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Abstract 
 

The artificial intelligence has advanced in the last years up to arrive to the daily 

activities of everybody. Chatbots that attends clients and consumers questions 

in any web page, virtual assistants in cell phones and home devices are totally 

common today, self-driving vehicles are not a surprise now. In the medicine 

field, the artificial intelligence is taken a more relevant presence each day 

helping to medical centers and specialists to achieve more precise diagnosis 

using the most powerful information processing techniques in conjunction with 

big platforms and the availability of quantities of data as never before, the Big 

Data.  

In this work I will present the use of these technological advances in the cancer 

early diagnosis and as the way to a potential cure in the future. I will introduce 

to the specific technology under the artificial intelligence term called “Deep 

Learning” as the key factor by we can show then real cases in the early 

diagnosis of different types of cancer. The quick speed in that the technology, 

communications, and huge data availability are evolving is setting to the world, 

as never before, facing the possibility to arrive in the next years to a cure for 

one the most mortal diseases. Follow the initial introduction to the technological 

state of the art and a group of statistics that present the situation of cancer in 

the world, I’ll present a group of real cases of IA application in the early 

diagnoses of six different types of cancer with very hopeful results. Then, I 

describe how the AI is helping in the other side of the fight against cancer, the 

development of new drugs and the design of new clinical trials where the 

standard times to release a new drug to the market are around 10 to 15 years. 

In the last chapter I’ll propose a global platform with the objective of collect 

diagnosis images and laboratory data from medical centers of any country with 

the objective to provide data to an AI’s engine that “learn” from them and help 

to diagnose early and precisely a wide range of types of cancer. This proposal 

is not a business case, is a high-level proposal based on the technological 

current possibilities and some real cases that are been testing right now.  
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Chapter I: Introduction, problem and objectives 

 

Cancer is the second leading cause of death worldwide and the number of 

deaths from this disease increases year after year, the World Health 

Organization (WHO) warned that in the coming decades the new cases would 

increase to become almost a 50% higher in 2040. Science has made progress 

in the last three decades in the search for new therapies and drugs to treat the 

disease, although with disparate results depending on the type of cancer, age 

range, social position and gender of the patient; however, a widely accepted 

concept has been reached in the medical community: the sooner the disease is 

diagnosed in the patient, the chances of applying a successful treatment 

increase considerably. 

But reaching an early and accurate diagnosis requires a series of elements that 

a large part of the world's population is not in a position to access, they are, 

access to the health system as a whole, which includes specialized health 

professionals, diagnosis and treatment centers and the corresponding 

medication. Additionally, as occurs with very few diseases, the mere mention of 

the word cancer causes a totally demoralizing psychological effect on the 

patient, so the psychological aspect also adds to the needs to be taken into 

account in this complex scenario. 

Technology is changing many aspects of our daily lives in recent years, the 

convergence and massification of technologies such as big data, massive 

Internet access, high-speed communications, cloud computing, the economy of 

platforms, among others, have served to leverage the development of Artificial 

Intelligence (AI) coming today to be present in search and recommendation 

engines that suggest us which movies or songs we may like on entertainment 

platforms, personal assistants on our cell phones or in the main module of the 

autonomous vehicles that not only open up new markets and business 

opportunities of great value, and whose future potential is enormous given that 

technology giants such as IBM, Microsoft, Amazon, Google and Facebook 

invest millions of dollars in research and development in the AI kingpin to 

position himself in this market. But AI as such is a broad term that 
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encompasses a set of disciplines ranging from natural language processing 

(NLP), expert systems, autonomous robots, machine learning (ML) that 

specializes in making machines imitate human reasoning through “learning” 

techniques; and within this, a relatively new discipline called Deep Learning 

(DL) that takes the concept further based on techniques known as neural 

networks that allow learning of the model without assistance or "supervision" 

and is especially useful in the analysis of unstructured information as images, 

video, and data that do not have a predefined structure in its format such as 

information sent by sensors, cameras and mobile devices. 

Health is not the exception to the rest of the areas of human activity and has 

also seen a growing technification, the appearance of new diagnostic imaging 

devices that have become widespread in the last 30 years such as magnetic 

resonance imaging, tomographs, ultrasound scanners and modern X-rays have 

provided health professionals with tools that allow them to be much more 

assertive in diagnosing patients than decades ago without the need to apply 

invasive techniques to them. 

All these changes and transformations have occurred with greater or lesser 

speed in the last 25/30 years, with strong acceleration in the last 10 years. 

Investigation question 

 

Given the scenario of the reality of cancer in the world and the technological 

progress in general experienced by the humanity, but in particular that of AI, 

this paper aims to answer the following research question: 

Can the application of AI, in particular deep learning models, help reduce 

deaths from certain types of cancer? 

Objetives 

 

The main objective of this research work is to analyze the possible contributions 

that AI can make to the early diagnosis of cancer in order to increase the 

patient's chances of being cured. 
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Based on the main objective, this research work has the following secondary 

objectives: 

• Present the world situation of cancer, both in terms of deaths caused by 

the disease, its distribution by different types of segments, and in the 

economic aspect of those involved in the fight against cancer. 

• Introduce the concepts of Artificial Intelligence (AI) as a technological 

concept and its multiple branches of application. 

• Introduce the concept of Deep Learning, its principles and its area of 

applicability, since it will be the key technological factor of this thesis. 

• To present a series of real cases where AI has been successfully applied 

to diagnose six different types of cancer early, in order to demonstrate 

that the research question is not a theoretical proposition but a reality 

that is already happening today. 

• To present the advances that AI can bring to the research process for 

new cancer drugs, shortening the currently extensive timeframes 

involved in the process from initial laboratory tests to government 

approval for marketing. 

• Propose a platform where the concepts developed previously can be 

developed as an AI product offered in the cloud where doctors from 

anywhere in the world can validate early the diagnostic results of their 

patients to initiate early treatments when necessary. 
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Chapter II: Investigation methodology 

 
Roberto Hernández Sampieri in his book "Research Methodology" (2014) 

defines "Research is a set of systematic, critical and empirical processes that 

are applied to the study of a phenomenon or problem" and states that since the 

last century the currents of research have been polarized into two main 

approaches: the qualitative approach and the quantitative approach. 

He defines the two approaches for us as follows: 

The quantitative approach “is sequential and probative, each stage precedes 

the next and steps cannot be avoided. The order is rigorous, although of 

course, we can redefine some phase. It starts from an idea that is delimited 

and, once delimited, objectives and research questions are derived, the 

literature is reviewed and a theoretical framework or perspective is built. 

Hypotheses are established from the questions and variables are determined; a 

plan is drawn up to test them (design); variables are measured in a given 

context; the measurements obtained are analyzed using statistical methods, 

and a series of conclusions are drawn”. 

The qualitative approach: “It is also guided by significant areas or themes of 

research. However, instead of clarity about research questions and hypotheses 

preceding data collection and analysis (as in most quantitative studies), 

qualitative studies may develop questions and hypotheses before, during, or 

after the data collection and analysis. of data collection and analysis. These 

activities often serve, first, to discover what the most important research 

questions are; and then to refine and answer them. The investigative action 

moves dynamically in both directions: between the facts and their interpretation, 

and it is a rather “circular” process in which the sequence is not always the 

same, since it varies with each study”. 
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Research Approach 

Under these concepts mentioned, this research will be carried out under a 

qualitative approach because it will be based on data analysis, information, and 

publications, and generalizations will be made trying to discover patterns. 

The knowledge generated by research under a qualitative approach is mainly 

formulated in terms of inductive reasoning. In this reasoning, the property 

observed in a finite number of cases is generalized for all the elements of a set. 

It must be taken into account that the observations favorable to the conclusions 

reached do not make the conclusion true, since there could be exceptions. 

Hence, the conclusion of an inductive reasoning can only be considered 

probable and, in fact, the information obtained through this mode of reasoning 

is always uncertain and debatable information. This paradigm establishes a 

subjective approach to the matter under study. The objective is more 

associated with the understanding than with the prediction of the phenomenon 

under study. 

 

Research Type 

 
According to the theory, there are four possible types of research: exploratory, 

descriptive, correlational, and explanatory. 

In particular, the type of exploratory research is defined as research used to 

investigate a problem that is not clearly defined. It is done to have a better 

understanding of the existing problem, but it will not provide conclusive results. 

For such research, a researcher starts with a general idea and uses this 

research as a means of identifying problems, which can be the focus of future 

research. An important aspect here is that the researcher must be willing to 

change the direction of it subject to the revelation of new data or knowledge. 

This investigation is usually carried out when the problem is at a preliminary 

stage. It is often referred to as a grounded theory approach or interpretive 

research as it is used to answer questions such as what, why and how. 
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To carry out this thesis, an exploratory research approach will be adopted, and 

from the possible sources of information described by Zikmund (2000) we will 

select the secondary analysis of data and case studies. 

Instruments 

 

The topic addressed is extremely recent, and therefore the information on the 

theory of Deep Learning, the description of successful cases of Deep Laerning 

in the early diagnosis of cancer and in the investigation of new drugs was 

obtained from papers and digital magazines published in different scientific 

dissemination sites. 

Additionally, for the justification and description of figures and statistics on 

which the statements and courses of action indicated in the following chapters 

of this work are justified, the data was obtained through market research sites 

and global statistics. 

List of scientific dissemination sites used as sources for cases of AI applied to 

the early diagnosis of cancer in this research: 

www.cancer.gov                  Site dedicated to provide scientific cancer information. 

www.cancercenter.ai           Site dedicated to provide scientific cancer information 

www.aiononcology.org        Site about divulgation of information about the use of AI in oncology  

www.frontiersin.org              Site about scientific information. 

www.nature.com                  Site about scientific information. 

www.ncbi.nlm.nih.gov          Site about scientific information. 

www.royalmarsden.nhs.uk   Site of medical center in UK. 

www.researchgate.net         Site about scientific information. 

www.cell.com                       Site about scientific information. 

www.jlgh.org                        Site of Lancaster General Hospital 

www.febs.onlinelibrary.wiley.com   Site about scientific information. 

www.arxiv.org                       Publication of Cornell University. 

List of sites on global statistics and world organizations related to health: 

www.who.int                          World Health Organization web site. 

www.paho.org                             Pan-American health organization web site. 

www.ourworldindata.org        Site about global statistics. 

http://www.cancer.gov/
http://www.cancercenter.ai/
http://www.aiononcology.org/
http://www.frontiersin.org/
http://www.nature.com/
http://www.ncbi.nlm.nih.gov/
http://www.royalmarsden.nhs.uk/
http://www.researchgate.net/
http://www.cell.com/
http://www.jlgh.org/
http://www.febs.onlinelibrary.wiley.com/
http://www.arxiv.org/
http://www.who.int/
http://www.paho.org/
http://www.ourworldindata.org/
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www.statista.com                 Site about global statistics. 

www.idataresearch.com       Site about global statistics. 

List of sites on technology, AI and technology market research: 

www.gartner.com                        Gartner Group, technology market investigation org. web site. 

www.towardsdatascience.com    Data Science discipline publication web site. 

www.ibm.com                              IBM’s web site. 

www.enterprisersproject.com      Technology investigation web site. 

www.medium.com                       Technology investigation web site. 

List of sites, books and study cases related to business and economy: 

Book “INTERNATIONALIZATION HANDBOOK FOR THE SOFTWARE BUSINESS” 

Harvard Business School. 

www.weforum.com               Economy investigation web site. 

 

Thesis structure 

 

The text of this thesis is divided into six chapters, of which the first two are 

dedicated to describing the methodological aspects of the work, the problem 

statement, the objectives, the question and the type of research, the 

instruments used and the structure of the research. the thesis. 

Chapter III introduces the reality of cancer in the world with various statistical 

tables that allow a clear vision of the magnitude of the problem both at a human 

and economic level. An introduction is also made to artificial intelligence and in 

particular to Deep Learning technology as a key factor in the problems and 

solutions proposed in the following sections and chapters. 

Chapter IV shows us six real cases of AI successfully applied to the early 

diagnosis of different types of cancer, also to histopathological diagnosis as a 

complement to cancer cases and finally a reference to the potential of AI 

applied to the case of COVID research. 19. 

Chapter V complements the previous chapter by presenting how AI can help 

improve and reduce the extensive timeframes that today have the cycle of 

research and development of new drugs for cancer treatment, thus allowing not 

http://www.statista.com/
http://www.idataresearch.com/
http://www.gartner.com/
http://www.towardsdatascience.com/
http://www.ibm.com/
http://www.enterprisersproject.com/
http://www.medium.com/
http://www.weforum.com/
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only to be able to diagnose early the disease, but also accelerate the arrival of 

new drugs on the market. 

The last chapter proposes how a platform implemented with the technologies 

mentioned throughout the work can allow the implementation of an AI engine 

that is trained with diagnostic images, laboratory results and medical literature 

from around the world. The platform with this AI engine would allow any doctor 

to validate the results of a patient's exams and quickly discover if there is a 

possibility of developing cancer in the patient. 

Finally, I would like to mention that I have written this work in English since all 

the documents, papers, publications and reference sites are written in English. 

Attempting to translate into Spanish could distort technical terms that should be 

interpreted in the idiomatic context in which they were written. 
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Chapter III: Theoretical framework 

In this chapter I’ll introduce some concepts about the problem of cancer as the 

second global cause of death and the introduction to artificial intelligence (AI) 

and Deep Learning as a technology that is addressed the problem, obtaining 

currently results as never before in the disease early diagnosis and treatment.  

First, I’ll introduce to the definition of cancer, I’ll present statistics about the 

impact of the disease in the world and finally which is the economic cost that 

currently the society is paying today to manage all the aspects of the medical’s 

treatments related. The second part of this chapter is dedicated to introduce the 

concepts of AI and how it is taking a more relevant aspect all the daily aspects 

of our lives, then I’ll continue with the presentation of deep learning, one of the 

AI subsets of technologies and its use in the cancer early diagnosis.  

Some words about cancer 

 

It is known that the word cancer in itself carries a negative emotional 

connotation that activates all the alert systems of those who receive this difficult 

diagnosis, when the doctor says the word "cancer" it is a situation that people 

often fear, they often say that they were stunned when they heard the news and 

unable to process what was the doctor said afterwards. 

According to the “World Health Organization” (WHO) cancer is a generic term 

for a large group of diseases that can affect any part of the body. Other terms 

used are malignant tumours and neoplasms. One defining feature of cancer is 

the rapid creation of abnormal cells that grow beyond their usual boundaries, 

and which can then invade adjoining parts of the body and spread to other 

organs; the latter process is referred to as metastasis. Widespread metastases 

are the primary cause of death from cancer. (WHO, 2022) (0).  

Also, it is defined by the National Cancer Institute “as a collection of diseases in 

which abnormal cells can divide and spread to nearby tissue”. Cancers can 

arise in many parts of the body – leading to a range of cancer types - and in 

some cases spread to other parts of the body through the blood and lymph 

systems. (Ritchie, 2019) (1) 
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Cancer arises from the transformation of normal cells into tumour cells in a 

multi-stage process that generally progresses from a pre-cancerous lesion to a 

malignant tumour. These changes are the result of the interaction between a 

person's genetic factors and three categories of external agents, including: 

• Physical carcinogens, such as ultraviolet and ionizing radiation. 

• Chemical carcinogens, such as asbestos, components of tobacco 

smoke, alcohol, aflatoxin (a food contaminant), and arsenic (a drinking 

water contaminant). 

• Biological carcinogens, such as infections from certain viruses, bacteria, 

or parasites. (WHO, 2022) (0). 

Progress against many other causes of deaths and demographic drivers of 

increasing population size, life expectancy and — particularly in higher-income 

countries — aging populations mean that the total number of cancer deaths 

continues to increase. This is a very personal topic to many: nearly everyone 

knows or has lost someone dear to them from this collection of diseases. 

(Ritchie, 2019) (1). 

The incidence of cancer rises dramatically with age, most likely due to a build-

up of risks for specific cancers that increase with age. The overall risk 

accumulation is combined with the tendency for cellular repair mechanisms to 

be less effective as a person grows older. 

Between 30% and 50% of cancers can currently be prevented by avoiding 

risk factors and implementing existing evidence-based prevention strategies. 

The cancer burden can also be reduced through early detection and 

appropriate treatment and care of patients who develop cancer. Many cancers 

have a high chance of cure if diagnosed early and treated appropriately.  

There are two components of early detection: early diagnosis and screening. 

 

 

https://ourworldindata.org/world-population-growth#shares-by-world-regions
https://ourworldindata.org/life-expectancy
https://ourworldindata.org/age-structure
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Early diagnosis 

When identified early, cancer is more likely to respond to treatment and can 

result in a greater probability of survival with less morbidity, as well as less 

expensive treatment. Significant improvements can be made in the lives of 

cancer patients by detecting cancer early and avoiding delays in care. 

Early diagnosis consists of three components: 

• Being aware of the symptoms of different forms of cancer and of the 

importance of seeking medical advice when abnormal findings are 

observed; 

• Access to clinical evaluation and diagnostic services; and 

• Timely referral to treatment services. 

Early diagnosis of symptomatic cancers is relevant in all settings and the 

majority of cancers. Cancer programs should be designed to reduce delays in, 

and barriers to, diagnosis, treatment and supportive care.  

Screening 

Screening aims to identify individuals with findings suggestive of a specific 

cancer or pre-cancer before they have developed symptoms. When 

abnormalities are identified during screening, further tests to establish a 

definitive diagnosis should follow, as should referral for treatment if cancer is 

proven to be present. 

