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Abstract

This paper deals with the effective computation of the radical
of certain polynomial ideals. Let k be a characteristic zero field,
f1, . . . , fn−r ∈ k[X1, . . . , Xn] a regular sequence with d := maxj deg fj ,
= the generated ideal,

√
= its radical, and suppose that the factor

ring k[X1, . . . , Xn]/
√
= is a Cohen-Macaulay ring. Under these as-

sumptions we exhibit a single exponential algorithm which computes
a system of generators of

√
= .
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1 Introduction

Let k be a field of characteristic zero, X1, . . . , Xn be indeterminates over k
and f1, . . . , fs polynomials in k[X1, . . . , Xn] generating an ideal = .
The present paper deals with the effective computation of a system of gener-
ators for the radical of = . This problem seems to be, in a quite natural way,
the next step to follow, now that the quantitative versions of the Nullstel-
lensätze, effective Noether normalization, membership problem for complete
intersection ideals, equidimensional decomposition, etc. have been found
(see, for instance, the surveys [3], [26] and [2] and their bibliography).

The general problem, without any hypothesis on the fi ’s, has already been
considered in [1], [17] and [9]. Even when the techniques vary from work to
work (Gröbner basis and linear algebra in the first two, basic duality theory
in the third), all of them resort to certain quotient ideals. It is well-known
that quotients are essentially difficult to compute, at least from the com-
plexity point of view, and lead to doubly exponential time algorithms in
the best case ([17]). This constraint, also appearing in the present paper
(see Theorem 4 below), can be satisfactorily solved if we assume that the
input polynomials f1, . . . , fs form a regular sequence whose zeros define a
Cohen-Macaulay variety V . This condition, satisfied for example if V is a
non-singular variety defined by a regular sequence, allows to deduce a single
exponential algorithm (see Section 5).

The problem, under the complete intersection hypothesis, has been treated
in [8], also making use of duality tools. The authors observe that if a single
exponential bound for the degree of a system of generators of

√
= is a priori

known, then there exists a single exponential algorithm to compute it (see
also Section 5.3). Unfortunately, such an upper bound is not yet known
for the complete intersection general case. The best results in this direction
are the following : if Z is a smooth, purely dimensional projective variety,
its associated ideal I(Z) can be generated by forms of degree bounded by
(dim(Z) + 1)(deg(Z)− 2) + 2 ([2, Theorem 3.12]) (in the case dim(Z) ≤ 3 ,
the upper bound deg(Z) − codim (Z) + 1 holds; see [13] and [2]). In the
affin case it is possible to show that if V is smooth, its ideal I(V ) can be
generated by polynomials of degree bounded by deg(V ) ([22]).
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In this paper we are able to show the non-intrinsic upper bound :

maxj{deg fj} codim(V ) (2 deg(V )2 + 1)

when V ⊂ k
n (the zeros of the ideal = ) is a Cohen-Macaulay variety (The-

orem 13).

The paper is organized as follows : Section 3 is devoted to explain the basic
facts in trace theory (borrowed from [18]) and the description of the radical
as a quotient ideal (Theorem 4). The following section contains a character-
ization of Cohen-Macaulay algebras by means of a Noether position.
Finally, in Section 5, we describe

√
= as the solutions of a polynomial lin-

ear system (see also [8], [9]) whose entries have single exponential degrees.
Unfortunately, it is well known that the degrees of a basis of the solutions
for a polynomial linear system don’t depend polynomially on the parameters
(see [21] or [6]). However, for the special case when k[X1, . . . , Xn]/

√
= is a

Cohen-Macaulay ring, a polynomial upper bound can be exhibited (sections
5.1 and 5.2). From this estimation we obtain a single exponential upper
bound for a system of generators of

√
= (Theorem 13) and therefore a single

exponential time algorithm to compute this radical ideal (Theorem 14).

We thank the referees for many useful remarks and pertinent suggestions.

2 Notations

Throughout the paper we shall maintain the following notations :

• n and r are non-negative integers with 0 ≤ r < n .

• k is a characteristic zero field and the polynomial ring k[X1, . . . , Xr]
is denoted by A .

