system of generators of KerF (0) ). Therefore
we can apply again the same argument as in Lemma 21 to the matrix F̃ (0) .

Now, we are able to prove Theorem 19.

Proof of Theorem 19.- Since Im F̃ = KerF , Corollary 22 allows us to estimate the de-
grees of a certain basis v1, . . . , vM−s of KerF . Applying [5, Th.3.1.] for the unimod-
ular matrix in A(M−s)×M formed by these vectors, we infer the existence of s vec-
tors vM−s+1, . . . , vM in AM such that {v1, . . . vM} is a basis of AM and deg vi ≤
((M − s)sD)O(n4) , for i = M − s+ 1, . . . ,M .
Clearly {F (vM−s+1), . . . , F (vM )} is a basis of ImF and the theorem is proved.

6 The case of the matrix of a projection map

In this section F ∈ AM×M denotes a polynomial matrix such that F 2 = F (i.e. F is the
matrix of a projection map of AM ). It is well known that in this case AM = KerF ⊕ImF
and, in particular, ImF and KerF are both A -free.
Since F ′ := Id − F corresponds also to a projection map and since the bases of KerF
and ImF form a basis of AM , several arguments of the last two sections can be simplified
and the degree bounds in Theorem 19 may be improved.
We observe first that the Lemmas 14, 16 and 17 can be replaced by the following result
(which doesn’t involve neither the auxiliar matrix F̃ nor the matrix F̂ ) :

Lemma 23 Let F ∈ AM×M be the matrix of a projection map whose entries are polyno-
mials with total degrees bounded by an integer D and let s be the rank of F . Then there
exist polynomials π1, . . . , πH ∈ B such that :

1. 1 ∈ (π1, . . . , πH) .

2. deg πj = ((M − s)sD)O(1) .

3. H = ((M − s)sD)O(n) .

4. for all index j = 1, . . . , H , there exist bases of ImFπj and KerFπj consisting of
polynomial vectors of degrees of order ((M − s)sD)O(1) .
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Proof.- Applying Lemma 14 to F and F ′ one obtains a family of polynomials πj ∈ B and
bases for ImFπj and ImF ′πj with appropriate degrees (indeed, the polynomials πj for F
and F ′ are different but this constraint can be avoided multiplying them as in Remark
18). Since ImF ′πj = KerFπj the lemma follows.

With the aid of this lemma, we are able to simplify the proof of Proposition 20 observing
that the join of a basis of ImF and a basis of ImF ′ gives a basis of the whole space
AM . Since Lemma 21 and Corollary 22 follow directly from Proposition 20, we obtain
analougous results for the matrix F instead of the matrix F̃ . The improvement of the
degree upper bounds in this case is due to the fact that the introduction of the matrices
F̃ and F̂ is unnecessary.
We can summarize these facts in the following more precise statement of Theorem 19 :

Theorem 24 Let F ∈ AM×M be the matrix of a projection map involving polynomials
whose degrees are bounded by an integer D and let s be the rank of F . Then there exists
a basis {v1, . . . , vM} of AM , such that the first M − s vectors form a basis of KerF , the
last s vectors are a basis of ImF and the degrees of the coordinates of these vectors are
of order ((M − s)sD)O(n) .

We observe that if the matrix F does not correspond to a projection map, but the space
AM is decomposed as KerF ⊕ ImF , the arguments of the last two sections can be also
simplified. In this case it is enough to consider the Lemmas 14 and 16, in order to obtain
Proposition 20, Lemma 21 and Corollary 22 for the matrix F . In fact, for these three
results it is only necessary to know how to complete the bases of the image and the kernel
to bases of the whole space under a suitable localization; the matrix F̃ must be introduced
in order to obtain a basis of a localization of KerF and then the bases of the kernel and
the image can be completed.
In other words we have :

Theorem 25 Let F ∈ AM×M be a matrix such that AM = KerF ⊕ ImF . Suppose that
F involves polynomials whose degrees are bounded by an integer D and that s is the rank
of F . Then there exists a basis {v1, . . . , vM} of AM , such that the first M − s vectors
form a basis of KerF and have degrees of order ((M −s)sD)O(n2) , and the last s vectors
are a basis of ImF and have degrees of order ((M − s)sD)O(n3) .

7 An application to reduced complete intersections

Let k be an infinite field and f1, . . . , fn−r be a regular sequence in k[x1, . . . , xn] of
degrees bounded by an integer d > 1 . Suppose that the variables x1, . . . , xn are in
Noether position with respect to the polynomials fi . More precisely, the natural map
k[x1, . . . , xr]→ k[x1, . . . , xn]/(f1, . . . , fn−r) is an injective and integral morphism.