Screening programs are effective for some but not all cancer types and in 

general are far more complex and resource-intensive than early diagnosis as 

they require special equipment and dedicated personnel. Even when screening 

programs are established, early diagnosis programs are still necessary to 

identify those cancer cases occurring in people who do not meet the age or risk 

factor criteria for screening. (World, 2022) (0) 
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Some numbers about the impact of cancer in the world 

Cancer is a leading cause of death worldwide, accounting for nearly 10 million 

deaths in 2020. (WHO, 2022) (0). Every sixth death in the world is due to 

cancer, making it the second leading cause of death – second only 

to cardiovascular diseases. (Ritchie, 2019) (1) 

The most common in 2020 (in terms of new cases of cancer) were: 

• Breast (2.26 million cases) 
• Lung (2.21 million cases) 
• Colon and rectum (1.93 million cases) 
• Prostate (1.41 million cases) 
• Skin (non-melanoma) (1.20 million cases) 
• Stomach (1.09 million cases) 

The most common causes of cancer death in 2020 were: 

• Lung (1.80 million deaths); 
• Colon and rectum (916.000 deaths); 
• Liver (830.000 deaths); 
• Stomach (769.000 deaths) 
• Breast (685.000 deaths) 

Each year, approximately 400.000 children develop cancer. The most common 

cancers vary between countries. Cervical cancer is the most common in 23 

countries. (WHO, 2022) (0) 

The Global Burden of Disease (a major global study on the causes and risk 

factors for death and disease published in the medical journal The Lancet) 

estimates that 9.56 million people died prematurely as a result of cancer in 

2017. Every sixth death in the world is due to cancer.  

Cancer is a particularly common cause of death in richer countries where 

people are less likely to die of infectious diseases and causes of deaths that 

lead to very early deaths for people in poverty. Because cancer is one of the 

leading causes of death, it is one of the world’s most pressing problems to 

make progress against this disease. Next chart shows the main causes of 

death in the world, with cancer as a second only behind of cardiovascular 

diseases: 

https://ourworldindata.org/grapher/share-of-deaths-by-cause
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With a clear picture of the problem’s magnitude, we can go in details in order to 

know which are the different types of cancer that affect the people, and other 

distributions by geographic and age range. In the next chart we see the total 

number of deaths in 2019 attributed to the range of different cancers. 

The group of tracheal, bronchus, and lung cancers claimed the largest number 

of lives – 1.9 million in 2019. Next follow colon and rectum, stomach and liver 

cancer, all claiming between 800,000 and 900,000 globally in 2019. 

In exploring patterns across various countries, we see that tracheal, bronchus, 

and lung cancer is the leading form of cancer deaths across most high and 

middle-income countries. However, the leading form in lower income countries 

varies: colon and rectum; liver; cervical; stomach; breast and prostate all top 

the list in several countries. 
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How are cancer deaths distributed across age groups? And how did this 

change over time? 

In the next chart we see the breakdown of total cancer deaths by broad age 

category, ranging from under-5s to those over 70 years old. 

Almost half – 46% in 2017 – of all people who die from cancer are 70 or older. 

Another 41 percent are between 50 and 69 years old – so that 87% of all 

cancer victims are older than 50 years. 

The distribution of deaths across the age spectrum has changed notably since 

1990. The share of deaths which occur in those aged over 70 has increased by 

8 percentage points, whilst the share in those aged 50-69 and 15-49 has fallen. 

Collectively, children and adolescents under 14 years old account for around 

one percent of cancer deaths — this equates to around 110,000 children per 

year.  
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Next chart shows the death rate – the number of cancer deaths of people in a 

certain age group per 100,000 people of the same age group. Of the people 

who are 70 years and older more than 1% (i.e., more than 1000 per 100,000) 

die from cancer each year. 
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The global disease burden from cancer: 

Death rates only capture the mortality of cancer. However, the impact of cancer 

on people’s lives is more than that. Many live with cancer for long periods and it 

is important to also capture the morbidity caused by cancer. 

The Disability-Adjusted Life Year (DALY) is a metric that captures the total 

burden of disease – both from years of life lost due to premature death and 

from years lived with the disease. One DALY equals one lost year of healthy 

life. 

The map shows DALYs from cancers, measured per 100,000 individuals. This 

is age-standardized to allow comparisons between countries and over 

time. This is measured across all cancer types. 

Also shown are disease burden rates broken down by cancer types. We see 

that at a global level, the largest burden results from tracheal, bronchus and 

lung cancer, followed by liver, stomach, colon & rectum, and breast cancer. 
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Is the world making progress against cancer? We saw with the previous graphs 

that cancer is one of the largest health problems in the world. How is cancer 

mortality changing over time?  

Three different measures allow us to understand how the mortality of cancer 

has changed: the number of deaths, the death rate, and the age-standardized 

death rate. A comparison of how these three measures have changed is shown 

in the visualization: 

Let’s look at what we can learn from each of these: 

The number of cancer deaths increased by 66% 

More people than ever before die from cancer – 9.6 million in the latest data 

from 2017. 

In 1990, 5.7 million people died from cancer. This means we have seen a 66% 

increase in the global number of cancer deaths. This increase is what the green 

line in the visualization shows. 
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The death rate from cancer increased by 17% 

But in a world with more people, we would expect more people to die. As the 

world population is growing the total number of deaths is rising – since 1990, 

the number of deaths increased from 46 million to 56 million per year. 

This of course means that the number of people who did not die of cancer has 

also increased. To assess whether we are making progress against cancer we 

cannot rely on the absolute number of deaths alone. It does not account for the 

increase of the world population. 

This is why health statisticians study the number of deaths relative to the size of 

the population – the death rate. It is measured as the number of cancer deaths 

per 100,000 people. 

The red line in the chart shows that the death rate from cancer has increased 

by 17% since 1990. This tells us that if the world population had not increased, 

then instead of the number of cancer deaths increasing by 66% (as we saw 

above), they would only have increased by 17%. Only a quarter as much. 

The difference between the steep rise in the number of deaths and the slower 

rise of the death rate is due to the increase of the global population. 

The age-standardized death rate from cancer declined by 15% 

Cancer kills mostly older people – as the death rate by age shows, of those 

who are 70 years and older, 1% die from cancer every year. For people who 

are younger than 50, the cancer death rate is more than 40-times lower (more 

detail here). 

We would therefore expect that many more people die from cancer in an old 

population than in a young population. Because health is improving and fertility 

rates are falling, the world is aging rapidly. This impacts the change over time 

that we are interested in: historically, fewer died from cancer because larger 

https://ourworldindata.org/world-population-growth
https://ourworldindata.org/grapher/number-of-deaths-by-age-group
https://ourworldindata.org/grapher/cancer-death-rates-by-age
https://ourworldindata.org/cancer#cancer-prevalence-by-age
https://ourworldindata.org/life-expectancy
https://ourworldindata.org/fertility-rate
https://ourworldindata.org/fertility-rate
https://ourworldindata.org/age-structure
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parts of the population died before they reached the age when cancer becomes 

a common cause of death. 

Epidemiologists correct for changes in age-profile over time by relying on the so 

called ‘age-standardized death rate’. This metric tells us what the death rate 

would be if the age structure of the population had stayed the same over time 

and would be the same across countries.  

Once we correct for both population changes and aging, we get the blue line in 

the visualization: the age-standardized death rate from cancer. Globally this has 

fallen by 15% since 1990. (Ritchie, 2019) (1) 

Economic aspects of cancer 

 

With a clear vision of the impact of cancer in the world’s health, a second 

disease related effect is the economic, the cost that preventions campaigns, 

diagnostics and treatments has for the public health and private health systems 

of the world. This section provides a number of statistics that has the aim of 

quantify the money invested under all aspects related to cancer.  

The first chart shows total oncology spending worldwide, including spending for 

supportive care, from 2010 to 2022. In 2020, global oncology spending totaled 

167 billion U.S. dollars. In comparison, costs stood at 74 billion dollars six years 

earlier. 
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(Stefan Harrer, 2019) (2) 

The cost of comprehensive cancer management has not only been rising 

steadily as seen in the previous graph, but it is projected that it will continue to 

increase in the coming years, the following statistic shows a projection of the 

global spending and growth in the oncology market between 2021 and 2025. In 

2021, oncology spending is expected to be around 187 billion U.S. dollars 

worldwide. Spending in this market is expected to increase to about 273 billion 

dollars until 2025. The maximum projection for the 2021-2025 CAGR is 12 

percent. 

Spending and growth worldwide in oncology market 2021-2025    
 Projected spending and growth in the global oncology market 
between 2021 and 2025    
    

 2021 (in billion USD)  
 

187  
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 2025 (in billion USD)  
 

273  
 CAGR 2021 to 2025 (%)*   12  
 

(Stefan Harrer, 2019) (3) 

Segmenting the expenditure mentioned by economic zones, it is seen that the 

developed countries lead this trend, this statistic shows oncology spending in 

the global market by region, in 2010, 2015, and gives a forecast for 2020. In 

2015, the so-called pharmerging countries spent around 13.5 billion U.S. dollars 

on oncology, including supportive care. 

 

 

(Statista, 2016) (4)  

The development of medicines is a long and costly process that is generally 

concentrated in the most important economic areas of the world, presented in 

the previous graph, where the main pharmaceutical laboratories operate with 
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large areas of R&D, in the case of drugs for treatment of cancer this is much 

more marked, next statistic shows the total cost of research and development 

(R&D) for select cancer drugs that were on the market as of 2017. Alexion 

Pharmaceuticals' drug Eculizumab had a total R&D cost of 817.6 million U.S. 

dollars since R&D start in January 1992. 

 

(Mikulic, Statista, 2017) (5) 

And in terms of time elapsed, this statistic shows the time between the R&D 

start and the approval of selected cancer drugs which were on the market as of 

2017. Alexion Pharmaceuticals' drug Eculizumab had a research and 

development phase of over 15 years until its approval in March 2007. 
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(Mikulic, Statista, 2017) (6) 

In this section I've presented a series of studies and statistics in order to 

quantify the impact of cancer in the world, both in terms of the impact on the 

loss of human lives as well as the economic impact of dealing with this disease 

in all its aspects. As has been seen, the tendency is for the problem to worsen 

in the coming years, maintaining the traditional medical and pharmaceutical 

approach. 

 

Artificial intelligence – Technologies and current maturity level 

 

In the last five years the technologies included under the title of "artificial 

intelligence" (AI) have reached a point of maturity in which they are already 

widely used in current applications, in all kinds of areas such as voice assistant, 

image processing in real time, deep learning, analysis of large amounts of 
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unstructured information in search of patterns, automation of repetitive tasks in 

companies. 

When we talk about the technologies encompassed under the term artificial 

intelligence, we refer to technologies such as machine learning, natural 

language recognition and processing, visual recognition, text recognition, 

cognitive intelligence, among others. 

 

The current state of maturity has led to the large technology providers in the 

market such as IBM, Google, Microsoft or Amazon, as well as niche providers 

born to develop and commercialize this type of solutions, are today offering AI 

services as a platform in the cloud, to which companies can subscribe under 

different contracting modalities. 

The deep learning technologies, among others, appears as the more matures 

now with potential of massive adoption by the market.  

The services available on the platforms (cloud) of the main providers are 

presented to the client in the form of APIs (Application Program Interface) that 

encompass artificial intelligence functionalities, allowing the client to use them 

without having a detailed knowledge of the technology in question, in general, 

under models of payment by number of calls to said APIs. 
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This combination of maturity in technology and an accessible business model of 

the same, as software as a service (SAAS), has produced a rapid adoption in 

various business areas, scientific and educational communities, and for five 

years to date there have been developed artificial intelligence applied models 

that seek to provide superior capabilities to the field of medical research, both in 

the search for definitive cures for diseases such as cancer and various 

neurological disorders, as well as in the search for more precise and earlier 

diagnoses that produce greater chances of early treatment, aiming to reduce 

mortality in patients and more efficient use of the treatment capacities of health 

centers. 

The next chart shows the maturity state of the vast number of technologies 

under the AI umbrella term: 

 

(Goasduff, 2020) (7) 
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With this currently available technological framework, this work presents the 

advances made in the early diagnosis of certain types of cancer as a 

consequence of the use of artificial intelligence to carry out an early diagnosis 

based on the massive processing of data and diagnostic images. 

Deep Learning, the key technology in the development of an 

image's predictive analysis platform. What is?  
  

Deep Learning is a subset of Machine Learning, which on the other hand is a 

subset of Artificial Intelligence. Artificial Intelligence is a general term that refers 

to techniques that enable computers to mimic human behavior.  

Machine Learning represents a set of algorithms trained on data that make all 

of this possible. 

 

Deep Learning, on the other hand, is just a type of Machine Learning, inspired 

by the structure of a human brain. Deep learning algorithms attempt to draw 

similar conclusions as humans would by continually analyzing data with a given 

logical structure. To achieve this, deep learning uses a multi-layered structure 

of algorithms called neural networks. 
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The design of the neural network is based on the structure of the human brain. 

Just as we use our brains to identify patterns and classify different types of 

information, neural networks can be taught to perform the same tasks on data. 

The individual layers of neural networks can also be thought of as a sort of filter 

that works from gross to subtle, increasing the likelihood of detecting and 

outputting a correct result. 

The human brain works similarly. Whenever we receive new information, the 

brain tries to compare it with known objects. The same concept is also used by 

deep neural networks. 

Neural networks enable us to perform many tasks, such as clustering, 

classification or regression. With neural networks, we can group or sort 

unlabeled data according to similarities among the samples in this data. Or in 

the case of classification, we can train the network on a labeled dataset in order 

to classify the samples in this dataset into different categories. 

In general, neural networks can perform the same tasks as classical algorithms 

of machine learning. However, it is not the other way around. 

Artificial neural networks have unique capabilities that enable deep learning 

models to solve tasks that machine learning models can never solve. 

All recent advances in artificial intelligence in recent years are due to deep 

learning. Without deep learning, we would not have self-driving cars, chatbots 

or personal assistants like Alexa and Siri. The Google Translate app would 

continue to be as primitive as 10 years ago (before Google switched to neural 

networks for this App), and Netflix or Youtube would have no idea which movies 
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or TV series we like or dislike. Behind all these technologies are neural 

networks. 

We can even go so far as to say that today a new industrial revolution is taking 

place, driven by artificial neural networks and deep learning. 

At the end of the day, deep learning is the best and most obvious approach to 

real machine intelligence we’ve had so far. 

Why is deep learning and artificial neural networks so powerful and unique in 

today’s industry? And above all, why are deep learning models more powerful 

than machine learning models? Let me explain it to you. 

The first advantage of deep learning over machine learning is the needlessness 

of the so-called feature extraction. 

Long before deep learning was used, traditional machine learning methods 

were mainly used. Such as Decision Trees, SVM, Naïve Bayes Classifier and 

Logistic Regression. 

These algorithms are also called flat algorithms. Flat here means that these 

algorithms cannot normally be applied directly to the raw data (such as .csv, 

images, text, etc.). We need a preprocessing step called Feature Extraction. 

The result of Feature Extraction is a representation of the given raw data that 

can now be used by these classic machine learning algorithms to perform a 

task. For example, the classification of the data into several categories or 

classes. 

Feature Extraction is usually quite complex and requires detailed knowledge of 

the problem domain. This preprocessing layer must be adapted, tested and 

refined over several iterations for optimal results. 

On the other side are the artificial neural networks of Deep Learning. These do 

not need the Feature Extraction step. 

The layers are able to learn an implicit representation of the raw data directly 

and on their own. Here, a more and more abstract and compressed 

representation of the raw data is produced over several layers of an artificial 

neural-nets. This compressed representation of the input data is then used to 



 
 

Página 33 de 133  
 

produce the result. The result can be, for example, the classification of the input 

data into different classes. 

 

 

Feature Extraction is only required for ML Algorithms. 

In other words, we can also say that the feature extraction step is already part 

of the process that takes place in an artificial neural network. 

During the training process, this step is also optimized by the neural network to 

obtain the best possible abstract representation of the input data. This means 

that the models of deep learning thus require little to no manual effort to 

perform and optimize the feature extraction process. 

Let us look at a concrete example, if you want to use a machine learning model 

to determine if a particular image is showing a car or not, we humans first need 

to identify the unique feature or features of a car (shape, size, windows, wheels, 

etc.) extract the feature and give them to the algorithm as input data. 

In this way, the algorithm would perform a classification of the images. That is, 

in machine learning, a programmer must intervene directly in the action for the 

model to come to a conclusion. 
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In the case of a deep learning model, the feature extraction step is completely 

unnecessary. The model would recognize these unique characteristics of a car 

and make correct predictions. 

That completely without the help of a human. 

In fact, refraining from extracting the characteristics of data applies to every 

other task you’ll ever do with neural networks. Just give the raw data to the 

neural network, the rest is done by the model. 

The second huge advantage of Deep Learning and a key part in understanding 

why it’s becoming so popular is that it’s powered by massive amounts of data. 

The “Big Data Era” of technology will provide huge amounts of opportunities for 

new innovations in deep learning. As per Andrew Ng, the chief scientist of 

China’s major search engine Baidu and one of the leaders of the Google Brain 

Project, 

“The analogy to deep learning is that the rocket engine is the deep learning 

models and the fuel is the huge amounts of data we can feed to these 

algorithms.” 

 

Deep Learning Algorithms get better with the increasing amount of data. 

Deep Learning models tend to increase their accuracy with the increasing 

amount of training data, where’s traditional machine learning models such as 

SVM and Naive Bayes classifier stop improving after a saturation point. 
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(Oppermann, 2019) (8) 

 

Artificial Intelligence (Deep Learning) applied to early cancer 

diagnosis  

 

Based on the characteristics and benefits of AI in general and deep learning in 

particular explained in previous sections, I’ll start to link those concepts with 

cancer research and investigation in order to present the advances that the AI 

is achieving in different areas of cancer detection centers. 

The inherent complexity of human malignancies calls for the development of 

cutting-edge technologies, concepts and methods that will eventually be applied 

in the diagnosis and treatment of cancer patients. 

AI excels at recognizing patterns in large volumes of data, extracting 

relationships between complex features in the data, and identifying 

characteristics in data (including images) that cannot be perceived by the 

human brain. It has already produced results in radiology, where clinicians use 

computers to process images rapidly, thus allowing radiologists to focus their 

time on aspects for which their technical judgment is critical. For example, last 

year, the Food and Drug Administration approved the first AI-based 

software to process images rapidly and assist radiologists in detecting 

breast cancer in screening mammograms. 