• f1, . . . , fn−r is a polynomial regular sequence in k[X1, . . . , Xn] which
generates an ideal = . We write

√
= for the radical of = . The set of

zeros of = in IAn

k
(the affine n -dimensional space over the algebraic

closure k ) is denoted by V and its usual geometric degree by deg(V ) .
The integer d is an upper bound for the total degrees of the polynomials
fi .
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• B denotes the factor ring k[X1, . . . , Xn]/= and the variables X1, . . . , Xn

are in Noether position w.r.t. = (i.e. the canonical morphism A→ B
is an integral monomorphism). The reduced ring k[X1, . . . , Xn]/

√
=

shall be denoted by Bred (observe that the variables X1, . . . , Xn are
also in Noether position w.r.t.

√
= ).

For any polynomial f ∈ k[X1, . . . , Xn] we denote by f its class in B .

• ∆ denotes the determinant of the Jacobian matrix (
∂fi

∂Xr+j
)1≤i,j≤n−r .

3 Describing radicals by means of Trace The-
ory

3.1 The definition of the trace

We consider the ring B as an A -algebra and we denote by B∗ the dual space
HomA(B,A) . The A -module B∗ admits a natural structure of B -module
in the following way : for any pair (b, β) in B × B∗ the product b.β is the
A -linear application of B∗ defined by (b.β)(x) := β(bx) , for each x in B .

Our assumptions about A and B allow to show that the B -modules B and
B∗ are isomorphic (see [18, Example F.19 and Corollary F.10]) and therefore
B∗ can be generated by a single element. A generator σ of B∗ is called a
trace of B over A .

Under our hypothesis we have the additional property that B is a finite free
A -module whose rank will be denoted by N (see Corollary 6 below). Fix for
the moment a basis of this module; each element b ∈ B defines, by multipli-
cation, a square matrix Mb ∈ AN×N . If we denote by trace (Mb) the trace
of the matrix Mb , the application b 7→ trace(Mb) defines (independently of
the basis of B ) an element of B∗ called the usual trace and denoted by Tr .
Unfortunately the usual trace is not always a generator of B∗ (in other words
the usual trace is not necessarily a trace).

The trace associated to a regular sequence
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Let us consider now the tensor product B⊗AB . This ring can be considered
in a natural way as an A -algebra and as a B -bialgebra (with right and left
multiplications).
Let µ : B ⊗A B → B be the morphism of A -algebras (or B -bialgebras)
defined by µ(b⊗ b′) := bb′ . Denote by K the kernel of µ . It is easy to show
that K is the ideal generated by all the elements b ⊗ 1 − 1 ⊗ b , where b
ranges over B (see for example [15, Proposition 1.3]).

From the fact that AnnB⊗AB(K)(b⊗ 1− 1⊗ b) = 0 for all b ∈ B , one infers
that the induced structures of right and left B -modules over AnnB⊗AB(K)
coincide. In other words, if

∑
i bi ⊗ b′i belongs to AnnB⊗AB(K) and b is

an element of the ring B we have :
∑
i bbi ⊗ b′i =

∑
i bi ⊗ bb′i . Moreover it

is possible to show that AnnB⊗AB(K) is a cyclic B -module ([18, Corollary
F.10]).
Let us consider the application Φ : B ⊗A B → HomA(B∗, B) defined by

Φ(
∑
i

bi ⊗ b′i)(β) :=
∑
i

bi β(b′i),

where bi, b
′
i ∈ B and β ∈ B∗ .

From the freeness of B it is easy to see that Φ is an isomorphism and the
image of AnnB⊗AB(K) by Φ is exactly HomB(B∗, B) .

For each generator Γ :=
∑
m bm⊗ b′m of the B -module AnnB⊗AB(K) the el-

ement Φ(Γ) is a generator of HomB(B∗, B) and then there exists a uniquely
determinated σΓ ∈ B∗ such that Φ(Γ)(σΓ) = 1 . One deduces immediately
that σΓ is a trace for B (which is called the trace associated to Γ).

From the definitions of Φ,Γ and σΓ we have the following “trace formula”
for all b ∈ B :

b =
∑

1≤m≤M
σΓ(b b′m) bm. (1)

In particular we observe that b1, . . . , bM is a system of generators of the A -
module B .

By means of the element Γ it is possible to obtain a relation between the
trace σΓ and the “usual trace” Tr; more precisely (see [18, Corollary F.12]) :
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µ(Γ).σΓ = Tr (2)

In terms of elements of B this formula says that for all b ∈ B the equality
σΓ(µ(Γ)b) = Tr(b) holds.