Write R := k[x1, . . . , xr] and S := k[x1, . . . , xn]/(f1, . . . , fn−r) .
It is well known (see for example [8, Corollary 18.17] or [12, Lemma 3.3.1]) that, under
these conditions, S is a locally free R -module of finite rank (bounded by dn−r following
Bezout’s Inequality) and hence free (Quillen-Suslin Theorem).
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This context (“polynomial regular sequence + Noether position”) appears frequently in
several approaches related to effectivity problems in Computer Algebra, even in the posi-
tive dimensional case (see for instance [21], [11], [22]). At this point it is quite natural to
look for properties of R -bases of S (degree bounds, algorithms to compute them, etc.),
but we have been unable to find any significative result related to this subject in the
literature.
In this frame we are interested in the study of the existence of a basis consisting of
polynomials with single exponential degrees, in the case where the ring S is reduced.
For this purpose we combine our previous results with quantitative facts about duality in
complete intersection rings (following [16] and [22]).

We start by recalling some known facts about duality theory.
We denote by S∗ the dual space HomR(S,R) . The R -module S∗ admits a natural
structure of S -module in the following way : for any pair (b, β) in S × S∗ the product
b.β is the R -linear application of S∗ defined by (b.β)(x) := β(bx) , for each x in S .
Our assumptions about R and S allow to show that the S -modules S and S∗ are
isomorphic (see [16, Example F.19 and Corollary F.10]) and therefore S∗ can be generated
by a single element.
A generator σ of S∗ is called a trace of S over R . If char(k )=0 it is well known that,
under our hypothesis, the application b 7→ Tr(ηb) is a trace of S over R (where ηb is the
endomorphism induced by the multiplication by b ∈ B and Tr is the usual trace).
Therefore we have the following :

Proposition 26 (see [22, Proposition 3]) There exist a trace σ ∈ S∗ and polynomials am
and cm in k[x1, . . . , xn], 1 ≤ m ≤M , such that :
– deg(am) + deg(cm) ≤ (n− r)(d− 1) ;
– M ≤ 3(n− r)(d− 1)n−r ;
– the “trace formula” : b =

∑
m σ(bcm)am holds for all b ∈ S .

From this proposition we infer that the classes of the polynomials am, 1 ≤ m ≤M , are a
system of generators of S over R and that the R -bilinear form Φ : S × S → R defined
by Φ(b, b′) := σ(bb′) is non degenerate.

By means of Proposition 26 we are able to apply our previous results about polynomial
matrices in order to obtain the following :

Theorem 27 There exists a basis of S over R formed by polynomials of degrees of order
dO((n−r)r4)) .

Proof.- Let F : RM → RM be the linear map defined by the matrix (Φ(ai, aj))ij and
let G : RM → S be the map defined by ej 7→ aj . Since S is free, KerG is a free
R -submodule of RM .
From the fact that Φ is non degenerate, it is easy to see that KerF = KerG and that
the following diagram is commutative :
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0 −−−−→ KerF −−−−→ RM
F−−−−→ ImF −−−−→ 0

id

y id

y ϕ

y
0 −−−−→ KerG −−−−→ RM

G−−−−→ S −−−−→ 0

where ϕ is an isomorphism.
In particular, ImF is also a free R -module.
From [22, Theorem 13], one has

deg Φ(ai, aj) = deg σ(aiaj) ≤ deg(V )(1+max{deg(aiaj), (n−r)d}) ≤ deg(V )(1+2(n−r)(d−1))

(where V is the set of all the common zeros of f1, . . . , fn−r ). By means of Bezout
Inequality we deduce :

deg(F ) = max
i,j
{deg Φ(ai, aj)} ≤ dn−r(1 + 2(n− r)(d− 1)).

Applying Theorem 19 to the matrix F we obtain a basis for KerF of degrees of order
dO((n−r)r3) and then, a basis for ImF of degrees of order dO((n−r)r4) . Through ϕ we get
a basis for S with the same degree upper bounds.
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Suslin) pour le Calcul Formel.- Math. Nachr. 149 (1990) 231-253.

[10] Gantmacher F. : Matrix Theory, Vol.I .- Chelsea Publ. Co., New York (1960).

23



[11] Giusti M., Heintz J., Morais J., Morgenstern J., Pardo L. : Straight-line Programs in Geo-
metric Elimination Theory.- J. Pure and Appl. Algebra (1997).

[12] Giusti M., Heintz J., Sabia J. : On the efficiency of effective Nullstellensatz.- Comput. Com-
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