Integration of AI technology in cancer care could improve the accuracy and 

speed of diagnosis, aid clinical decision-making, and lead to better health 

outcomes. AI-guided clinical care has the potential to play an important role in 

reducing health disparities, particularly in low-resource settings. Some 

examples: 

• National Cancer Institute (NCI) will invest in supporting research, 

developing infrastructure, and training the workforce to help 

achieve these goals and more. 
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• The journal of AIO (www.aioncology.org) is established to provide the 

unmet academic requirements in publication, evaluation, and quality 

control of AI's applications in oncology. To ensure high-quality research 

paper publications from global talents with or without fundings, the journal is 

FREE of charge for submission, peer-review and publication online.  

 

• The effective utilization of cancer big data entails all the steps from data 

processing and storage to data mining, analysis, and final applications, 

such as the identification of patient-specific oncogenic processes and 

biomarkers. Moreover, the continuous improvement of data quality 

through standardization procedures that ensure responsible molecular 

and clinical data sharing, interoperability, and security is a key aspect for 

cancer research that is strongly catalyzed by initiatives such as the 

Global Alliance for Genomics and Health  

 

Summarizing, the goal is to use AI’s ability to recognize patterns that are too 

subtle for the human eye to detect to guide physicians towards better-targeted 

therapies and to improve outcomes for patients. Some scientists are even 

applying AI to screening tests in the hope of identifying people with an 

increased cancer risk or catching the disease sooner. 

(L, 2019) (9). 

 
Finishing this chapter, I would like to present the main concepts about the 

cancer situation in the world and the AI-Deep Learning state of the art that that 

would guide this work in the next chapters: 

 

• The cancer burden can be reduced through early detection. 

• Many cancers have a high chance of cure if diagnosed early. 

• There are two components of early detection: early diagnosis and 

screening. 

• Deep Learning is powered by massive amounts of data. Deep Learning 

models tend to increase their accuracy with the increasing amount of 

training data.  

http://www.aioncology.org/


 
 

Página 37 de 133  
 

Chapter IV: Real cases of AI use in images processing 

for premature cancer detection 

 

Going to real cases that are using AI to process images and detect signs of 

cancer in an earlier stage, here are some examples of this technology applied 

to the real world: 

1) Leveraging AI to improve detection of cervical precancer 

 

Scientists on NCI’s intramural research program helped to develop an AI 

approach using deep learning for the automated detection of 

precancerous lesions using cervical images. The goal was to develop a 

more-accurate and cost-effective screening method that could be used 

easily in low and middle resource settings. They testes the approach on 

more than 60.000 cervical images from an NCI study.  

Results: 
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(L, 2019) (10) 

2) Brain and prostate cancer correct diagnosis 

When a Dr. saw the results of some test of a girl who had brain cancer 

few years ago, she saw that the medulloblastoma for which she had 

been treated a few years earlier had returned. The girl’s recurrent cancer 

was found in the same part of brain as before, and the biopsy seemed to 

confirm medulloblastoma. 

With this diagnosis, the girl would begin a specific course of radiotherapy 

and chemotherapy. But just as neuropathologist Matija Snuderl was 

about to sign off on the diagnosis and set her on that treatment path, he 

hesitated. The biopsy was slightly unusual, he thought, and he 

remembered a previous case in which what was thought to be 

medulloblastoma turned out to be something else. So, to help him make 

up his mind, Snuderl turned to a computer. He arranged for the girl to 

have a full-genome methylation analysis, which checks for small 

hydrocarbon molecules attached to DNA. The addition of such methyl 

groups is one of the mechanisms behind epigenetics — when the activity 

of genes is altered without any mutation to the underlying genetic code 

— and different types of cancer show different patterns of methylation. 

Snuderl fed the results to an artificial-intelligence (AI) system developed 



 
 

Página 39 de 133  
 

by a consortium including researchers at the German Cancer Research 

Center in Heidelberg, and let the computer classify the tumor. 

“The tumour came back as a glioblastoma, which is a completely 

different type,” Snuderl says. The new tumour seemed to be the result of 

radiation used to destroy the first cancer, and called for a different drug 

and radiation treatment plan. Treatment for the wrong cancer could have 

ill effects without actually destroying the cancer. “If I had finalized the 

case just on pathology, I would have been terribly wrong,” Snuderl says. 

The system Snuderl used is an early example of AI as a tool to diagnose 

cancer. NYU Langone’s Perlmutter Cancer Center received state 

approval to use its AI classifier as a diagnostic test in October 2019, and 

researchers around the world are developing similar systems to help 

pathologists diagnose cancer more accurately. The goal is to use AI’s 

ability to recognize patterns that are too subtle for the human eye to 

detect to guide physicians towards better-targeted therapies and to 

improve outcomes for patients. Some scientists are even applying AI to 

screening tests in the hope of identifying people with an increased 

cancer risk or catching the disease sooner. 

The methylation method 

The methylation-based classifier, developed by a consortium of dozens 

of researchers, was originally trained to sort medulloblastomas into 

subtypes. The German-led team eventually expanded the effort to cover 

all of the 100 or so known cancers of the central nervous system. When 

the initial results were published in March 2018, the researchers made 

the classifier available online. Other researchers can upload methylation 

profiles and, in a few minutes, learn which subtype the cancer fits into. 

They also receive a confidence score that says how likely the result is to 

be correct. About 1,000 such profiles are uploaded each month, says 
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Andreas von Deimling, a neuropathologist at the German Cancer 

Research Centre who was one of the project’s leaders. 

Although Langone’s use of the test has been approved by New York 

state, the website notes that the classifier is still a research tool that has 

not been clinically validated. The classifier was originally trained using 

around 2,800 tumour samples, but since the website has been operating, 

that number has grown to around 60,000. “This is much more than a 

single pathologist sees in an entire lifetime,” von Deimling says. “By the 

sheer number of tumours we can now examine with this system, we find 

novel entities no pathologist has ever been able to define previously.” 

The system compares data to its reference list of tumours and places the 

profile into a group, but if it doesn’t quite match, the cancer gets a low 

confidence score. Pathologists examine the low-scoring samples, and if 

there are at least seven with the same methylation profile, they assign 

them to a new group and retrain the classifier. The classifier now 

recognizes about 150 different cancer entities. 

The computer’s ability to spot those cancer types could cut hospitals’ 

error rates. In the initial study, the algorithm found that 12% of brain 

tumours had been misdiagnosed by pathologists. Snuderl says that NYU 

has similar error rates of 12–14% among its patients. “That’s not an 

insignificant number of people that could benefit simply from having the 

right diagnosis,” Snuderl says. 

Methylation profiling is expensive — typically, only large cancer research 

centers can afford it. So, the scientists hope to find simpler biomarkers to 

identify the subtypes. If, for instance, they can discover differences that 

are visible by looking at stained tissue under a microscope, they can 

make the same level of diagnostic sorting available to the many hospitals 

that don’t have the resources for methylation profiling. “You can develop 
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these markers only if you have the grouping correct in the first place,” 

von Deimling says. 

Prostate cancer right diagnosis. 

Correctly diagnosing cancers in other parts of the body can also be 

difficult. Working out if a person has prostate cancer and whether that 

cancer is aggressive enough to need treatment or merely needs to be 

watched can be tricky. 

Most prostate cancers are diagnosed by taking biopsies from a standard 

set of locations on the prostate, but this can mean the actual cancer is 

missed. A newer approach uses multiparametric magnetic resonance 

imaging (MRI), in which different types of MRI scan are combined. But 

highly trained radiologists don’t always agree on what they’re seeing in 

the images, and those with less experience do even less well at 

identification. “To reach a certain level of expertise in radiology, 

particularly in this prostate-cancer MRI diagnosis, requires a lot of 

training,” says Kyung Hyun Sung, a radiologist at the University of Los 

Angeles, California. As a major prostate-cancer treatment center, the 

university has a program to train radiologists to read such images and 

boasts specialists with ten or more years of experience. But that is not 

the norm. “Community hospitals don’t have that training period or 

expertise in their ranks,” says Sung. 

With those hospitals in mind, Sung is building an AI-based system called 

FocalNet to help physicians to better classify prostate cancer. To train 

the program, Sung and his colleagues collected around 400 pre-

operative MRI scans of people who were going to have surgery to 

remove their prostate. The researchers fed FocalNet a subset of the 

scans, along with the tumour’s Gleason score — a rating of malignancy, 

defined by pathologists who analyzed the tissue after the prostate was 



 
 

Página 42 de 133  
 

removed. The system then looked for and learnt to spot patterns in the 

MRI scans that matched the pathology-based score. 

The researchers then challenged FocalNet to provide a Gleason score 

for a new set of scans. The computer found 79.2% of the clinically 

significant cancer lesions, as determined by pathology. A group of 

radiologists, each with at least 10 years of experience of reading more 

than 1,000 images annually, managed 80.7% — a difference deemed 

statistically insignificant. 

Currently, the value of a Gleason score derived from an MRI is limited 

because it is dependent on the skill of the radiologist interpreting the 

image. But that, says Sung, is when machine learning can help. “The 

machine will be consistent. It’s not going to have inter-reader variability.” 

With the help of a system like FocalNet, multiparametric MRI could be 

used even without experienced radiologists, leading to clearer diagnoses 

that can guide people to the right treatment. 

(Charity, 2020) (11) 

3) Breast and Lung cancer preventive diagnosis 

 

Although getting the diagnosis right is important, catching cancer early 

can also lead to higher survival rates. Many women in the United States 

have annual mammograms starting in their forties or fifties. That 

produces a lot of imaging data. Regina Barzilay, a computer scientist at 

the Massachusetts Institute of Technology (MIT) in Cambridge, wanted 

to see if a machine could use those data to draw a more accurate picture 

of a person’s risk of developing breast cancer. 

Barzilay collected almost 89,000 mammograms from nearly 40,000 

women who had been screened over a 4-year period, and checked the 

images against a national tumour registry to determine which women 
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were eventually diagnosed with breast cancer. She then trained a 

machine-learning algorithm with a subset of those images and outcomes, 

before testing the system to see how well it predicted cancer risk. The 

computer put 31% of the women who eventually developed breast 

cancer into the highest risk group. But the standard Tyrer–Cuzick model 

that physicians use to estimate risk — based on factors such as age, 

family history of cancer, and age at first menstrual period and at 

menopause — placed only 18% in that group, even when physicians 

added measurements of breast density from mammograms to the model. 

The researchers are continuing to improve the model, says Adam Yala, 

a PhD student at MIT who works with Barzilay on the project. The 

researchers hope that their work can lead to more personalized breast-

cancer screening. Specialists currently disagree about how often women 

should get mammograms — too frequently and it drives up health-care 

costs with no benefit, not often enough and some early cancers might be 

missed. If the MIT system can learn to differentiate between people who 

will develop cancer within five years and those who won’t, Yala says, it 

might allow physicians to personalize screening schedules and offer 

frequent mammograms only to those whose early scans show they are 

at high risk. 

Researchers at Google are also trying to improve cancer screening. 

Medical groups in the United States and Canada already recommend 

screening certain people who are at high risk of lung cancer using 

computed tomography (CT) scans based on low-dose X-rays, and the 

same screening protocol is under consideration in the European Union. 

Computer scientists at Google wanted to see whether they could predict 

which people would go on to develop lung cancer by using AI to analyze 

low-dose CT scans of the lungs. 
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They collected about 43,000 scans from almost 15,000 people that had 

been amassed by the National Lung Screening Trial (NLST), a study run 

by the US National Cancer Institute. Of those, 638 people did not have 

cancer at the time of the initial scan, but were diagnosed within one year, 

with the cancer confirmed by biopsy. “Our main goal was to try and 

predict whether someone ends up with lung cancer a year from when 

they got screened, or two years in some cases,” says Shravya Shetty, a 

software engineer at Google in San Francisco, California. 

In people with only one scan available, the AI outperformed all of the six 

radiologists who also examined the CT scans to assess risk of lung 

cancer. The AI reduced the number of false positives by 11% and false 

negative by 5%. When there were two scans, the radiologists did about 

as well as the computer. Researchers hope that more accurate 

screening will lead to more effective treatment. “Ultimately what we want 

is patients to get their cancers caught earlier,” says Daniel Tse, a 

medical doctor at Google Health who led the project. 

The Google model is still very new, Tse says, and AI systems under 

development have a way to go before reaching widespread clinical use. 

“It does show great promise,” he says, “but we’re going to be doing 

further studies to see how the models interact in larger scales of data, 

new environments, things like that.” The goal, he says, is to blend 

computer technology with the knowledge and skills of doctors, “and 

hopefully produce even better results than any one of the two could 

produce on its own”. 

(Charity, 2020) (11) 
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4) Using AI to Benefit cancer patients during COVID-19 

pandemic 

 

Researchers led by The Royal Marsden NHS Foundation Trust and The 

Institute of Cancer Research, London, (ICR) and funded by The Royal 

Marsden Cancer Charity, are investigating how they can utilize the latest 

technology in artificial intelligence (AI) to provide better care and 

treatments for cancer patients during the COVID-19 pandemic.  

COVID-19 is a serious viral infection that can affect people of all ages but 

is likely to impact cancer patients differently who are at increased risk of 

developing the virus and more vulnerable due to their weakened immune 

systems.  Lung cancer is one of the most common cancers in the UK and 

worldwide, with around 47,000 people diagnosed in the UK every year. 

This group of patients are particularly vulnerable to the virus as it is known 

to affect and severely impact the respiratory system.  

Dr Richard Lee, Consultant Physician in Respiratory Medicine and Early 

Diagnosis, who is funded by The Royal Marsden Cancer Charity is leading 

a team at The Royal Marsden in collaboration with The ICR and Imperial 

College London on this research who have already been carrying out work 

in using artificial intelligence as a tool to help early diagnosis of lung 

cancer. 

Researchers are aiming to use AI tools to analyze scans from cancer 

patients with the results then helping clinicians to balance and prioritize 

between targeting treatment for the infection and targeting cancer 

treatment.  Some cancers are often treated by immunotherapy, which has 

been established as a key therapy for this condition. However, a key 

challenge which researchers have identified during the COVID-19 

pandemic is that it can be difficult to distinguish symptoms of 

immunotherapy side effects from the virus and other infections such as 

infective pneumonia as these can all often present in a similar way. These 

side effects might include cough, breathlessness and changes of CT scan 
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imaging. An additional part of this study will be to diagnose subtle changes 

of lung cancer recurrence earlier so that it might be treated more 

effectively. 

Dr Richard Lee said:  

“A lot of the work we do is using AI approaches to CT scan images to 

identify subtle changes in patients which might help us to understand why 

one group of patients behave in a certain way. By using AI technology in 

this new research during the COVID-19 era, we are aiming to identify to 

what extent these changes are due to Coronavirus or if they are being 

caused by side effects from treatment. Being able to distinguish between 

infections and side effects will give us crucial information which is needed 

to help clinicians treat patients in the best possible way and improve 

patient outcomes.   

“Unlike a traditional trial, we’ll be using CT scan images that already exist 

of cancer patients who have and haven’t tested positive for COVID-19. 

The advantage to having the data ready to use is that we should be able 

to fast track our research, enabling us to gather results quickly and 

effectively which will directly benefit cancer patients and improve their 

quality of life at this challenging time.” 

The Royal Marsden and ICR have launched several critical research 

studies such as this at unprecedented speed, with The Royal Marsden 

Cancer Charity needing to raise over £500,000 over the coming weeks to 

ensure support for the research studies can continue. 

Professor David Cunningham, Consultant Medical Oncologist at The 

Royal Marsden and Director of the NIHR Biomedical Research Centre at 

The Royal Marsden and The Institute of Cancer Research, London, said: 

“We are uniquely placed to look at COVID-19 in a cancer setting, 

investigating the pandemic’s impact across a wide range of patients. 

These trials call upon our multidisciplinary expertise in areas such as 
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systemic therapies, radiotherapy, circulating tumor DNA which is 

detectable in blood tests, surgery and holistic care.” 

“Teams have been working at pace to establish studies that adhere to our 

usual rigorous protocol; each will have varying durations, with a focus on 

immediate impact through to longer term understanding of this novel virus. 

Importantly, with commercial, NHS and academic partners across the 

country, and thanks to fundraising from The Royal Marsden Cancer 

Charity and support from The NIHR Biomedical Research Centre we hope 

this research will have a national and international impact.”  

(Charity, 2020) (12) 

5) Deep learning as a tool for increased accuracy and 

efficiency of histopathological diagnosis 

 

Histopathology refers to the microscopic examination of tissue to study 

manifestations of disease. Specifically, in clinical medicine, histopathology 

refers to the examination of a biopsy or surgical specimen by a 

pathologist, after the specimen has been processed and histological 

sections have been placed on glass slides. 

Pathologists face a substantial increase in workload and complexity of 

histopathologic cancer diagnosis due to the advent of personalized 

medicine. Therefore, diagnostic protocols have to focus equally on 

efficiency and accuracy. In this section we introduce ‘deep learning’ as a 

technique to improve the objectivity and efficiency of histopathologic slide 

analysis. Through two examples, prostate cancer identification in biopsy 

specimens and breast cancer metastasis detection in sentinel lymph 

nodes, we show the potential of this new methodology to reduce the 

workload for pathologists, while at the same time increasing objectivity of 

diagnoses 

Microscopic analysis of hematoxylin and eosin (H&E) stained sections has 

been the basis for cancer diagnosis and grading for the past century1. 

https://www.nature.com/articles/srep26286#ref-CR1
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Protocols for the complete workup of biopsies or resected tissue 

specimens, including microscopic analysis, exist for many of the most 

common cancer types (e.g. lung, breast, prostate). Use of these protocols 

has led to strong prognostic and widely used grading strategies (e.g., the 

Gleason grading system). 