Let Yr+1, . . . , Yn be new indeterminates over k ; for each polynomial f ∈
k[X1, . . . , Xn] we write

f (Y ) := f(X1, . . . , Xr, Yr+1, . . . , Yn)

in the polynomial ring k[X1, . . . , Xr, Yr+1, . . . , Yn] .
Hence we have the canonical isomorphism of A -algebras :

B ⊗A B ∼= A[Xr+1, . . . , Xn, Yr+1, . . . , Yn]/(f1, . . . , fn−r, f
(Y )
1 , . . . , f

(Y )
n−r). (3)

If one considers each polynomial f (Y )
i − fi as a polynomial in the variables

Yr+1, . . . , Yn with coefficients in k[X1, . . . , Xn] ( 1 ≤ i ≤ n − r ), its Taylor
expansion around the point (Xr+1, . . . , Xn) gives the relation :

f
(Y )
i − fi =

∑
1≤j≤n−r

aij(Yr+j −Xr+j)

where aij ∈ k[X1, . . . , Xn, Yr+1, . . . , Yn] = A[Xr+1, . . . , Xn, Yr+1, . . . , Yn] are
polynomials of total degree bounded by d− 1 .
Following [18, Corollary E.19 and Example F.19] the class of det(aij) mod-
ulo the ideal (f1, . . . , fn−r, f

(Y )
1 , . . . , f

(Y )
n−r) gives a generator of AnnB⊗AB(K)

by means of the identification (3).

In other words we have (see also [10, Section 3.4]) :

Proposition 1 There exist polynomials am, cm in k[X1, . . . , Xn] satisfying
the inequality deg(am) + deg(cm) ≤ (n − r)d , (1 ≤ m ≤ M) , such that∑
m am ⊗ cm is a generator of AnnB⊗AB(K) and ∆ =

∑
m am cm . Either

family (am)m or (cm)m is a system of generators of B over A .

Definition 2 The trace associated to the generator of AnnB⊗AB(K) intro-
duced in Proposition 1 will be called the trace associated to the regular
sequence f1, . . . , fn−r and we will denote it by σ∆ .

6



Let us observe that in this case the relation (2) gives

∆.σ∆ = Tr. (4)

3.2 Describing the radical by means of the Jacobian

In this section we give the well-known characterization of the radical of the
complete intersection ideal = as the quotient (= : ∆) . This result can be
found in several previous works (see for instance [8] for the complex case, or
[9, Th.2.1] for the general case). For the sake of simplicity we include a proof
of this fact.

We start with an elementary, well-known characterization of nilpotent ma-
trices.

Proposition 3 Let K be a field of characteristic 0 and let φ ∈ KN×N .
Then φ is a nilpotent matrix if and only if Tr(φi) = 0 for all i ∈ IN .

Proof.- Without loss of generality we may suppose that K is algebraically
closed. Let λ1, . . . , λt be the different non zero eigenvalues of φ and k1, . . . , kt
the corresponding multiplicities in the characteristic polynomial of φ . It is
easy to see (for instance by means of the Jordan form of φ ) that for all
i ∈ IN ,

0 = Tr(φi) =
t∑

j=1
kjλ

i
j.

Therefore (k1, . . . , kt) is a solution of an invertible Vandermonde matrix,
which implies that t = 0 and hence 0 is the only eigenvalue of the matrix.
The converse is obvious.

Theorem 4 Let f be an element of k[X1, . . . , Xn] and f its class in the
factor ring B . Then the following statements are equivalent :

1. f ∈
√
= ;

2. Tr(f b) = 0 , for all b ∈ B ;
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3. f ∈ (= : ∆) .

Proof.- From Proposition 1 together with the relations (1) and (4) we obtain :

∆f =
∑

1≤m≤M
Tr(f cm) am =

∑
1≤m≤M

σ∆(∆f cm) am.

Now conditions 2 and 3 become immediately equivalent.
If f belongs to

√
= then Mfb (the matrix of multiplication by fb ) is nilpo-

tent and Condition 2 follows from Proposition 3.
Conversely, the condition Tr(f b) = 0 for every b ∈ B implies that Tr(f i) =
0 for all index i ∈ IN and the proposition already quoted shows that 1.
holds.

4 Cohen-Macaulayness via Noether Normal-
ization Lemma

In this section we give a characterization of certain Cohen-Macaulay algebras
as free modules over a polynomial ring in Noether position. This criterion
has been treated in [12], [23] and [11].

We start by briefly recalling some basic definitions concerning Cohen-Macaulay
rings (see [16] and [20]) that we shall use in the sequel.