Due to the rise in cancer incidence and patient-specific treatment options, 

diagnosis and grading of cancer has become increasingly complex. 

Pathologists nowadays have to go over a large number of slides, often 

including additional immunohistochemical stains, to come to a complete 

diagnosis. Moreover, there is an increase in the number of quantitative 

parameters pathologists have to extract for commonly used grading 

systems (e.g., lengths, surface areas, mitotic counts). Due to these 

difficulties, analysis protocols have been adapted and fine-tuned to offer 

the best balance between prognostic power and feasibility in daily clinical 

routine. 

The recent introduction of whole-slide scanning systems offers an 

opportunity to quantify and improve histopathologic procedures. These 

systems digitize glass slides with stained tissue sections at high 

resolution. Digital whole slide images (WSI) allow the application of image 

analysis techniques to aid pathologists in the examination and 

quantification of slides. One such technique which has gained 

prominence in the last five years in other fields is ‘deep learning’. 

While ‘deep learning’ cannot be considered a single technique, it can 

roughly be described as the application of multi-layered artificial 

neural networks to a wide range of problems, from speech 

recognition to image analysis. In recent years, ‘deep learning’ 

techniques have quickly become the state of the art in computer 

vision. A specific neural network subtype (convolutional neural 

networks; CNN has become the de facto standard in image 

recognition and is approaching human performance in a number of 

https://www.nature.com/articles/srep26286#ref-CR6
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tasks. These systems function by learning relevant features directly 

from huge image databases (typically millions of images). This is in 

contrast to more traditional pattern recognition techniques, which 

strongly rely on manually crafted quantitative feature extractors. 

In spite of these huge successes, ‘deep learning’ techniques have not yet 

made a big impact on the field of medical imaging. One of the main 

reasons is that for the traditional imaging-based specialties (e.g. radiology) 

the large numbers of images that are needed to train complex ‘deep 

learning’ systems are not readily available. In digital histopathology this is 

easier: one WSI typically contains trillions of pixels from which hundreds of 

examples of cancerous glands (in the case of prostate or breast cancer) 

can be extracted. 

Some initial work has been published over the last five years discussing 

the application of ‘deep learning’ techniques to microscopic and 

histopathologic images. Ciresan et al. were the first to apply convolutional 

neural networks to the task of mitosis counting for primary breast cancer 

grading. Furthermore, in a different publication, they showed the 

applicability of patch-driven convolutional neural networks to segmentation 

tasks. Wang et al. later expanded the work on mitosis detection by 

combining hand-crafted features and convolutional neural networks. Other 

applications of convolutional networks include primary breast cancer 

detection, glioma grading and epithelium and stroma segmentation. Last, 

Su et al. used another ‘deep learning’ technique, called stacked denoising 

auto-encoders to perform cell detection and segmentation in lung cancer 

and brain tumors. 

The number of prostate biopsy sections has strongly increased in the past 

decades due to the advent of prostate specific antigen (PSA) testing. 

Because of the nature of the standard biopsy procedure (eight to twelve 

random biopsies under ultrasound-guidance), each procedure results in 
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several slides. The majority of these slides typically do not contain cancer. 

The histopathological analysis could be streamlined significantly if these 

normal slides could automatically be excluded without expelling any slides 

containing cancer. We collected consecutive single-center biopsy 

specimens of 254 patients who underwent MR-guided biopsy procedures 

for prostate cancer at our institution. These specimens were prepared 

according to standard histopathologic protocol and subsequently digitized 

using an Olympus VS120-S5 system (Olympus, Tokyo, Japan).  

After digitization of the H&E-stained slides cancer and metastases were 

manually delineated using a computer mouse by a resident of pathology 

(I.K., prostate cancer experiment) and a lab technician (M.H., sentinel 

lymph node experiment), under the supervision of experienced 

pathologists (C. A. H. K., P. B.). From these annotated areas small 

prototype image regions (‘patches’) were extracted to train CNNs to detect 

cancer areas in validation data sets (schematic overview in Fig. 1). These 

validation data sets were used to optimize the network parameters. After 

training, the CNN was converted to a fully convolutional network which 

gave per-pixel predictions on the presence of cancer and metastases in 

separate, not previously used, test data sets. For prostate cancer 

detection the CNNs were evaluated on a per-slide level using receiver-

operator curve (ROC)-analysis. We also investigated how well the system 

could exclude slides without cancer from further diagnostic processing. 

For the sentinel lymph node procedure, we assessed how well the system 

was capable of identifying individual micro- and macro-metastases using 

free-response ROC (FROC) analysis and if it is capable of excluding 

slides which do not contain any metastases using ROC analysis.  

 

 

https://www.nature.com/articles/srep26286#Fig1


 
 

Página 51 de 133  
 

Results 

Subjects 

Prostate cancer 

From the initial set of 254 patients, eleven were excluded because the 

glass slides were not available. Four were excluded because no biopsy 

was taken during the procedure and one was excluded as the tissue 

sample was too small for pathologic analysis. Out of the remaining 238, 

we randomly selected 225 glass slides for digitization, of which 100 were 

assigned to the training set, 50 to the validation set and 75 to the test set. 

The training set sampling was stratified such that a near-50/50-distribution 

between slides containing cancer and slides not containing cancer was 

obtained. All slides were successfully digitized and annotated. 

Breast cancer sentinel lymph nodes 

 

Data collection for the sentinel lymph node experiments was performed in 

two batches. The first batch was obtained by including 173 slides from the 

case files of an experienced breast pathologist (P.B). These initial slides 

were split into a training (98), validation (33) and test (42) set. These 

slides were subsequently digitized and every metastasis was annotated. 

To make sure our results were not biased to a single pathologist’s case 

selection, we acquired a second set of data by including all the 

consecutive sentinel lymph node cases for breast cancer from October 

2014 to April 2015, resulting in an additional 98 whole-slide images. For 

the second batch no on-slide annotations were available, only the per-

case outcome (presence of macro- and/or micro-metastases and isolated 

tumor cells (ITC)). 
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Prostate cancer detection 

A cancer likelihood map (CLM), the output of the CNN indicating cancer 

likelihood per pixel, for a representative WSI from the test set with cancer 

covering 30% of the tissue area is shown in next figure. The cancerous 

glands indicated by the pathologist’s outline (in magenta) are correctly 

identified with high likelihood. The stroma within the annotation areas is 

correctly identified as a low cancer likelihood region (in green, most easily 

identifiable in the high-resolution sub-images).

 

          Representative example of a whole slide prostate biopsy specimens with 30% cancer. 

The top row shows the complete field of view, the bottom row a close up (close-up area 

indicated by the square rectangle). The second column shows the cancer likelihood map 

https://www.nature.com/articles/srep26286#Fig2
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as an overlay on the original image. Red indicates a high likelihood of cancer, whereas 

transparent/green indicates a low likelihood. 

Although deep learning is an active research field, the application of deep 

learning to histopathology is relatively new. Most already published work 

has focused on the detection of mitotic figures9,11 or identification and 

segmentation of individual cells15,19. One paper used a convolutional 

auto-encoder to segment basal-cell carcinoma in H&E-images of breast 

cancer20.However, this model is only evaluated on images from pre-

selected regions of interest and not on whole slides, making it difficult to 

assess its practical value. 

The two papers most closely related to our work have focused on different 

entities. Cruz-Roa et al. used a CNN to detect and segment primary 

breast cancer12 and Ertosun et al. investigated the grading of gliomas13. 

We explored the applicability of CNNs to digitized histopathology through 

two different experiments: prostate cancer detection in H&E-stained 

biopsy specimens and identification of metastases in sentinel lymph nodes 

obtained from breast cancer patients. In contrast to these two papers, 

which perform patch-by-patch classification, we use fully convolutional 

networks to obtain per-pixel cancer likelihood maps and segmentations in 

whole-slide images. Furthermore, we are the first to report slide-level 

accuracies for cancer detection. 

In both experiments we were able to successfully train convolutional 

neural networks, although the amount of case data was less than what is 

generally typical in ‘deep learning’ experiments. The fact that we 

performed extensive data augmentation and boosting in combination with 

the relatively limited domain (i.e., H&E-stained histopathologic images 

compared to natural images) made this possible. 

In both applications we investigated whether it was possible to identify 

slides not containing disease without overlooking any slides containing 

https://www.nature.com/articles/srep26286#ref-CR9
https://www.nature.com/articles/srep26286#ref-CR11
https://www.nature.com/articles/srep26286#ref-CR15
https://www.nature.com/articles/srep26286#ref-CR19
https://www.nature.com/articles/srep26286#ref-CR20
https://www.nature.com/articles/srep26286#ref-CR12
https://www.nature.com/articles/srep26286#ref-CR13
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disease. In the prostate cancer slides, up to 32% of the slides not 

containing disease could be excluded. For the sentinel lymph nodes, 

specificity was even higher at 44%, without missing any slide containing 

micro- or macro-metastases. This indicates that substantial gains in 

efficiency are possible by using CNNs to exclude tumor-negative 

slides from further human analysis. 

Next to the performance of the CNN at high sensitivity, area under the 

ROC curve was also high in both cases, with an AUC of 0.99 for the 

prostate cancer experiment (median analysis) and 0.88 for the sentinel 

lymph node experiment (consecutive set). Furthermore, localization 

accuracy was high for micro- and macro-metastases in the sentinel lymph 

node experiment (90% sensitivity at 1 false positive per normal image). 

There are some limitations to the application of the CNNs, especially for 

the sentinel lymph nodes. Although the accuracy of detecting micro- and 

macro-metastases is high, adding the requirement of having to identify all 

clusters of isolated tumor cells lowers performance significantly (0.74 AUC 

for the consecutive set). However, the importance of ITCs is debated. 

Some have found no prognostic implication of ITCs at all or when the ITCs 

are visible through immunohistochemistry only. Others did find ITCs 

having a negative prognostic impact, albeit effect sizes differ. However, 

for the clinical application of CNNs this is of limited importance. If 

the application of the CNNs can detect the micro- and macro-

metastases with high accuracy and we have shown this, the ITCs can 

be detected by immunohistochemistry, without having a pathologist 

looking at the H&E stained slides. In The Netherlands, according to the 

national guideline for breast cancer, immunohistochemistry is mandatory 

when no tumor is found in the H&E-stained slides. 

In the prostate cancer experiment, some detection errors (i.e., false 

positive detections) still occur at the boundaries of the tissue, mostly due 
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to tearing and tissue deformation. These are expected artifacts that 

occur during histopathologic processing and ideally our CNN would 

be robust to this. However, due to the fact that these artifacts can have a 

wide range of appearances and only occur sporadically, this is not yet the 

case with the size of the training set used in this study. For the slide level 

analysis, these spurious detections are not problematic; they occur equally 

in slides containing and not containing cancer, making their separation still 

possible. 

One further limitation is the fact that we only investigated data from a 

single center. Although we included data from distinctly different 

tissue types and used digitization equipment from two different 

vendors, it is important that these results are confirmed in future, 

multi-center studies. 

As far as the authors are aware, this is the first paper describing the 

general applicability of a ‘deep learning’ technique to the diagnostic 

analysis of whole slide images of sentinel lymph nodes and prostate 

biopsies. We have shown that this technique is potentially highly 

suitable to improve the efficiency of the diagnostic process in 

histopathology. This could in turn lead to adapted protocols, where 

pathologists perform a more detailed analysis on the difficult 

samples, as the easy samples are already handled by a computer 

system. 

Although we specifically looked at clinical diagnosis in this study, 

the potential of these ‘deep learning’ techniques reaches further. 

They could also be used to quickly analyze huge clinical trial 

databases to extract relevant cases, or automatically annotate areas 

of disease to allow fast quantification (e.g., area, diameter). 

Furthermore, the technique is not limited to H&E-stained images and 

could readily be applied to immunohistochemistry, which might be of 
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interest when researching the efficacy of drugs or the expression of 

genes. Both are worthwhile avenues for future research. 

(Kinnor Das, 2021) (13) 

6) Machine Learning and Its Application in Skin Cancer 

 

According to the US Skin Cancer Foundation, skin cancer affects more 

people in the United States each year than all other cancers combined, 

skin cancer including both malignant melanoma and non-melanoma skin 

cancer (NMSC), are common cancers and their incidence is on the rise.  

AI can be of use for the early detection of skin cancer. For example, the 

use of deep convolutional neural networks can help to develop a system 

to evaluate images of the skin to diagnose skin cancer. Early detection is 

key for the effective treatment and better outcomes of skin cancer 

 

Melanoma is the skin cancer with the worst prognosis. If diagnosed early, 

it can be treated successfully with surgical procedures. However, once 

there is metastasis, rates of survival are reduced significantly. Diagnosis 

of melanoma depends on the clinical examination and classic findings on 

the lesion biopsy. Examples of NMSC include basal cell carcinoma 

(NMSC) and squamous cell carcinoma. The success of skin cancer 

depends on early diagnosis and appropriate treatment. Visual inspection 

may not be sufficient to differentiate benign lesions from malignant tumors. 

The gold standard procedure is histopathology examination of the skin 

biopsy. The invasive nature of the procedure, Int. J. Environ. Res. Public 

Health associated pain, and the need for repeated samples in suspected 

lesions with varied presentations are some of the limitations for skin 

biopsy. Non-invasive tools can also assist in clinical diagnosis. Expertise, 

cost, and availability are the challenges for the widespread use of these 

tools. Several advancements in science and technology have resulted in 

the availability of different non-invasive imaging methods to detect 

melanoma. 
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Overall, early detection is key for the effective treatment and better 

outcomes of skin cancers. Specialists can accurately diagnose the cancer, 

however, considering their limited numbers, there is a need to develop 

automated systems, which can diagnose the disease efficiently to save 

lives and reduce health and financial burdens on the patients. Skin tumors 

can be difficult to recognize from common benign skin lesions, and 

melanoma has a particularly varied look. AI can aid in the early detection 

of skin cancer, lowering the burden of morbidity and mortality associated 

with the disease. In addition to reducing the workload, AI-based systems 

can also help by improving skin lesion diagnostics. 
There is rising optimism regarding applications of AI in healthcare, ranging 

from assistance in medical diagnostics, treatment and administrative 

support to reduce timelines of new drug development. It may also be of 

benefit as an adjuvant in clinical decision making. Dermatology, as a 

visually intensive field, is at the precipice of an AI revolution. Because skin 

disease diagnosis is mostly based on visual perception, computer vision 

algorithms may be able to recognize skin lesions based on their 

morphology. By September 2018, the US Food and Drug Administration 

(FDA) had authorized AI approaches for clinical usage, including devices 

to detect skin cancer from clinical photos obtained via a smartphone app. 

Skin Cancer and Deep Learning  
 
Codella used the International Skin Imaging Collaboration (ISIC)-2016 

dataset to create a conglomeration of deep learning algorithms and 

compared them against the performance of eight dermatologists to 

comprehend 100 skin lesions as either benign or malignant. Their 

conglomeration outmatched dermatologists, with a precision of 76% and 

specificity of 62%, compared to a precision of 70.5% and specificity of 

59% for dermatologists. 

Haenssle used a large dermoscopic dataset with more than hundred 

thousand benign lesions and melanoma captures to train a deep learning 

algorithm called InceptionV4, and compared its performance with 58 
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dermatologists. The level of diagnosis was divided into two categories. In 

the first level, only dermoscopy was used, while in the second category, 

dermoscopy was used in addition to clinical information and patient 

images. In the first level, dermatologists reported a median sensitivity of 

86.6% and specificity of 71.3%. The sensitivity and specificity in level II 

increased to 88.9% and 75.7%, respectively. The improvement in the 

specificity was statistically significant (p< 0.05). 

However, the improvement in the sensitivity was statistically non-

significant (p=0.19). The deep learning CNN receiver operating 

characteristics curve showed a significantly higher specificity than for the 

dermatologists in level I (p< 0.01) and level II (p< 0.01). In this study, CNN 

outperformed most dermatologists, suggesting a promising role in the 

detection of melanoma using dermoscopic images. 

Another study by Brinker et al. showed similar results. In this study, 

investigators used a convolutional neural network (ResNet50) to compare 

the efficacy of 157 dermatologists on hundred dermoscopic images 

(MClass-D). The dermatologists had an overall sensitivity of 74.1% and a 

specificity of 60.0%, whereas the deep learning method had a specificity 

of 69.2% and a sensitivity of 84.2%. In a head-to-head comparison, the 

performance of CNN was better than 86.6% of dermatologists in the study. 

The performance was better across subgroups of dermatologists based on 

experience in the classification of dermoscopv melanoma images. Thus, 

CNN has significant potential to assist dermatologists in the accurate 

diagnosis of melanoma. 

Tschandl et al. used convolutional neural networks such as InceptionV3 

and ResNet50 to diagnose non-pigmented skin malignancies using a 

mixed dataset of 7895 dermoscopic and 5829 close-uplesion photos. The 

results were compared to those of 95 dermatologists, separated into three 

groups based on experience. With beginning and intermediate raters, the 

deep learning algorithms attained an accuracy like humans and 

outmatched the human groups. The area under the ROC curve of the 

trained combined CNN was significantly higher than for the 
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dermatologists. It showed correct diagnoses in a higher percentage of 

cases than for overall dermatologists, but not compared to the experts, 

i.e., more than 10 years of experience. 

Maron et al. tested the sensitivity and specificity of a ResNet50 deep 

learning system for multiclass categorization of skin lesions, along with 

112 German dermatologists. The sensitivity and specificity of primary end-

point of correct classification of skin lesions for dermatologists was 74.4% 

and 59.8%, respectively. At a similar level of sensitivity, the specificity of 

the algorithm was 91.3%. For the secondary end point of correctly 

classifying a given image into one of the five diagnostic classes, 

dermatologists had a sensitivity and specificity of 56.5% and 89.2%, 

respectively. At a similar sensitivity level, the algorithm provided 98.8% 

specificity. Overall, for the primary end point, dermatologists were 

significantly outmatched by the deep learning algorithm (p< 0.001). The 

comparison for the secondary end point also showed an outperformance 

of the algorithm over dermatologists in all categories, except basal cell 

carcinoma, for which the algorithm had similar performance as that of 

dermatologists. 

On a dermoscopic test set of 100 instances, Haenssle et al. weighed up 

InceptionV4-based deep learning architecture with dermatologists. This 

study had two levels: level I was a dermoscopic image, and level II had a 

clinical close-up image, a dermoscopic image, and clinical information. 

The deep learning system had a sensitivity of 95% and specificity of 

76.7%; however, the dermatologists in level I had a mean sensitivity of 

89% and specificity of 80.7%, respectively. The dermatologists’ mean 

sensitivity reached 94.1% with extra information in level II, while their 

mean specificity remained same. Tschandl et al. conducted an open, web-

based study to diagnose the dermatoscoping images. The investigators 

juxtaposed the average potential of the AI algorithms (139 in total) and 

511 human readers on an experimental 1511 set of photos in the ISIC 

2018 competition. The diagnoses (seven predefined categories) provided 
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by the humans were compared with those from the algorithms prepared 

from machine learning. 

The differences in the percentage of correct diagnoses were compared. 

Out of the human participants, 55.4%, 23.1%, and 16.2% were board-

certified dermatologists, residents of dermatology, and general 

practitioners, respectively. The results showed a mean of 2.01 for more 

correct diagnoses by the algorithms than the humans. The difference was 

statistically significant (p< 0.0001). As a result, the AI algorithms were able 

to make more accurate diagnoses than the human readers. 

 

Algorithms for Machine Learning in Skin Cancer 

 

Because of the high prevalence of skin malignancies, an increasing 

number of people require prompt diagnosis and ongoing monitoring. This 

places a huge strain on specialist medical services, which may be allayed 

by better patient self-surveillance techniques as well as the use of 

decision support systems for less experienced physicians. Machine 

diagnosis is not subjective, and is not impacted by external factors. 

However, human diagnosis is associated with subjective variations and 

may be impacted by some external factors. If implemented with the 

necessary regulations, the use of AI for the detection and progression of 

skin cancer may result in fewer biopsies. Following a training intervention, 

patients with skin cancer and their guardians can perform self-skin 

examination (SSE). This also boosts teledermoscopy, leading to fewer 

medical consultations. 

The inclusion of AI in smartphone applications can teach people to 

perform skin examination and forward the information to the physician. 

Each form of skin lesion is assigned a class, such as “benign” and 

“malignant”, or “naevi” and “melanoma”, in order to construct a new ML 

skin cancer algorithm. Deep learning algorithms are taught on a large 

number of photos in each class before being evaluated on a new image. 

There are three basic parts to the procedure. In the first stage, the 

algorithm is fed digitized macroscopic or dermoscopic images labelled 
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with the “ground truth” in the first stage (in this case, the ground truth is 

the lesion diagnosis, which is determined by an experienced dermatologist 

or by histological study). In stage 2, convolutional layers extract the 

feature map from the images. A feature map is a visual representation of 

the data, which has several degrees of abstraction. Low-level features 

such as edges, corners, and forms are extracted by the first convolutional 

layers. To recognize the type of skin lesion, later convolutional layers 

extract high-level data. The machine learning classifier uses the feature 

maps in stage 3 to recognize distinct kinds of skin lesion patterns. A fresh 

image can now be classified using the deep learning method. 

 

Skin Cancer Datasets 

 

Particularly in dermatology, clinical and dermatoscopic images are often 

generated to track changes in skin conditions. New applications will make 

the gigantic amounts of data that already exist and will be created in the 

future, e.g., in hospitals, accessible to algorithms and lead to an 

improvement of CNNs. There are already data sets accessible for 

research. ISIC archive gallery contains numerous of clinical and 

dermoscopic skin lesion datasets, including the ISIC Challenges datasets, 

HAM10000, and BCN20000. Interactive Atlas of Dermoscopy has 1000 

clinical examples including 270 melanomas and 49 seborrheic keratoses. 

Each case has a minimum of two images—dermoscopic and close-up. Its 

price is €250 and is available for research purposes. Dermofit Image 

Library has 1300 high-resolution photographs of skin lesions divided into 

10 categories. A licensing agreement is required, with a one-time license 

charge with the availability of academic license. PH2 Dataset contains 200 

dermoscopic images, including 40 melanoma and 160 nevi cases. It is 

free for downloading after the completion of an online registration form. 

MED-NODE Dataset contains 170 clinical photos, including 70 melanoma 

and 100 nevi cases. This dataset can be downloaded without any cost for 

research purposes. Asan Dataset contains 17,125 clinical photos of 12 

different forms of skin illnesses that affect Asians. It is available to 



 
 

Página 62 de 133  
 

download for research purposes. The Hallym Dataset has 125 clinical 

photos of BCC cases (34Han JID). SD-198 dataset contains 6584 clinical 

photos of 198 skin illnesses. The 25 SD-260 dataset is more balanced 

than SD-198 dataset, since it manages the class size distribution while 

preserving 10–60 photos for each category. There are 20,600 photos in 

all, representing 260 skin illnesses. Dermnet NZ is the source of one of 

the most comprehensive and diverse collections of clinical, dermoscopic, 

and histology photographs. Additional high-resolution pictures are 

available for purchase. Derm7pt contains 1011 dermoscopic images 

including 252 melanoma and 759 nevi cases based on a seven-point 

checklist. The Cancer Genome Atlas has 2871 pathological skin lesion 

slides, making it one of the largest collections of its kind. It is openly 

available for usage by the research community. 

 

Deep Learning and Clinical Images 

 

Clinical photos of various skin lesions are routinely captured using cell 

phone cameras for remote assessment and assimilation into patient 

medical records. On the SD-198 dataset, Yang et al. achieved clinically 

observed skin lesion identification utilizing the well-known ABCD rule. 

They compared the performance of deep learning methods with 

dermatologist outputs. It received 57.62% accuracy compared to the 

53.35% accuracy for the best performing deep learning system (ResNet). 

Only senior experienced clinicians had an average accuracy of 83.29% 

when compared to the rest of the clinicians. Han et al. used a MED-NODE 

dataset and atlas site images for training a deep learning architecture 

(ResNet-152) to differentiate clinical photos of 12 skin illnesses, and then 

examined it on an Asan testing set and an Edinburgh Dataset (Dermofit). 

Upon taking 480 random photos merged from the Asan test dataset (260 

images) and the Edinburgh dataset (220 images), the algorithm’s 

performance was equivalent to a team of 16 dermatologists, but the AI 

system outclassed dermatologists while diagnosing basal cell carcinoma 

(BCC). Fujisawa et al. trained deep CNN with 4867 clinical images from 
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14 skin diseases from 1842 patients with different diagnoses, including 

malignant and benign diseases, to evaluate a deep learning algorithm. 

The results of the algorithm were compared with those of the 

dermatologists. The deep learning algorithm produced a diagnostic 

accuracy, sensitivity, and specificity of 76.5%, 96.3%, and 89.5%, 

respectively. The accuracy of classifying images into the benign or 

malignant category by the dermatologist’s board certified dermatologists 

(n= 13), dermatology trainees (n= 9), and deep CNN was 85.3%, 74.4%, 

and 92.4%, respectively. The performance by the board-certified 

dermatologists was significantly better than for the trainees. However, the 

accuracy of deep CNN was higher than for both human raters.  

In a test case of 100 clinical skin lesion photographs (MClass-ND), Brinker 

et al. evaluated 145 dermatologist performances and a deep learning 

approach (ResNet50) for the 80 nevi cases and 20 histopathologically 

proven melanoma cases. The dermatologists had sensitivity of 89.4% and 

a specificity of 64.44%, while a deep learning technique at the same 

sensitivity had a mean specificity score of 68.2%. Overall, the CNN 

performance was on par with dermatologists in terms of the classification 

of clinical images. Variance with CNN was smaller, suggesting a greater 

robustness of AI than humans for the classification of images. Only 19 

(13.1%) dermatologists had a higher sensitivity than the CNN. Out of 

these 19 dermatologists, 16 (84.2%) achieved a sensitivity of more than 

95%. 

 

Deep Learning and Histopathology Images 

 

Dermatopathologists confirm the diagnosis of skin cancer through 

histopathologic examination of a tissue biopsy under a microscope. One of 

the important challenges in the confirmatory diagnosis of skin cancer is 

the high rates of discordance between different pathologists. In the case of 

the diagnosis of melanoma, there can be discordance in classifying 

whether it is a benign or malignant lesion. With whole-slide imaging, deep 

learning methodologies have been successful for digital pathology. These 
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methods are used to classify biopsy tissue specimens in order to diagnose 

malignancies. Different investigators have performed studies to compare 

the performance of an expert versus that of AI system. Heckler et al. 

compared pathologists’ performance for identifying melanoma and nevi 

using a deep learning approach. The study included 695 lesions classified 

by an expert, of which 595 were used for training the CNN. The remaining 

100 were used to test the results of CNN with those of the 11 experts. In 

this study, the investigators digitalized the entire slides. The image 

sections with magnification were randomly cropped. The sensitivity, 

specificity, and accuracy of the CNN was compared with that of the 

pathologists. In a recently published study, Brinker et al. reported 

comparative results of the ability of CNN to differentiate melanomas from 

nevi using hematoxylin − eosine stained whole slide images (WSI). In this 

study involving whole slide images of 50 melanomas and 50 nevi, the 

performance of CNN was on par with the experts. Jiang et al. came up 

with a deep learning method for diagnosing BCC using smartphone-

captured histopathology images. They found that the algorithm’s 

performance on smartphone-captured images and WSI was comparable, 

accompanied by an AUC of 0.95. For an in-depth analysis of the difficult 

cases, they used a deep segmentation network, which resulted in a score 

of 0.987 (AUC), 0.97 (sensitivity), and 0.94 (specificity). The work of Jiang 

and colleagues suggests the usefulness of deep learning methods for the 

diagnosis of BCC, with a high sensitivity and specificity. 

On 1417 images from 308 regions of interest (ROI) of skin histopathology 

images, Cruz-Roa et al. employed deep learning architecture to identify 

between BCC and normal tissue patterns. They compared deep learning 

to classical ML using feature descriptors such as the bag of features, 

canonical wavelet transforms, and Haar-based wavelet transform. 

The deep learning architecture outperformed previous approaches with an 

F-Measure of 89.4% and a balanced accuracy of 91.4%. From 2008 to 

2018, Xie et al. published a humongous dataset of 2241 histopathology 

pictures from 1321 individuals. They tested the categorization of 
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melanoma and nevi on various magnification scales by two deep learning 

architectures, viz. VGG19 and ResNet50, by making use of the 9.95 

million patches created on 2241 histopath images. With a mean F1 (0.89), 

specificity (0.94), sensitivity (0.92), and AUC (0.94), they were able to 

identify melanoma from nevi with a good accuracy (0.98). It should be 

noted that different results from different studies suggest that the amount 

of data presented to the AI system, the methodology used for the study, 

and the complexity of disease may affect the level of difficulty for a given 

task and thus the performance of both AI algorithms and human 

observers. 

Overall, it seems that CNNs can be of valuable assistance to humans for 

the diagnosis of skin cancers such as melanoma. Similarly, the diagnosis 

of BCC needs intensive work because of the need to examine a large 

number of images. Deep learning methods can be of use to assist the 

diagnosis of BCC. WSIs and microscopic ocular images with use of 

smartphone cameras can be useful for developing neural network models 

for the diagnosis of BCC. A reduced time for the diagnosis and cost 

benefit are some of the advantages of CNN in the diagnosis of skin 

cancers. 

 

(Kinnor Das, 2021) (14) 

  



 
 

Página 66 de 133  
 

Chapter V: AI applied to new drugs investigation 
 

Having reviewed the current use that is being given to deep learning technology 

in the early detection of different types of cancer and in the handling of 

histopathological samples, a second use of the same technology refers to its 

application in the R&D process of new drugs for the treatment of the disease. 

The historical model used in pharmacological research is at a point of 

exhaustion due to its long times and high costs, as well as the low percentage 

of projects that reach the market compared to those that fail to pass any of the 

testing phases. Next, I will present two real cases that show, as in the case of 

premature diagnosis, that AI can contribute a great step towards the goal of 

obtaining better drugs for the treatment of the disease in less time. 

Deep Learning for Drug Discovery and Cancer Research: 

Automated Analysis of Vascularization Image 

Likely drug candidates which are identified in traditional pre-clinical drug 

screens often fail in patient trials, increasing the societal burden of drug 

discovery. A major contributing factor to this phenomenon is the failure of 

traditional in vitro models of drug response to accurately mimic many of the 

more complex properties of human biology. 

The total cost of bringing a new drug from discovery to approval has exhibited a 

steady, exponential rise over the past five decades. One contributing factor to 

this phenomenon, dubbed Eroom’s law (Moores law backwards), appears to be 

the failure of traditional, pre-clinical models to accurately simulate many of the 

more complex features of their clinical successors. These pre-clinical, in vitro 

studies serve to quickly and cheaply identify compounds that exhibit promising 

effects for further study in vivo. However, traditional 2D monolayer culture 

systems (i.e., petri dishes) lack many features that are present in vivo, such as 

3D cellular structure, heterogeneous cellularity, cell-cell interactions, the 

presence of a complex extracellular matrix (ECM), biomechanical forces (e.g., 

shear forces generated by fluid flow), and the presence of perfused 

vasculature. Animal studies, on the other hand, are too complex to analyze and 
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expensive to substitute for invitro pre-screening, and often fail to identify 

potential human toxicity due to physiological differences between humans and 

the animal model. In short, a compound that appears effective in traditional, 

pre-clinical studies may fail spectacularly in the human body, further 

contributing to the costly societal burden of failed clinical trials. 

Microphysiological systems (MPSs), or "organ-on-a-chip" platforms, promise to 

help close the gap between in vitro and in vivo drug screens, and have seen 

rapid, recent development, supported in part through private-public partnerships 

fostered under the auspices of the National Center for Advancing Translation 

Science. These MPSs make significant strides toward more accurately 

modeling the pertinent properties of in vivo biological environments for drug 

discovery, however many remain in a proof-of-concept stage and require 

complex peripheral equipment and accessories to operate and maintain. 

An MPS for growing vascularized, perfused microtissues produces highly 

robust and uniform vascular networks which are suitable for screening anti-

tumor compounds and in large-scale drug discovery studies, all while requiring 

little additional training for the user and no added equipment beyond a standard 

incubator. The survival of these miniature tissues is dependent on nutrients 

delivered through living vasculature. Importantly, by accurately identifying drugs 

that target tumor cells, the vascular networks that supply them, or both, the 

system has proven much better at mimicking human drug responses than 

previous models. In the studies using FDA-approved or clinical trial compounds 

to target the vasculature, we have found that antiangiogenic compounds such 

as sorafenib and axitinib induce regression on sprouting vessels, but do not 

have profound effect on mature, interconnected vascular networks. Therefore, 

they often show a milder effect on the vasculature. On the other hand, non-

specific, anti-vascular compounds such as bortezomib and vincristine 

aggressively fragment the vascular network. In brief, this system exhibits 

exceptional potential for developing more targeted, effective anti-vascular and 

antiangiogenic compounds to target the tumor vasculature without adverse 

effects on normal tissue. 
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A remaining obstacle to deploying this system for truly large-scale anti-

angiogenic and anti-vascular drug screening is the need to have human experts 

determine whether each compound is effective in targeting the vasculature 

network.  

Effects are categorized as: 

• No-hits (i.e., the compound had no effect on the vasculature network). 

• Soft-hits (i.e., the compound moderately disrupted the vasculature 

network or induced vascular regression). 

• Hard-hits (i.e., the compound had a devastating effect on the vasculature 

network). 

From a primary screening soft-hit and hard-hit compounds can be further 

analyzed in a dose-response screen to identify the half maximal inhibitory 

concentration (IC50), optimized for molecular structure, and subsequently 

characterized for their pharmacokinetics in vivo. Soft-hit compounds are treated 

as anti-angiogenic while hard-hit compounds are treated as anti-vascular. In the 

past, human raters have made this determination by manually analyzing each 

pair of before- and after-drug-application images and quantifying their total 

vessel length difference using “AngioTool”. However, this workflow is 

imprecise—e.g., in its insensitivity to anti-angiogenic compounds that do not 

significantly affect total vessel length of a fully mature vascular network and its 

reliance on subjective human judgment—and low throughput—for its need to 

carefully tune several dataset-specific parameters in the software and the time 

it takes a human to look at each image. 

Automatic classification of these images via machine learning could 

provide an attractive replacement to the slow and error-prone process of 

requiring human ratings. In this paradigm, a set of carefully hand-labeled 

images would be fed to a classifier which could "learn" to distinguish 

between classes. A convolutional neural network is a type of machine 

learning model that is particularly suited to applications in computer 

vision. Not only do they offer state-of-the-art performance in general 

image classification tasks, they have also proven effective for biological 
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applications, with past work demonstrating convolutional networks 

capable of detecting cardiovascular disease, spinal metastasis, and skin 

cancer from medical images. 

A model of a convolutional neural network to automatically classify images of 

vasculature networks formed in a MPS into no-hit, soft-hit, and hard-hit 

categories. The accuracy of the best model is significantly better than our 

minimally-trained human raters and requires no human intervention to operate. 

This model is a first step toward automation of data analysis for high-throughput 

drug screening and applications of machine learning in drug discovery can 

predict drug-related properties of small molecules such as binding affinity, 

toxicity, and solubility. 

METHODS 

A. Data Collection 

Drug studies were performed in the MPS as previously described. Briefly, the 

cell-ECM suspension was loaded into the platform and cultured for 7 days to 

allow the vascular network to develop inside the tissue chambers. Each tissue 

unit was exposed to various compounds obtained from the National Cancer 

Institute (NCI) Approved Oncology Compound Plate or purchased from Selleck 

Chemicals. Time course images of vascular network before and after drug 

treatment were taken using a Nikon Ti-E Eclipse epifluorescent microscope with 

a 4Œ Plan Apochromat Lambda objective. For close-up imaging of the tissue 

chambers, a 1.5Œ intermediate magnification setting was used. 