Let O be a Noetherian local ring; we define the depth of O as the length
of a maximal regular sequence. We say that O is a Cohen-Macaulay ring
in case its depth and dimension coincide. An arbitrary Noetherian ring R
is called Cohen-Macaulay if any localization in a maximal ideal is a Cohen
Macaulay local ring. Finally, we shall say that an ideal is unmixed if the
heights of its associated prime ideals are all equal.

The following key result (known as Hironaka’s lemma) is classical; it can be
found in [25, Ch.IV, Prop.22] for the local case, and in [11, Lemma 3.3.1] (in
fact, our proof is essentially the same as the one of [11], even if the statements
are slightly different).
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Lemma 5 Let R := k[X1, . . . , Xn]/I , where I is an unmixed ideal, A :=
k[X1, . . . , Xr] and suppose that the canonical morphism A→ R verifies the
Noether Normalization Lemma. Then R is a Cohen-Macaulay ring if and
only if R is A− free.

Proof.- (⇒) We proceed by induction on r . For the case r = 0 we observe
that A = k and that R is a k -vector space of finite dimension. Hence R is
a free A -module.
It suffices now to show the lemma for fixed 0 < r ≤ n− 1 supposing it true
for r − 1 .
Quillen-Suslin Theorem ([19, Ch.III, Th.1.8]) states that the classes of finite
projective modules and of finite free modules over a polynomial ring are the
same, therefore it will be enough to show that R is A -projective.
First observe that k ⊗k A is a faithfully flat A -algebra. Thus k ⊗k R =
(k⊗k A)⊗AR is a projective k⊗k A -module if and only if R is a projective
A -module ([19, Ch.I, Prop.2.15]). Therefore we may suppose without loss of
generality that k is algebraically closed.
Since R is a finite A -module it suffices to show that for any maximal ideal
M of A the localized AM -module RM is free.
Let M be a maximal ideal of A = k[X1, . . . , Xr] . Since k is by assumption
algebraically closed there exist elements a1, . . . , ar of k such that M =
(X1 − a1, . . . , Xr − ar) . Without loss of generality we may assume a1 =
· · · = ar = 0. For the sake of simplicity, we shall write R for RM and A
for AM .
Since the canonical map A ↪→ R is integral and the ideal (0) is unmixed
we conclude that Xr is not a zero divisor in R . It is easy to see that
the rings R′ := R/(Xr) and A′ := A/(Xr) verify the hypothesis of the
lemma : the Cohen-Macaulay theorem implies that R′ is a Cohen-Macaulay
ring (and therefore unmixed) and a standard dimension argument guarantees
that A′ ↪→ R′ is in Noether position. Then, by our induction hypothesis, R′

is a free A′ -module of finite rank.
Let e1, . . . , eN be elements of R such that e′1, . . . , e

′
N (their classes modulo

Xr ) form a basis of the A′ -free module R′ . Thus e1, . . . , eN generate the
A/M -vector space R/MR ∼= R′/MR′ .
From Nakayama’s Lemma we conclude that e1, . . . , eN generate the A -
module R .
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To finish the proof we are going to show that e1, . . . , eN form a free generator
system.
Suppose on the contrary that there exists a nontrivial linear relation

α1e1 + · · ·+ αNeN = 0 (5)

in R , where α1, . . . , αN are elements from A , not all zero. Without loss
of generality we may assume α1, . . . , αN belong to k[X1, . . . , Xr] . Dividing
by a maximal power of Xr we obtain representations α1 = X`

rβ1, . . . , αN =
X`
rβN , where β1, . . . , βN are elements of k[X1, . . . , Xr] , not all divisible by

Xr , and ` is a nonnegative integer. Thus we obtain from (5) the equality

X`
r(β1e1 + · · ·+ βNeN) = 0

which holds in R . Since Xr is not a zero divisor of R we conclude

β1e1 + · · ·+ βNeN = 0 .

Hence we may suppose without loss of generality that α1 is an element of
k[X1, . . . , Xr] which is not divisible by Xr . Thus the relation (5) implies
that

α′1e
′
1 + · · ·+ α′Ne

′
N = 0

holds in R′ with α′1, . . . , α
′
N the classes of α1, . . . , αN in A′ and α′1 6= 0.

This contradicts the fact that e′1, . . . , e
′
N is a A′ -basis of R′ .

(⇐) Let’s suppose that k is algebraically closed. Let M be a maximal ideal
of R . Since A ↪→ R is an integral extension, N :=M∩ A is maximal too
and therefore N = (X1 − a1, . . . , Xr − ar) for suitable a1, . . . , ar ∈ k .
Following [20, Th.17.3] it is enough to show that X1 − a1, . . . , Xr − ar is a
regular sequence in RM . Our hypothesis about the freeness of R over A
guarantee that Xr−ar is not a zero divisor in R ; moreover, if we denote by
R′ := R/(X1−a1) and A′ := k[X1, . . . , Xr−1] , then A′ and R′ are in Noether
position and R′ is A′ -free (the ideal (0) ⊂ R′ is also unmixed, however, this
property will not be necessary for this implication). This reasoning can be
repeated to conclude that X1−a1, . . . , Xr−ar is a R -regular sequence, and
consequently, a RM one.
Now we consider the general case, where k is an arbitrary field. Let R :=
k ⊗k R and M be a maximal ideal of R ; by a faithful-flatness argument it
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is easy to show that there exists a maximal ideal M in R lying over M .
The argument above guarantees that RM is Cohen-Macaulay. Following [20,
Th.23.3 and its corollary] we conclude that RM is Cohen-Macaulay too.

With the notations introduced in Section 2 we have the following well-known
corollaries.

Corollary 6 The ring B is an A -free module of rank bounded by dn−r .

Proof.- Since = is generated by a regular sequence, B is a Cohen-Macaulay
ring and (0) ⊂ B is unmixed. The upper bound for the rank is a consequence
of Bezout inequality (tensoring by the rational field k(X1, . . . , Xr) we may
assume that B is 0 -dimensional and then we apply, for instance [5, Theorem
17]).

Corollary 7 Bred is a Cohen-Macaulay ring if and only if Bred is A -free.
In this case, the rank of Bred is bounded by deg(V ) .

Proof.- It is an immediate consequence of Lemma 5, taking R := Bred .
In order to obtain the upper bound for the rank, we first observe that
rkA(Bred) = rkk(A)(Bred ⊗A k(A)) , where k(A) denotes k(X1, . . . , Xr) . Let
℘1, . . . , ℘t be the prime ideals associated to

√
= ; since Bred ⊗A k(A) is 0 -

dimensional and reduced, its rank is equal to
∑
i rkk(A)(Bred/℘i ⊗A k(A)) ,

which in turn equals
∑
i[k(Bred/℘i) : k(A)] .

For each index i, 1 ≤ i ≤ t, [k(Bred/℘i) : k(A)] is bounded by the degree of
the affine variety in IAn

k
defined by the prime ideal ℘i (see, for example, [14,

Proposition 1]). Adding these degrees we obtain the desired inequality.

5 Computing the radical

5.1 The radical as the solution of a linear system of
equations

We follow the notations introduced in Section 2 .

Let e1, . . . , eN in k[X1, . . . , Xn] be polynomials such that their classes in B ,
e1, . . . , eN , form a basis over A (Corollary 6).
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Following Theorem 4 one deduces that an element b ∈ B belongs to the
nilradical if and only if Tr(ei b) = 0 for 1 ≤ i ≤ N .

Let T ∈ AN×N be the matrix having Tr(eiej) in the entry ij . For any
element b ∈ B let α1, . . . , αN ∈ A be its coordinates with respect to this
basis. From the A -linearity of the trace it follows that b is nilpotent if and
only if the vector (α1, . . . , αN) is in the kernel of T .

At this stage we can restate Corollary 7 as follows :

Proposition 8 Bred is Cohen-Macaulay if and only if the image of T is a
free A -submodule of AN . The fulfillment of this condition implies that the
nilradical of B (isomorphic to the kernel of T ) is A -free.

Proof.- Let τ : AN → AN be the linear transformation associated to the
matrix T . Choosing an A -basis for B we have the following commutative
diagram of A -modules :

0 −−→ Ker(τ) −−→ AN
τ−−→ Im(τ) −−→ 0y o y o

0 −−→ Nil(B) −−→ B
π−−→ Bred −−→ 0

and then Bred ' Im(τ) .
The second assertion is an immediate consequence of Quillen-Suslin Theorem.

5.2 A bound for the degrees of a system of generators
of the radical

In the previous paragraph we connect the radical of the ideal = with the
solutions of a system of polynomial linear equations. Unfortunately, it is well
known that there is no simple exponential upper bound for the degrees of
a system of generators for such solutions (see [21] and [6]). However, this
constraint can be avoided if we assume that Bred is a Cohen-Macaulay ring,
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as Lemma 9 and Corollary 10 below show (we recall that A denotes the
polynomial ring k[X1, . . . , Xr] ).