B. Preprocessing 

Each image in our dataset was between 1000 and 1300 pixels wide. Images of 

this size contain far more information than is needed for deep image 

classification, so we down sampled images to create 4 separate constant-size 

datasets: one each of 128×128px, 192×192px, 256×256px, and 320×320px. 

Next, we z-normalized each image, subtracting the mean pixel intensity and 

dividing by the standard deviation of the pixel intensities within that image to 

obtain images with 0-centered pixel values and unitary standard deviation. This 

normalization helps our models to converge more quickly and uniformly across 
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random initializations. After all this, we concatenated the pre-drug-application 

and post-drug-application images to obtain a single, 2-channel image. 

1) Image Alignment: We would like the pre-drug-application and post-drug-

application images to spatially align as closely as possible. If they do not, then 

our model would be required to learn an extra invariance: that the channel 

images need not be aligned. Because the pre- and post-drug-application 

images were captured three days apart, it is not in general possible to ensure 

that the two images will be perfectly aligned (e.g., the later image might be 

shifted or rotated slightly compared to the original). To combat this effect, we 

implemented a rigid alignment preprocessing step to align the post-drug image 

to the pre-drug image using the warpAffine method in OpenCV3. For each 

image, we tried three sets of transformations: 

1) A single Euclidean (translation + rotation) transformation on the full-

resolution image. 

2) A Euclidean transformation on a smaller (32x32px) copy of the image 

followed by a Euclidean transformation on the full-resolution image. 

3) A translation-only transformation on a smaller (32x32px) copy of the image 

followed by a Euclidean transformation on the full-resolution image. 

From these three, we selected the transformed version which yielded the 

highest possible correlation coefficient between the pre- and transformed post-

drug image. See figure 2 for two examples of this alignment process in action. 

C. Human Ratings 

Two human experts rated each of the 277 images, comparing disparate ratings 

where necessary to come to a consistent set of gold-standard ratings. 164 

images were labeled as 0 or no-hit (59.2%), 52 were labeled as 1 or soft-hit 

(18.8%), while 61 were labeled as 2 or hard-hit (22.0%). These ratings are used 

throughout the remainder of this paper. 

We also obtained ratings from 4 additional humans: undergraduate research 

assistants who were trained to recognize each image class and who had been 

assigned this task in the past. Raters were presented with the full set of 277 
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images in randomized order and were asked to provide an integer class 

assignment for each using the following instructions: “How much of an effect did 

the drug have? (0 for no effect, 1 for solid effect, 2 for devastating effect)”. 

D. Loss Weighting 

For the purposes of drug discovery, false negatives are potentially much 

costlier than false positives. A false positive (i.e.: predicting that an image from 

an ineffective drug was actually effective) will result in secondary screening in 

which the ineffectiveness of the drug may be confirmed. A false negative (i.e.: 

predicting that an image taken from an effective drug did not actually have any 

effect) may result in a potentially useful compound being overlooked in this and 

any future drug trials. 

To help control our model’s false-negative rate, we employed a weighted cross-

entropy loss function of the form:  

 

where i indexes over datapoints, cover classes, yic is an indicator variable that 

takes the value of 1 if the true class of datapoint i is c and 0 otherwise, citrue 

represents the true label of datapoint i(i.e.: 0, 1, or 2), and the weights Wcitrue, 

c are drawn from the hand-tuned confusion weighting matrix shown in table I. 

Note that if all elements of this weight matrix were set to 1.0, then our weighted 

cross-entropy loss would reduce to standard cross-entropy 

 

This loss function penalizes false negatives at twice the default value. In 

addition, it penalizes the treatment of all true no-hit images at 0.8 times the 
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default value and reduces the penalties for confusing soft- and hard-hits to the 

same amount. 

We arrived at these weights through trial and error and use them for all 

experiments presented in this paper.  

E. Training Procedure 

We partitioned the full dataset of 277 images into a test set consisting of 25% of 

the images (69 images) and a training + validation set consisting of 75% of the 

images (208 images). We employed 4-fold cross validation on the training + 

validation set, training on 75% of its datapoints (156 images) and tracking 

validation loss on the remaining 25% (52 images). Unless otherwise noted, we 

trained on each fold for a total of 200 epochs. All deep neural networks 

presented in this paper were built in Keras and trained on NVIDIA GPUs. We 

selected the model from each fold which attained the lowest validation-set loss 

value across all training epochs. 

We combined the best models from each fold into a 4-model ensemble of 

models. We averaged the predictions across all 4 models in the ensemble to 

attain final predictions for each set of hyperparameters on the test dataset. 

1) Data Augmentation: Since our training set is rather small, we employed 

random data augmentation during training. In each pass over the data, each 

training image was randomly rotated between -5 and 5 degrees clockwise, 

translated between -5% and 5% vertically and horizontally, zoomed in between 

0 and 10%, and possibly flipped horizontally and vertically, with each 

transformation value selected uniformly at random from the legal range. Empty 

pixels that resulted from the random rotation and translation were filled with the 

values from their nearest existing neighbor pixel. This random data 

augmentation scheme with continuous parameters yields an infinitude of 

variations for each 156-image training set and helps prevent our models from 

overfitting to the specific details of our training data. 
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At inference time, we randomly generated five versions of each validation or 

test image and averaged the model’s predictions for each image over all five of 

its randomly-generated copies. 

F. Baseline Models 

We trained a number of increasingly complex machine learning models on the 

data to use as comparison baseline: 

1) Logistic regression on the raw data. 

2) Logistic regression on a bag of words (BoW) representation of SIFT or SURF 

features; and 

3) RBF-kernel support vector machine classifiers (SVMs) trained on a BoW 

representation of SURF or SIFT features. We used the SVM-classifier and 

logistic regression implementations provided by scikit-learn1. 

The logistic regression model was trained on images of sizes 128×128, 

192×192, 256×256, and 320×320 with varying L2 regularization using the 

LBFGS optimizer, treating all concatenated pixels of both the pre- and post-

drug application images as single input vector. We used OpenCV2to extract 

SIFT and SURF features from the images at a resolution of 320×320, which 

yields a varying number of key-points/features per image. To build a bag of 

words representation we first clustered all SIFT/SURF descriptors of the 

training set with k-means. Then we mapped all descriptors to their nearest 

centroid (as found by k-means) and compute the histogram of these centroid 

mappings for each image separately. We experimented with two histogram 

normalization approaches: globally rescaling the bins to the 0−1range or a 

binary representation that encodes whether at least one SIFT/SURF descriptor 

from the image was assigned to a given centroid. We treated pre- and post-

drug application images separately and concatenated their BoW 

representations (the histograms) into one feature vector, as computing the BoW 

representation across SIFT/SURF features of both images together discards 

crucial discriminatory information and resulted in a reduced performance in 
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preliminary experiments. We optimize the L2 regularization coefficient as well 

as the size of the BoW representation (number of clusters) for all models. 

G. Convolutional Neural Network Models 

Convolutional neural networks are based on a weight-sharing scheme in 

‘convolutional’ layers. These layers learn translation-invariant filters that are 

applied to e.g., all pixels of an image in the case of computer vision, and have 

led to models achieving state-of-the-art classification performance on a variety 

of tasks. Standard convolutional architectures for image classification include a 

series of convolutional layers followed by one or more fully connected layers. 

Each convolutional and fully connected layer is followed by a rectified linear unit 

(ReLU) nonlinearity and max pooling layers are interspersed through some 

subset of the convolutional layers to repress non-maximal responses and 

reduce the number of parameters in subsequent layers. Dropout may also be 

used on some of the convolutional and fully connected layers to help prevent 

overfitting. 

Overall, convolutional neural networks offer a well-established process for 

performing high-quality image classification. 

H. Hyperparameter Search for Convolutional Architectures 

Building a convolutional neural network requires specifying a large number of 

hyperparameters, such as the number of convolutional and fully-connected 

layers in the network, the size of each layer, dropout probabilities etc. The 

number of possible hyperparameter combinations grows exponentially with the 

number of hyperparameters, so a thorough grid search of hyperparameter 

combinations quickly becomes unwieldy. 

Instead, we employ a Gaussian-process-based meta-model which maps from a 

set of chosen hyperparameters to an estimate of the out-of-sample accuracy 

attained by a model trained with the given hyperparameters. This meta-model 

of hyperparameter fitness is used in an outer-loop hyper-parameter optimization 

process. First, the meta-model proposes a hyperparameter set to try. For each 

hyperparameter set, we follow the same training procedure as that detailed in 

section II-E, using 4-fold cross-validation on the training + validation set, 
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building a 4-model ensemble from the best version of the model for each fold 

(across epochs and as judged by validation-set accuracy), and averaging each 

model’s validation- and test-set predictions over 5 randomly generated versions 

of each input image. At the end of training, we report the validation-set 

accuracy (averaged across all 4 folds) as the objective value attained for the 

given hyperparameter set. This objective value is used to update the meta-

model of hyperparameter quality and the process repeats.  

I. Pre-Trained Convolutional Architecture 

Given the small size of our training dataset, we next tried a large convolutional 

architecture that had been pre-trained on a large, general purpose image 

recognition problem. For this purpose, we picked the InceptionV3 architecture 

as implemented in Keras with weights that had been pre-trained on the 

ImageNet classification challenge. The full convolutional portion of the 

InceptionV3 model contains 21,611,968 parameters and some 216 layers. We 

instantiated the model without including the final fully-connected layers, opting 

not to fine-tune its convolutional weights, but to train two fully connected and 

one 3-class softmax layer anew for our classification problem while using the 

convolutional portion of the InceptionV3 model as an elaborate, fixed computer 

vision preprocessing routine. While fixing our convolutional architecture fixed 

many of the hyperparameters of our model, several still remained. These were: 

the input image size, the number of neurons in the fully connected layers, 

dropout probabilities for the dropout layers before and after the fully connected 

layers, the optimization batch size, the learning rate, and L1 and L2 

regularization coefficients. Hyperparameters that control the amount of dropout, 

or the strength of the L1-, and L2-penalty terms have a regularizing effect and 

reduce the chances of overfitting the data, whereas the exact effect for other 

hyperparameters is in general more difficult to estimate. The exact ranges of 

hyperparameters that we optimized can be found in the supplementary 

material. 

J. Custom Convolutional Architecture 

Though the Inception architecture employed in section II-I has proven very 

useful for general-purpose image classification, the images of microscopic 
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blood vessel networks used in this task have their own structure that does not 

necessarily match the constraints of general object recognition3. For this 

purpose, we also trained a series of custom convolutional architectures 

specifically for this blood-vessel classification task. We constrained our 

architecture to contain several convolutional layers followed by two fully 

connected layers. The hyperparameters that we optimized were: the input 

image size, the number of convolutional layers, number of convolutional filters, 

and number of neurons in fully connected layers in the model, the size of the 

max pooling receptive fields, the optimization batch size, and parameters 

related to model regularization: dropout probabilities and L1- and L2 penalty 

terms. 

RESULTS 

A. Human Rating Results 

The four human raters found the vessel rating task difficult compared to the 

expert raters, matching the gold-standard ratings 72.9%, 76.5%, 69.3% and 

83.0% of the time. The rounded average of all four raters’ ratings (i.e.: 0, 1, or 

2) matched the gold standard ratings 85.9% of the time. 

 

 

B. Baseline Models Results 

The best logistic regression model trained on raw pixels obtained an average 

validation set accuracy of 79.6% across five repeated five-fold cross-validation 

experiments, using an input image size of 320px×320px and an L2 

regularization strength of 0.05. This model obtained an average three-class test 
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accuracy of 73.3%, which is a notable improvement over guessing the majority 

class (62.3%). An even higher accuracy was reached by models using a bag of 

words (BoW) representation of SIFT or SURF features. The best such model 

was a support vector machine (SVM) using SURF features that were clustered 

into a binary feature vector of size 200, obtaining a validation accuracy of 

84.4% and test-set accuracy of 78.0%. This is almost 5% better than the logistic 

regression model that was trained on raw pixels. A summary of best models, as 

determined by their validation accuracy, for each category is given in Table III; 

all BoW model results are averages over three repeated full cross-validations 

runs. 

 

C. Pre-Trained Convolutional Neural Network Results 

We explored a total of 100 hyperparameter sets for the pretrained convolutional 

architecture4using the procedure explained in section II-H. The best model, as 

judged by three-way validation-set accuracy (87.0%), used 320px×320px input 

images, its first fully connected layer after the InceptionV3 convolutional stack 

contained 256 neurons, its second fully connected layer contained 1024 

neurons, and the final dropout probability before the 3-way softmax layer was 

0.27. The optimization was completed with a batch size of 16, log10 of the 

learning rate of -1.24, a per-epoch learning rate decay factor of 0.98, log10 of 

L1 shrinkage of -9.0, and log10 of L2 shrinkage of -1.0. 
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A 4-model ensemble based on this architecture achieved a three-class 

accuracy value of 87.0% on the hitherto-unseen test (see the confusion matrix 

in table IV for details). 

 

D. Custom Convolutional Neural Network Results 

We explored a total of 1000 hyperparameter sets for our custom convolutional 

architecture, the best of which, as judged by three-class validation-set accuracy 

(96.6%), is a 21-layer convolutional neural network, the architecture for which is 

illustrated in figure 4. The optimization was completed with a batch size of 1, a 

learning rate of 0.012, a per-epoch learning rate decay factor of 0.98, and both 

L1 and L2 coefficients at a value of 10−9. 

A 4-model ensemble based on this architecture achieved a three-class 

accuracy value of 95.7% on the hitherto-unseen test set with no false negatives 

(see the confusion matrix in table V for details). 

The data set (with 277 datapoints) is small in comparison to typical machine 

learning data sets, which raises concerns over potential overfitting of deep 

learning models. To shed light on whether overfitting occurs we plot the 

evolution of the validation accuracy for three, independently - randomly - 

initialized and trained, instantiations of our custom CNN model in Figure 5. The 

curves are not smoothed and thus, as expected, relatively jagged due to the 

small size of the dataset and the various noise-injecting regularization 

techniques. Interestingly, we observe no evidence of overfitting within 200 

epochs of training. Overfitting would have manifested as a decline in the 

average validation accuracy towards the end of training, but instead we only 



 
 

Página 79 de 133  
 

observe a reduction in the variance of validation accuracies. In short, we 

conclude that the employed model regularization techniques are very effective 

and that early stopping is, while still beneficial, not as crucial as initially 

expected. 

 

It is desirable to further estimate the sensitivity of the model to the number of 

samples in the training set. To this end we artificially and progressively reduce 

the amount of training data, while keeping all other factors identical (e.g., model 

architecture, hyperparameters, validation set). Figure 6 presents results from 

training the custom CNN with ten different training set sizes in 10% increments, 

repeating the four-fold cross-validation training process four times for each 

training set size and averaging over these. As expected, decreasing the amount 

of training data directly reduces the validation accuracy. Interestingly, we also 

find that the CNN is able to match or outperform the best baseline model (an 

SVM trained on SURF features with a validation accuracy of 84.4%) when 

trained on only 40% of the original training data. Further, from extrapolating the 

graph beyond the 100% point, it seems virtually guaranteed that having access 
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to more training data would enable us to train better models with accuracies 

beyond our current best result of 96.6%. 

Final Discussion 

In this description, we present a new classification problem: to distinguish 

effective from ineffective drug compounds through automatic analysis of 

vascularization images. 

This problem may appear to be simple in some cases, such as in Figure 1, and 

solvable by merely counting the number of bright pixels in the pre- and post-

treatment images. However, we find that a linear model obtains an overall test 

accuracy of 73.3% only, providing only a relatively small improvement over 

guessing the majority class (62.3%). The difficulty appears to be driven by the 

nuances of the classification problem, which cannot be captured in a simple 

linear decision boundary in pixel space. For example, the death of a bridge-to-

nowhere vessel should be treated as less important than the death of a vessel 

on a major thoroughfare in the vasculature network. 

To further highlight its difficulty, even an ensemble of four trained human raters 

had some difficulty with this task (three-way accuracy: 85.9%). 

Convolutional neural networks significantly outperform the baseline models as 

well as human raters on this dataset. Where a cadre of four undergraduate 

raters achieved a three-way accuracy of 85.9% on this dataset, a convolutional 

ensemble based on the InceptionV3 architecture and pre-trained on ImageNet 

data achieved three-way accuracy of 87.0% (though it committed more false 

negatives than the human raters). A custom convolutional architecture, 

however, achieves a 95.7% three-way accuracy for drug-hit classification, while 

committing no false negatives. This pattern repeats itself if we reduce our 3-way 

classification problem to a binary problem by aliasing together the soft-hit and 

hard-hit categories. 

The success of this convolutional model is driven in part by carefully tuning our 

loss function to discourage false negatives (see section II-D), but also by the 

steps taken to control overfitting in the model. One regularization strategy was 
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to augment our limited training dataset to virtually infinite size via randomly 

transforming images during each training pass (see section II-E1). Heavy use of 

dropout also contributed to the result. In fact, the hyperparameter optimization 

scheme that we used automatically picked a model with a large final layer (512 

neurons) and a high dropout probability (0.90). Dropout can be interpreted as 

implicitly performing a geometric average over an ensemble of regularized 

subnetworks, so this model can be interpreted as implicitly averaging over a 

large ensemble of diverse sub-networks. 

These regularization strategies were important, as our final network contained 

2,485,827 learned parameters and 15 optimized hyperparameters, more than 

enough capacity to memorize the identity of 208 training + validation datapoints. 