Lemma 9 Let M ∈ AN×N be a matrix whose entries are polynomials of
degree bounded by an integer D , let M be a maximal ideal in A and AM
the associated local ring. Suppose that the columns of M , as vectors in ANM ,
generate a free module of rank s (i.e. the image of M is isomorphic to
AsM ). Then there exists an AM -basis of Ker(M) ⊂ ANM which lies in AN

and has degree bounded by sD .

Proof.- We denote by c1, . . . , cN ∈ AN the columns of M and by S ⊂ ANM
the s -rank free submodule generated by them (i.e. the image of M ). We
write K for the residual field A/M .
Since S is AM -free of rank s , S/MS is a K -vector space of dimension s
generated by the classes of c1, . . . , cN . Without loss of generality we may
suppose that the classes of the first s columns form a basis of this vector
space.
By means of Nakayama’s Lemma we conclude that c1, . . . , cs is a system of
generators of S and hence an AM -basis.
We may also suppose that the determinant δ of the submatrix of M com-
posed of the first s rows and s columns is not zero.
Cramer’s Rule allows us to compute the A -linear combinations which write
the columns δcs+1, . . . , δcN in terms of c1, . . . , cs . We obtain an upper bound
of type sD for the total degrees of the coefficients involved.
More precisely, there exist polynomials aij ∈ A, 1 ≤ i ≤ s, 1 ≤ j ≤ N − s
of degree bounded by sD such that

δcs+j = a1jc1 + · · ·+ asjcs (6)

holds in AN (in fact the polynomials aij are s×s minors of the matrix M ).
For each index j set εj := g.c.d(δ, a1j, . . . , asj) , δj := δε−1

j and bij := aijε
−1
j .

Then we obtain from (6) :

δjcs+j = b1jc1 + · · ·+ bsjcs. (7)

From the fact that c1, . . . , cs is a AM -basis of S and that δj, b1j, . . . , bsj are
relatively prime, one deduces that δj /∈M . Therefore the N − s vectors

wj := (b1j, . . . , bsj, 0, . . . ,−δj, . . . , 0),
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where −δj occurs in the coordinate s + j, 1 ≤ j ≤ N − s , form a basis for
the free AM -module Ker(M) and the lemma follows.

From this lemma we obtain the following global version :

Corollary 10 Let M ∈ AN×N be a matrix whose entries are polynomials of
degree bounded by an integer D . Suppose that the columns of M , as vectors
in AN , generate a free module of rank s (i.e. the image of M is isomorphic
to As ). Then there exists a finite system of generators of Ker(M) having
degree bounded by sD .

Proof.- Let I and J be subsets of s rows and s columns of the matrix M
and DI,J be the minor of the associated s× s -submatrix. By Cramer’s rule
in the fraction field of A , if DI,J 6= 0, one infers that, for any column c that
is not in J , the identity

cDI,J =
∑
h∈J
±hDI,(J∪{c})\{h}

holds in AN .
Dividing this equality by the greatest common divisor of DI,J and DI,(J∪{c})\{h}
(for all h ∈ J ) as in (7), we obtain an identity which induces an element
wI,J,c in Ker(M) having coordinates of degree bounded by sD .
We claim that the submodule W generated by these elements is exactly the
kernel of M . Clearly we have W ⊂ Ker(M) .
In order to prove the other inclusion it suffices to consider the situation under
localization by a maximal ideal M ⊂ A . The argument runs as the one of
the previous lemma (the flatness of the localization implies the fulfillment of
its hypothesis).
From Nakayama’s Lemma one sees that there exist a subset of rows I0 and a
subset of columns J0 such that the corresponding elements wI0,J0,c (where c
ranges over the set of columns in the complement of J0 ) form a AM -basis of
Ker(M)M . In particular, we have Ker(M)M ⊂ WM for any maximal ideal
M . The corollary follows from the local-global principle.

In the next proposition we estimate the degree of the elements of a polynomial
local basis for the free A -module B (we recall that no similar bound is known
up to now for the global case).
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Proposition 11 Let M be a maximal ideal of A . There exist polynomials
e1, . . . , eN ∈ k[X1, . . . , Xn] having degrees bounded by (n−r)d such that their
classes in the ring BM form a AM -basis.

Proof.- Let a1, . . . , aM ∈ B be the system of generators constructed in Propo-
sition 1; they are such that the total degree of each am ∈ k[X1, . . . , Xn] is
bounded by (n− r)d .
The classes of these polynomials in the factor ring B/MB ' BM/MBM
also form a system of generators over the field A/M . Without loss of gen-
erality we may suppose that the classes of a1, . . . , aN form a basis of this
vector space.
Nakayama’s Lemma implies that these elements are a system of generators
of BM . Since they are as many as the rank of the free module BM one
infers that they are actually a basis.

The following proposition allows us to estimate an upper bound for the degree
of the entries in the trace matrix :

Proposition 12 Let f be an element in the polynomial ring k[X1, . . . , Xn]
and denote by f its class in the factor ring B . Then the inequality

deg Tr(f) ≤ deg(V ) deg f
holds.

Proof.- The proof runs almost exactly as the one of [24, Prop.1 and Th.13]
even if the ideal = generated by the regular sequence is not radical, as was
the case in the quoted paper.
Roughly speaking, we consider the map ϕ : IAn

k
→ IAr+1

k
defined by

ϕ(x1, . . . , xn) = (x1, . . . , xr, f).

By means of this application one deduces that the minimal integral depen-
dence equation F ∈ k[X1, . . . , Xr, T ] for the class of f modulo

√
= has total

degree bounded by deg(V ) deg f . Moreover, F coincides with the minimal
polynomial of the endomorphism η

f
of Bred ⊗A k(A) defined by multiplica-

tion by f . It is easy to see that the prime factors of this minimal polynomial,
which lie in A[T ] , are the same than the ones of the characteristic polynomial
of the same endomorphism, now considered in B ⊗A k(A) .
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Let F =
∏

1≤j≤J Qj be the decomposition of F in irreducible factors on A[T ]
(we recall that each Qj is monic with total degree bounded by deg(V ) deg f ).
For any index j , 1 ≤ j ≤ J , denote by dj the degree of Qj and by
βj ∈ A the coefficient of the monomial T dj−1 in Qj (in particular deg βj ≤
deg(V ) deg f ).
Let Xf = TD+bD−1T

D−1 + . . .+b0 be the characteristic polynomial of η
f

in
B ⊗A k(A) . Therefore Xf =

∏
j Q

ej
j , where e1, . . . , eJ are positive integers.

By comparison of coefficients one deduces :

−Tr(f) = bD−1 =
∑

1≤j≤J
ejβj.

Therefore deg Tr(f) ≤ deg(V ) deg f .

Now, we are able to show an upper bound for the degrees of a system of
generators for

√
= :

Theorem 13 Suppose that Bred is a Cohen-Macaulay ring. Then the radical√
= can be generated by polynomials whose degrees are bounded by the integer

(n− r)d(2 deg(V )2 + 1) .

Proof.- Let M be a maximal ideal of A and e1, . . . , eN ∈ k[X1, . . . , Xn] as
in Proposition 11.
By Proposition 12 the matrix T ∈ AN×N associated to the bilinear form Tr
in the basis e1, . . . , eN have entries bounded by 2(n− r)d deg(V ) .
From Proposition 8 and Corollary 7 the matrix T verifies the hypothesis of
Corollary 10 with s ≤ deg(V ) and D ≤ 2(n− r)d deg(V ) .
Hence there exists a finite system of generators of Nil(BM) corresponding
to polynomials of k[X1, . . . , Xn] whose degrees are bounded by

rkA(Bred)2(n− r)d deg(V ) + (n− r)d ≤
≤ 2 deg(V )(n− r)d deg(V ) + (n− r)d ≤

≤ (n− r)d(2 deg(V )2 + 1).

By the local-global principle one infers that
√
= can be generated by poly-

nomials of total degree bounded by (n− r)d(2 deg(V )2 + 1) .
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5.3 The algorithm

We continue with the same notations, assuming that Bred is a Cohen-Macaulay
ring.
By Theorem 13 we know that the radical

√
= can be generated by polynomi-

als whose degrees are bounded by D := (n− r)d(2 deg(V )2 + 1) ≤ 3d3(n−r) .
Let A ⊂ k[X1, . . . , Xn] be the set of all polynomials with total degree
bounded by D , and for each multi-index α := (α1, . . . , αn) such that α1 +
. . .+ αn ≤ D , let Xα := X1

α1 . . . Xn
αn .