However, our network still exhibits excellent generalization power, with test 

accuracy of 95.7% only barely lagging behind the hyperparameter optimized 

96.6% validation accuracy which in turn closely follows the training accuracy of 

98.1%. This tendency toward strong generalization performance is often seen 

in deep networks, and cannot yet be fully explained by any known 

regularization mechanism or learning theory 

In this description, we have developed a convolutional neural network to 

improve the data analysis processes for high-throughput drug screening 

using our MPS. This network can classify new images near 

instantaneously and surpasses human accuracy on this task. A larger 

scale drug screening can be achieved by coupling this classifier and an 

automated microscope camera system to capture images before and after 

drug treatment. 

(Stefan Harrer, 2019) (15) 

 

Artificial intelligence for clinical trial design 

 

Clinical trials consume the latter half of the 10 to 15 years, 1.5–2.0 billion USD, 

development cycle for bringing a single new drug to market. Hence, a failed trial 

sinks not only the investment into the trial itself but also the preclinical 
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development costs, rendering the loss per failed clinical trial at 800 million to 

1.4 billion USD. Suboptimal patient cohort selection and recruiting techniques, 

paired with the inability to monitor patients effectively during trials, are two of 

the main causes for high trial failure rates: only one of 10 compounds entering a 

clinical trial reaches the market. We explain how recent advances in artificial 

intelligence (AI) can be used to reshape key steps of clinical trial design 

towards increasing trial success rates. 

It takes on average 10–15 years and USD 1.5–2.0 billion to bring a new drug to 

market. Approximately half of this time and investment is consumed during the 

clinical trial phases of the drug development cycle. The remaining 50% of R&D 

expenditure covers preclinical compound discovery and testing, as well as 

regulatory processes. Although pharma and biotechnology companies have 

continuously increased R&D investment for decades, the number of new drugs 

gaining regulatory approval per billion USD spent has halved approximately 

every 9 years. Reversing Moore’s law (in 1965, Gordon Moore postulated that 

the power of computing would increase while its relative cost would decrease at 

an exponential pace. This trend held for decades and became known as 

‘Moore’s Law) from the world of semiconductor technology, this trend has been 

termed Eroom’s Law. It is ongoing and poses a severe threat to the existing 

clinical development business model: in the post-blockbuster drugs (a drug that 

creates in excess of $1B in annual sales) era a lack of go to market efficiency of 

that magnitude is not sustainable. One of the main stumbling blocks in the drug 

development pipeline is the high failure rate of clinical trials. Less than one third 

of all Phase II compounds advance to Phase III. More than one third of all 

Phase III compounds fail to advance to approval. Because these crucial 

checkpoints do not occur until far into the second half of the R&D cycle with the 

most complex Phase III trials carrying ~60% of the overall trial costs, the 

resulting loss per failed clinical trial lies in the order of 0.8–1.4 billion USD, thus 

constituting a significant write-off of the total R&D investment. 
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Two of the key factors causing a clinical trial to be unsuccessful are patient 

cohort selection and recruiting mechanisms which fail to bring the best suited 

patients to a trial in time, as well as a lack of technical infrastructure to cope 

with the complexity of running a trial - especially in its later phases – in the 

absence of reliable and efficient adherence control, patient monitoring, and 

clinical endpoint detection systems. AI can help to overcome these 

shortcomings of current clinical trial design. Machine learning (ML), and deep 

learning (DL) in particular, are able to automatically find patterns of meaning in 

large datasets such as text, speech, or images. Natural language processing 

(NLP) can understand and correlate content in written or spoken language, and 

human–machine interfaces (HMIs) allow natural exchange of information 

between computers and humans. These capabilities can be used for correlating 

large and diverse datasets such as electronic health records (EHRs), medical 

literature, and trial databases for improved patient–trial matching and 

recruitment before a trial starts, as well as for monitoring patients automatically 

and continuously during the trial, thereby allowing improved adherence control 

and yielding more reliable and efficient endpoint assessment.  
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Patient Selection 

Every clinical trial poses individual requirements on participating patients with 

regards to eligibility, suitability, motivation, and empowerment to enroll. The 

medical history of a specific patient might render them ineligible. An eligible 

patient might not be at the stage of the disease, or belong to a specific sub-

phenotype, that is targeted by the drug to be tested, thus making that patient 

unsuitable. Eligible and suitable patients might not be properly incentivized to 

participate, and, even if they are, they might not be aware of a matching trial or 

find the recruitment process too complex and cumbersome to navigate. Moving 

enough patients through these bottlenecks under tight recruitment timelines 

constitutes a major challenge and is in fact the number one cause for trial 

delays: 86% of all trials do not meet enrolment timelines, and close to one third 

of all Phase III trials fail owing to enrolment problems. Patient recruitment takes 

up one third of the overall trial duration. For example, Phase III trials carry 60% 

of the total costs for moving a drug through all trial phases because they require 

the largest patient cohorts. A 32% failure rate because of patient recruitment 

problems in Phase III trials illustrates one of the most severe shortcomings of 

state-of-the-art clinical trial design: those trials with the highest patient demand 

suffer most from inefficient patient recruitment techniques. AI- and ML-driven 

systems can help to improve patient cohort composition and provide assistance 

with patient recruitment. 
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Cohort Composition 

Clinical trials are usually not designed to demonstrate the effectiveness of a 

treatment in a random sample of the general population, but instead aim to 

prospectively select a subset of the population in which the effect of the drug, if 

there is one, can more readily be demonstrated, a strategy referred to as 

‘clinical trial enrichment’. If a patient is a priori not part of the suitable subset, 

then their participation in the trial will automatically decrease the observed 

efficacy of the drug being tested. Suitability may not be confused with the 
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degree of treatment success or absence thereof during the trial: it denotes a 

condition that does not render it outright impossible or highly unlikely for 

participating patients to respond to the tested drug. Recruiting a high number of 

suitable patients does not guarantee success of a trial, but enrolling unsuitable 

patients increases the likelihood of its failure. 

In an ideal world the assessment of suitability would use patient-specific 

diagnostic genome-to-exposome profiling to determine whether biomarkers 

which the drug targets are sufficiently strongly represented in the patient profile 

or not. Although trials which could benefit from such an approach form a 

relatively small subset of all trials, they also tend to be the most expensive trials 

– especially when medical imaging techniques are used. Hence, although in 

practice there may not be a comprehensive 'omic profile', and effective 

biomarkers may need to be identified for the majority of therapies under clinical 

development, biomarker testing should still be considered whenever applicable. 

Sophisticated analytics methods are necessary to combine omic data with 

electronic medical record (EMR) and other patient data, scattered among 

different locations, owners, and formats – from handwritten paper copies to 

digital medical imagery – to surface biomarkers that lead to endpoints that can 

be more efficiently measured, and thereby identify and characterize appropriate 

patient subpopulations. This presents a unique opportunity for NLP and 

computer vision algorithms such as optical character recognition (OCR) to 

automate the reading and compiling of this evidence. Moreover, treating data 

from different sources and formats as a single coherent dataset for the purpose 

of its comprehensive analysis is especially challenging in the case of EMR data 

owing to their volume, velocity, veracity, and variety. The data source-agnostic 

nature of AI models makes them a unique tool for EMR data harmonization 

which is key to designing tools for clinical trial enrichment and biomarker 

discovery. However, care must be taken to reduce overfitting of ML models as a 

result of class-imbalance in the training data. 

Preclinical compound discovery, compound-target testing, and defining lead 

compounds for clinical trials can be assisted by using generative and 

prediction-based AI, ML, and reasoning techniques. For example, a broader 
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and more efficient search for correlations between indications and biomarkers 

than conventional discovery techniques have been reported. This may allow 

lead candidates to be chosen that have a higher chance of success during 

clinical trials, and the elimination of those with a higher likelihood of failing 

before they enter the clinical phase. 

AI models and methods can also be used to enhance patient cohort selection 

through one or more of the following means identified by the Food and Drug 

administration (FDA): 

(i) By reducing population heterogeneity. 

(ii) By choosing patients who are more likely to have a 

measurable clinical endpoint, also called 'prognostic 

enrichment'. 

(iii) By identifying a population more capable of responding to a 

treatment, also termed 'predictive enrichment'. 

Electronic phenotyping is a well-established discipline within health informatics 

that focuses on reducing population heterogeneity, namely the process of 

identifying patients with specific characteristics of interest. The characteristics 

can be as simple as patients with type 2 diabetes, or as complex as patients 

with stage II prostate cancer and urinary urgency without evidence of urinary 

tract infection. The task of electronic phenotyping is far more challenging than a 

simple code search, and requires sophisticated methods to account for 

heterogeneity among patient records, across multiple data types, and to 

leverage complex representations of clinical domain knowledge. Although early 

methods relying on hand-crafted rules were effective for simple cases, they 

proved to be insufficient for more complex and more nuanced cases. In recent 

years there have been increasing efforts to design a diverse range of ML 

methods, ranging from NLP to association rule mining to DL, that have shown 

great progress towards being able to handle complex real-world situations. 

Although electronic phenotyping can be leveraged to reduce patient population 

heterogeneity, it is not designed to achieve prognostic or predictive enrichment. 

ML methods are increasingly being deployed for prognostic enrichment for 
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neurological diseases where key biomarkers, which are typically expensive or 

invasive to measure, are approximated by non-linear combinations of multiple 

cheap and non-invasive measures which provide similar prognostic information. 

Predictive enrichment requires more complex models that are necessary to 

characterize and assess disease progression. The Coalition Against Major 

Diseases (CAMD) recently led a process that successfully advanced a clinical 

trial simulation (CTS) tool for Alzheimer’s disease (AD) through the formal 

regulatory review process at the FDA and the European Medicines Agency. 

The CTS tool includes computational components for modeling drug, disease, 

and progression of mild cognitive impairment (MCI) and early AD that can be 

used for model-based clinical trial design. Expanding on this effort, ML methods 

for disease progression modeling are being developed to provide increasingly 

accurate and nuanced understanding and characterization of complexity and 

heterogeneity of many diseases, particularly those such as AD where disease-

modifying drugs are not yet available. 

Assistance in Recruitment 

The complexity of trial eligibility criteria in terms of number and medical jargon 

generally makes it challenging for a patient to comprehend and assess their 

own eligibility. Manually extracting meaningful information from this large and 

unstructured data source is a significant task that imposes a heavy processing 

burden on doctors and patients alike. Nonetheless, it is this step that largely 

defines whether a patient is deemed suitable and eligible to participate in a 

study, and also whether the recruiting site and the patient become aware of 

each other. Several AI techniques can offer viable assistance with automatically 

finding the needles in the EMR haystack: NLP can be used to comprehend 

written and spoken language from a variety of structured and unstructured data 

types. Reasoning techniques allow content to be digested into actionable 

recommendations for the human decisionmaker. ML and in particular deep 

reinforcement learning empowers systems to learn and integrate feedback on 

the quality of their analytic output into adapted underlying algorithms. Assistive 

systems using these AI techniques or subsets thereof can be used to 

automatically analyze EMR and clinical trial eligibility databases, find matches 
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between specific patients and recruiting trials, and recommend these matches 

to doctors and patients. Such AI-based clinical trial matching systems have 

successfully been demonstrated and have proved their value in real life use 

cases. Because of the AI nature of these systems, any added future 

functionality and improved performance predominantly will depend on the 

quality and amount of data which are accessible for analytical model 

development and pilot study field validation work. 

AI and ML techniques such as NLP and OCR have also been proposed to 

proactively mine publicly available web content such as, for example, digital trial 

databases, trial announcements, and social media to automatically identify 

potential matches between trials of relevance and specific patients. By assisting 

patients in their conventional manual web search, such a system could make 

patients aware of trials of interest much faster and allow them to proactively 

engage with clinicians for further assessment of eligibility and suitability. 

Indeed, the first enrolment plans employing a social media component have 

successfully been demonstrated. We expect the integration of AI will improve 

the reach, efficiency, and thus the impact of such digital enrolment plans 

substantially in the future. 

Challenges 

The digitalization and accessibility of EMR data that are used extensively by AI 

methods are not trivial. Both tasks are challenging for contrary reasons: on the 

one hand a lack of regulatory frameworks on data collection causes EMR 

formats to differ widely, to be incompatible with each other or not digital at all, 

and to reside in a decentralized ecosystem without established data exchange 

or access gateways. On the other hand, a strongly regulated legal environment 

strictly limits third party access to patient data and even makes it difficult for 

patients themselves to access their own data. This so called ‘EMR 

interoperability dilemma’ is being recognized as major hurdle to making 

healthcare systems more efficient, and substantial investments are being made 

by governments and medical institutions towards overcoming this hurdle. In 

parallel, legal frameworks such as, for example, the US Health Insurance 

Portability and Accountability Act (HIPAA) and the EU General Data Protection 
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Regulation (GDPR) continue to evolve as governing and protecting sensitive 

health data becomes an increasingly complex endeavor in the growing network 

of devices, data owners, and service providers [24,25]. Further, exactly as with 

EMR mining, for clinical trial matching the legal aspects of data privacy and 

security as well as a sufficient degree of explainability of AI models need to be 

addressed to ensure that AI-based systems are operable and gain regulatory 

approval. 

Patient Monitoring 

Recruiting the right patients into a clinical trial is a massive investment of both 

time and funding. The return on this investment can only be realized through 

successful completion of the trial. Hence, it is imperative that patients stay in 

the trial, adhere to trial procedures and rules throughout the trial, and that all 

data-points for monitoring the impact of the tested drug are collected efficiently 

and reliably. Only 15% of clinical trials do not experience patient dropout, and 

the average dropout rate across clinical trials is 30%. Dropouts caused by a 

lack of adherence to trial protocols require additional recruiting efforts, which 

lead to trial delays and substantial additional costs. A linear increase of the non-

adherence rate in a trial leads to an exponential increase in additional patients 

required to maintain the statistical power of the outcomes. For example, a study 

in which half of the patients are non-adherent means an additional 200% of 

patients need to be recruited to keep the statistical power of the results stable. 

Improved patient monitoring and coaching methods during ongoing trials can be 

used to lower the adherence burden, make endpoint detection more efficient, 

and thus reduce dropout and non-adherence rates. AI techniques in 

combination with wearable technology offer new approaches to developing 

such power efficient, mobile, real-time, and personalized patient monitoring 

systems. 

Patient Adherence Control, Endpoint Detection, and Retention 

To comply with adherence criteria, patients are required to keep detailed 

records of their medication intake and of a variety of other data-points related to 

their bodily functions, response to medication, and daily protocols. This can be 

an overwhelming and cumbersome task, leading to on average 40% of patients 
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becoming non-adherent after 150 days into a clinical trial. Wearable sensors 

and video monitoring can be used to automatically and continuously collect 

patient data, thereby relieving the patient of this task. ML and particularly DL 

models can then be used to analyze such data in real-time for detecting and 

logging events of relevance. This approach allows disease diaries to be 

generated which – because the underlying analytical DL models are periodically 

retrained with updated measurement data – evolve to be patient specific and 

adaptive to any changes in disease expression and patient behavior. Such 

disease diaries may serve as evidence for adherence or lack thereof and – as 

minimal or no manual patient input is required – will also collect data-points for 

endpoint detection more reliably and efficiently than current patient-driven self-

monitoring methods. AI also has an important role to play in image-based 

endpoint detection – a task that is currently addressed manually at reading 

centers. ML technologies have been proposed – and recently approved – for 

screening applications for the rapid detection of diseases from medical images. 

Complementing this with algorithms that quantify pathological conditions will 

reduce the cost associated with image-based studies by circumventing manual 

processing.  

AI and ML methods may also be used to dynamically predict the risk of dropout 

for a specific patient, in other words to detect the onset of patient behavior that 

suggests the patient might be experiencing issues with adhering to the study 

protocol. One such example described the use of deep reinforcement learning 

algorithms to determine the fewest, smallest doses that could still shrink brain 

tumors, while reducing toxicity associated with chemotherapy dosing regimens. 

Powered by a 'self-learning' ML technique, the system looks at treatment 

regimens currently in use, and iteratively adjusts the doses. Eventually, it finds 

an optimal treatment plan, with the lowest possible potency and frequency of 

doses that should still reduce tumor sizes to a degree comparable to that of 

traditional regimens. In simulated trials of 50 patients, the ML model designed 

treatment cycles that reduced the potency to a quarter or half of nearly all the 

doses while maintaining the same tumor-shrinking potential, and thus promises 

improvements in patient adherence and reductions in dropouts and censuring. 
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Picking up early warning signs for non-adherence allows proactive engagement 

with individual patients and permits the root causes of problematic behavior to 

be addressed: for example, severe side effects or incompatibility of study and 

personal routines could be detected and remedied before they lead to dropout. 

The choice of sensors and analytical models is highly disease-specific and will 

need to be part of the clinical study design. 

Using DL for object recognition in images and video, as well as for analyzing 

time-series data from wearable sensors, first studies for testing and exploring 

AI-assisted patient monitoring systems have recently been started or completed 

successfully. The advent of commercially available wearable devices with 

medical-grade health-sensing capabilities, as well as complementary software 

ecosystems for running advanced DL models on such mobile platforms, will 

allow more diversified sensor combinations to be investigated for a variety of 

diseases. In a previous study, Shah et al. evaluated the significance and 

efficacy of clinical evidence generated from advanced technology-enabled non-

invasive diagnostic screening (TES) using low-cost smartphones and other 

point-of-care medical sensors versus conventional vital signs examination. 

They report that, although routine health screening continues to be important, 

the emerging techniques of TES can play an important synergistic role in 

stratifying populations and providing personalized screening and care in 

support of clinical trial designs and observational studies to generate 

innovative, new treatment approaches. We expect to see more pilot studies 

benchmarking the impact of such technologies on trial efficiency alongside 

ongoing clinical trials in the near future. 