Theorem 4 says that a polynomial f belongs to the radical of = if and only
if ∆f = 0 in the factor ring B .
Let f ∈

√
= ∩ A , there exist constants (λα)α in the ground field k and

polynomials g1, . . . , gn−r ∈ k[X1, . . . , Xn] such that :

• f =
∑
α λαX

α

• ∆f =
∑
i gifi , with deg(gifi) ≤ 2D , 1 ≤ i ≤ n − r (see [7, Theorem

5.1.]).

Comparing coefficients, these identities lead to a non-homogeneous system
of linear equations over the ground field k of size of order DO(n) .
Solving this system via well-known symbolic procedures (see for instance [4]),
one obtains generators for the k -vector space

√
=∩A and therefore for the

ideal
√
= .

Since all these computations, as well as the effective Noether normalization
position, can be done by single exponential, well-parallelizable algorithms,
we deduce :

Theorem 14 Following the notations introduced in Section 2 and assuming
that Bred is a Cohen-Macaulay ring, there exists a single exponential, well-
parallelizable algorithm which computes the radical

√
= .

References

[1] Alonso M., Mora T. and Raimondo M.: Local decomposition
algorithms.- Proc. 8th. Int. Conf. Applied Algebra, Algebraic Algo-
rithms and Error Correcting Codes AAECC-8, Springer Lect. Notes
Comput.Sci. 508 (1991) 208-221.

17



[2] Bayer D. and Mumford D.: What Can Be Computed in Algebraic Ge-
ometry ? Computational Algebraic Geometry and Commutative Alge-
bra, Cortona 1991, D. Eisenbud and L. Robbiano, eds. Symposia Math.
XXXIV, Cambridge Univ. Press (1993) 1-48.

[3] Berenstein C. and Struppa D.: Recent improvements in the Complexity
of the Effective Nullstellensatz.- Linear Algebra and its Appl. 157 (1991)
203-215.

[4] Berkowitz S.: On computing the determinant in small parallel time using
a small number of processors.- Inform. Process. Lett. 18 (1984) 147-150.

[5] Caniglia L., Galligo A. and Heintz J.: Some new effectivity bounds in
computational geometry.- Proc. 6th Int. Conf. Applied Algebra, Alge-
braic Algorithms and Error Correcting Codes AAECC–6, Roma 1988,
Springer Lect. Notes Comput.Sci. 357 (1989) 131-151.
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IV.- Publ. Math. Inst. Hautes Étud. Sci. 32 (1967).

18



[13] Gruson L., Lazarsfeld R. and Peskine C.: On a Theorem of Castelnuovo,
and the Equations Defining Space Curves.- Inv. Math. 72 (1983) 493-
506.

[14] Heintz J.: Definability and Fast Quantifier Elimination in Algebraically
Closed Fields.- Theoret. Comput. Sci. 24 (1983) 239-277.

[15] Iversen B.: Generic Local Structures in Commutative Algebra.- Lect.
Notes in Math. 310, Springer-Verlag (1973).

[16] Kaplansky I.: Commutative rings.- Allyn and Bacon (1970).

[17] Krick T. and Logar A.: An algorithm for the computation of the radical
of an ideal in the ring of polynomials.- Proc. AAECC–9, New Orleans
1991. LN Comp. Sci. 539. Springer–Verlag (1992) 195-205.

[18] Kunz E.: Kälher Differentials.- Adv. Lect. in Math., Vieweg Verlag
(1986).

[19] Lam T.Y.: Serre’s Conjecture.- Springer Lect. Notes in Math. 635
(1978).

[20] Matsumura H.: Commutative ring theory.- Cambridge Studies in Adv.
Math. 8 Cambridge University Press (1989).

[21] Mayr E. and Meyer A.: The complexity of the word problem for com-
mutative semigroups and polynomial ideals.- Adv. in Math. 46 (1982)
305-329.

[22] Mumford D.: Varieties defined by quadratic equations.- Questions on
Algebraic Varieties, Centro Internationale de Matematica Estivo, Cre-
monese, Roma (1970) 29-100.

[23] Rossi F. and Spangher W.: Some effective methods in the openness of
loci for Cohen-Macaulay and Gorenstein properties.- Effective Methods
in Algebraic Geometry, Proc. Intern. Conf. MEGA 90, Castiglioncello
1990, T. Mora and C. Traverso, eds., Progress in Mathematics Vol. 94
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