Recent advances in custom-developing mobile processors and coding 

environments allow DL models to be run close to or at the point of sensing. This 

transforms wearables from pure information storage and transmission devices 

into information digestion and analytics devices – a novel concept which we call 

'cognitive sensing'. Wearables measure biometric parameters through mobile 

systems attached to the human body, and either store the collected data on the 

device or send it to the cloud for offline analysis. As the wearable revolution 

unfolds, a rapidly increasing number of parameter types can be monitored 
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simultaneously, making storage and transmission of unfiltered sensor data 

impossible. Algorithms for analyzing, in other words continuously correlating, 

contextualizing, and filtering raw data in real-time directly at the point of 

sensing, will be necessary to extract actionable information before the need for 

data storage or transmission arises. DL models in combination with on-sensor 

data preprocessing and curation systems allow this task to be accomplished. 

The architecture of such wearable, autonomously operating, always-on, 

cognitive sensors consist of the following system components: (i) minimum-

footprint biosensors feeding into (ii) low-power mobile processors capable of 

locally running DL models with (iii) closed-loop interfaces to (iv) an event diary 

which instantly and proactively logs information on specific disease episodes 

and interacts with wearer or caregiver for patient support, guidance, and 

intervention. The event diary can thus utilize a local memory unit, a remote 

cloud repository, or a hybrid version of both. Various wearable biosensor and 

actuator platforms in different stages of technical maturity have been 

demonstrated or are currently under development. 
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The predominant type of data which most of these sensor types measure is 

time-series data. Although DL has traditionally focused on analyzing imagery 

data using deep convolutional neural networks, recent work has demonstrated 

that custom-designed neural network models are also uniquely suitable to 

analyze complex time-series streams. To run DL algorithms continuously in 

real-time at the point of sensing, ultra-low-power consumption mobile 

processors are needed. Advances in developing both novel AI hardware and AI 

software techniques over the past 3 years have led to several versions of such 

AI-tailored mobile processing solutions now being available for real-life use. 

These solutions can be categorized into three general types: 

(i) custom-developed hardware requiring custom developed AI coding 

environments, such as IBM’s TrueNorth chip, (ii) custom-developed hardware 

compatible with standard AI programming tools, such as Qualcomm’s 

Snapdragon chip series and Intel’s Movidius processor, and (iii) conventional 

mobile processors which can be programmed using standard AI coding 

platforms, such as the Apple Watch, Apple’s XS iPhone series carrying the A12 

Bionic chip, and also a variety of other smartphones. 

As pointed out previously, interoperability and standardization of data and 

methodology are key challenges for integration of AI into clinical trial design. 

The same is true for wearable AI technology and devices. Regulatory bodies, in 

collaboration with academic, medical, and pharma institutions, have started to 

produce standardization frameworks and best practice recommendations for 

incorporating wearable technology into clinical trial design. 

Ongoing research at the intersection of AI, Internet of things (IoT), and 

healthcare will produce more medical-grade devices with advanced analytics 

capabilities for continuous real-time monitoring of patients and disease 

progression. If an equally strong focus on standardization and interoperability is 

maintained, these devices might make cognitive sensing an effective tool for 

improving the performance of trials. It is important to note, however, that data 

integrity and safety occupy a central role in the conception, implementation, and 

exploitation of digital disease diaries: patients, doctors, and regulatory bodies 
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will rely on the integrity and safety of sensitive patient data and of analytical 

insights derived from it. While HIPAA-compliant environments constitute the 

data security baseline, advanced generations of AI-based monitoring and data-

housing platforms will employ blockchain technology for ensuring trusted and 

traceable multiparty communication and exchange of monitoring data. 

Over the past 5 years modern AI techniques have advanced to a level of 

maturity that allows them to be employed under real-life conditions to assist 

human decision-makers in computer vision, navigation, and in some cases of 

medical and healthcare environments. At the same time, pharma and 

healthcare are still among the most highly regulated and risk-averse industries. 

Infusing innovation that changes established processes is a difficult task that 

needs to be approached and implemented in a stepwise manner. Although AI 

has the potential to impact numerous steps of clinical trial design from 

preparation to execution, any AI pitch that aims to tackle all aspects at once is 

predestined for failure. Instead, data scientists and medical scientists should 

jointly define achievable use cases where the application of well-understood AI 

tools to a specific subtask of clinical trial design promises the greatest 

improvement of overall trial performance. Such AI technology first needs to be 

tested alongside the existing technology it aims to complement or replace, and 

the added value must be demonstrated and benchmarked in an explainable, 

ethical, repeatable, and scalable way – not only to users but also to regulatory 

bodies. Following this approach AI may be adopted into the clinical trial 

ecosystem step-by-step, making trials faster, while at the same time hopefully 

lowering failure rates and R&D costs. Several pharma and AI companies have 

started to jointly explore this avenue. Regulators have put in place and continue 

to expand frameworks for assessing AI-based technologies in healthcare. 

Further, completed trials have amassed a corpus of data which carries a wealth 

of information on correlations between trial design features and trial 

performance. This includes data from failed clinical trials. These large and 

unstructured datasets are predestined to be analyzed by AI technologies. 

Insights could be used to educate future improved trial designs and also to 

investigate the potential relevance of already trialed drugs against comorbidities 
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for drug repurposing. Nevertheless, failed trial data in particular tend to be a 

neglected asset that has remained largely untouched on the shelves. 

It is important to note that the measurable impact of any such steps on the 

efficiency of the pharma R&D pipeline – even if implemented successfully now 

– will not show up in the statistics until after a 5–8-year delay. Moreover, there 

will be additional R&D costs on top of the ongoing costs; in other words, from a 

required investment perspective, things will get worse before they will get 

better. 

The AI techniques described in this review offer real-life practicability; however, 

particularly with respect to explainability, these techniques must mature to allow 

their broader inclusion in healthcare and life sciences applications. Although 

these developments are in full swing, we need to acknowledge that the 

opportunity to transform the drug development cycle through AI comes with a 

great responsibility for all the disciplines involved and the mandate to qualify the 

value and reliability of any innovation through rigorous R&D work. This 

exploratory research pilot phase may not be bypassed for any reason because 

any breach of research protocol or premature setting of unreasonable 

expectations will inevitably undermine trust and ultimately the success of AI in 

the clinical sector. 

In the same way as a change of clinical trial design alone will not turn efficiency 

of the pharma R&D cycle from decay to growth, AI is not a magic bullet that will 

make the success rates of clinical trials skyrocket overnight. Both reshaping 

clinical trial design and using AI techniques for doing so are important building 

blocks of a much-needed overhaul of the drug development cycle. 

(Stefan Harrer, 2019) (16) 
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Chapter VI: Proposal of a global platform based on AI – 

DL for cancer early diagnosis 

 

Justification and business aspects 

 

Platform Objective: 

At the end of chapter II, I have presented a synthesis of key concepts for the 

development of AI as an early detection mechanism and therefore a high 

probability of cure of certain types of cancer, one of them referring specifically 

to deep learning technology mentions: “Deep Learning is powered by massive 

amounts of data. Deep learning models tend to increase their accuracy with the 

increasing amount of training data”, that is why the approach of this chapter is 

how to articulate a global AI platform that can be fed with images and 

diagnostic data from all over the world to achieve diagnostic precision that can 

be a source of consultation for health professionals in early stages treatment of 

the patient, thus increasing the probability of its cure. 

The proposed Platform aims to unite producers of medical diagnostic 

images, diagnostic lab results and medical literature with health 

professionals who wish to validate the tests performed on a patient in 

order to detect possible forms of cancer early and act accordingly to 

prevent cancer disease development. 

Enablers 

Which are the factors that allow us to think that today it is possible to implement 

a platform with these characteristics? 

1) Massive internet access, although with differences in speed and quality, 

is a worldwide reality. 

2) Access to technology in the cloud in the form of software as a service 

(SaaS) and platform as a service (PasS) today has a level of maturity 

that allows the implementation of projects of all kinds regardless of 
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variables such as the volume of data, the location of the producers and 

consumers of information and the type of technology necessary for its 

realization. Leading cloud computing providers like Amazon and 

Microsoft have state-of-the-art, end-to-end AI solutions for hire as a 

service. 

3) Diagnostic imaging devices such as computed tomography, magnetic 

resonance imaging and ultrasound are common in most health centers 

and diagnostic centers and today all these devices generate digital 

images by themselves or through a personal computer. These digital 

images can be uploaded to an internet platform only with a connection in 

the health / diagnosis center, something totally common today. 

4) As mentioned in chapter II of this work, deep learning technology has a 

level of maturity that makes it possible to use it with a population of 

trained resources large enough at a global level to design, implement 

and maintain a learning solution. these characteristics. 

Therefore, we can say that the technological conditions, the possibility of 

generating the necessary information so that the precision of the result 

delivered by the application is what is sought, and the capacity of health 

centers to make use of these results online, are given. So that a project of 

these characteristics can be viable today. 

Target Market 

 

The platform's target market is the world. Being that cancer is a disease that 

affects humanity throughout the planet and that the elements that we have 

mentioned as part of our solution proposal are also global (being aware of the 

differences that exist in these issues between developed countries and that are 

developing) we propose that: 

1) The platform must have as its objectives to obtain data in as many as 

possible and from as many countries as possible. 
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2) Provide your diagnostic validation service to the greatest number of 

users in the greatest number of countries possible. 

 

Google states that its mission is “Our mission is to organize the 

world’s information and make it universally accessible and useful.” Without 

wanting to compete with Google, we state that the mission of our platform is 

"Collect diagnostic information and medical literature on cancer, organize 

it and use it to provide a global service for early validation of patient data 

to achieve an early diagnosis that increase the possibility of the patient's 

cure”. 

Platform internalization pathway 

 

According to the book “Internationalization handbook for the software business” 

(Toivo Äijö, 2005) (17) which explains the paths that a company can take to 

start the internationalization stage, tells us: “As we proceed further in the 

analysis of the various choices and context specific nature of 

internationalization, it can be noted that the real-life multitude of paths to growth 

and internationalization can be grouped into three distinct and more or less 

typical pathways. They are organic, collaborative and born global 

pathways. In many ways the slow organic and accelerated born global 

pathways are the opposites of one another, at the two extreme ends of a 
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spectrum” 

 

 

Likewise, the book says in its chapter 2 “Choice of the pathway and 

internationalization Strategy” “The choice of pathway must be understood within 

the context os strategic planning”. Therefore, based on the objectives and 

scope of the platform that we have described, it is proposed that the model to 

be followed be “born global” given that it is the model in which our proposal can 

achieve the objectives it sets out in a time frame that makes sense of it. 
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Graphically, it is seen in the following image: 

 

 

Value Proposition 

 

Summarizing what has already been stated, the platform's value proposition 

consists of "to unite producers of medical diagnostic images, diagnostic labs 
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results and medical literature with health professionals who wish to validate the 

tests performed on a patient in order to detect possible forms of cancer early 

and act accordingly to prevent cancer disease development”. Allowing: 

• Quickly validate the initial diagnosis of the patient. 

• Allow early treatment of the disease, increasing the chance of a cure for 

the patient. 

• Reduce the development cycle of new drugs for the treatment of different 

forms of cancer. 

• Monetize diagnostic images, laboratory data, and medical literature 

generated by medical centers, laboratories, and medical research 

centers. 

 

 

Marketing Plan 

 

To meet the objectives set out in the platform's value proposition, it is 

necessary to set out the strategic objectives in the marketing plan, of which 

we have already presented the target market and the value proposition. The 
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third strategic objective is "data acquisition", being the diagnostic images, 

laboratory results and medical literature the raw material of our service, the 

acquisition of the same from its producers and retention of the same is a 

strategic objective on which concrete and permanent actions must be focused 

on the part of the business. 

In addition to the strategic objectives, the marketing plan has the following 

pillars: 

Communication and media plan: Given the global reach of the platform and 

the sensitivity of the topic it addresses; the communication plan must be clear 

and focused on the target audiences. It should contain definitions about:  

• Channels: Through which media will we advertise the service. 

Clearly, any publication or scientific dissemination medium in the area 

of oncology in particular, but of medicine in general, is a candidate to 

be a channel for disseminating the service. We must consider digital 

and traditional scientific popularization publications, popularization 

editions of the pharmaceutical industry, presence in congresses and 

events. 

• Content: The content must clearly reflect the value that the platform 

brings to the oncologist in the early stage of patient treatment, as well 

as to the health center and the patient's health coverage, since early 

treatment that increases the probability of cure decreases costs. of 

treatments in advanced stages of the disease as well as surgeries, 

hospitalizations and other high-value specialized medications. 

• Target Audience: The marketing action must be directed to the two 

groups that we seek to capture, the first are professionals / health 

centers and health insurance, the second the data generators for the 

platform, diagnostic centers, medical centers, scientific research 

centers related to cancer. 

Dissemination and conversion plan: To ensure that the content we seek to 

disseminate reaches the target audience and that the solution offered is of 

interest to users, the content dissemination plan must guarantee the greatest 
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impact of the content on the target. Since our target is a highly qualified 

audience, the content must have the greatest credibility, it must be segmented 

according to whether we seek to reach the oncologist, or the diagnostic center 

that generates the data, in the digital channel we must seek the highest 

positioning in search engines, a specific strategy for social media and a state-

of-the-art website focused on showing the value of the service provided by the 

platform. 

Monitoring and analysis: From the moment the marketing actions are 

launched, both digitally and in traditional media, metrics must be available to 

measure the performance of the campaign launched or the website. Some 

metrics are: measure exposure, interest, link and result of the action. After the 

campaign, the return on investment, retention and brand value must be 

measured.  

Network effect 

 

The main challenge of any platform is to achieve the network effect in its 

service, the network effect is defined as “The more people that use the service, 

the more useful it is because there are more people to use it with”. In the case 

of a platform whose service is based on collecting and providing data, achieving 

the network effect is even more difficult and is known as “data network effect”. 

As described by Alexandre Gonfalonieri in his article “Why is it hard to build AI 

& data network effects” (Gonfalonieri, 2020) (18) where defines that “A Data 

Network Effect is a property of a product that improves with the more data it has 

available, due to emergent relationships between segments of the data”. This 

definition is aligned with the concept analyzed in previous chapters where we 

saw that the platform of deep learning it increases its precision to the extent 

that it has more data to “learn”. According to the author, the complexity to 

achieve the data network effect lies in the following list of problems: 

1) Data Culture and expectations: In any organization, the absence of a 

data-centric culture that prioritizes the effective use of data, no relevant 

data network effects can exist. Data network effects produce little value 
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before they reach critical mass, and most newly applied algorithms suffer 

from a “cold start” before acquiring adequate data.  In our case, the data 

network effect will be the core due to the need of imaging data for our AI 

system’s training that will produce more clients interested in using the 

system to check the patient’s laboratory results. 

2) Relationship with data & Closed Loop System: Actually, the goal should 

be to improve your models with additional data sources in addition to 

your own data. In general, the broader data sources you have, the more 

accurately you can model your environment and make accurate 

predictions. In our case, as much information we can collect, more 

precise will be the system response to doctor’s questions. 

3) Improvements vs time: Another interesting element to bear in mind is 

that after the dataset reaches a certain size, the algorithm no longer 

meaningfully improves as the dataset grows. The reality is that most data 

network effects struggle with this. Moreover, the point beyond which the 

data network effects diminish varies by domain. In our case, this point 

should be analyzed after that the system arrives to a levels of diagnosis 

precision similar to medical professionals. 

4) Automation & Scope: From an operational perspective, data network 

effects require at least some level of automated productization of the 

insights. The more automation you add into the loop, the more efficient 

the virtuous circle of AI becomes. Furthermore, the narrower the scope 

of a product and the greater the degree to which machine learning drives 

its value, the easier it is to tie these advantages together to create a 

competitive advantage through data network effects. In our case this is 

the approach to achieve the objective that we are looking for. 

5) Types of data: The data gathered from new users must be of the right 

kind and of sufficient volume to enable data network effects. This 

learning must be optimized effectively enough to create new product 

value. And this value must be strong enough and productized well 

enough to attract more customers. Any break in this chain means there 
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is no self-reinforcing cycle and hence no learning effects. In or case, as 

the previous point, this is aligned with the porpoise of our platform. 

 
After reviewing these considerations and the characteristics of the platform that 

we propose to implement the early diagnosis of possible cancer cases through 

AI, we understand that it meets the objective of achieving the network effect 

and also the data network effect as result of the design of the service it provides 

as well as the operational characteristics of its operation. 

Finances 

 

The financial flow of the platform requires evaluating the table of income and 

costs over five years, since an initial period of 2 years is required for the 

following foundational tasks that will allow us to obtain the result we are looking 

for from the platform:  

• Human resources: Engineers and programmers specialized in AI, C level 

(CEO, CFO, CTO), marketing and sales staff, staff. 

• Cloud infrastructure: Platform as a service, software stack as a service 

for the development of the AI solution, front ends of data and client 

loading, back office and digital marketing. 

• Advertising: Digital, in specialized media, medical conferences and 

medical institutions. 

• Data acquisition: Hire diagnostic centers and health centers that provide 

the diagnostic images they produce in exchange for a monetary value for 

each image received. 

• AI’s platform developing and training. 

 

The graph of income and initial expenses the first two years with a high cost of 

starting operations for the concepts mentioned above, these costs are covered 

by the source of financing that is mentioned in the next section, the income of 

the first years is low but once the platform is created and trained, delivering the 

results with the promised precision, the income grows exponentially given the 

massiveness achieved by network effects.  
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Funding model 

 

Another point that must be planned with the greatest precision is the financing 

model of the platform that is being developed. The traditional models of 

investment rounds and seed capital are a possibility as they are in any digital 

product development cycle, however, given the characteristics of this platform 

and its purpose, which seeks to help find a way to lower the numbers of deaths 

caused by cancer, should be sponsored by international organizations 

dedicated to health such as the WHO, PAHO or similar.  

The reason for this proposal is that the objective of this platform is not primarily 

commercial, it is not a platform that seeks a return of X times the invested 

capital, but rather a humanitarian purpose. Funding to launch this platform and 

keep it in the data acquisition process until the AI engine achieves the accuracy 

sought in early diagnosis can be provided by one or more global health 

organizations. Once this point has been passed, at which the platform has 

"learned" enough from the data to be able to give precise diagnoses, a 

transition to private capital can begin with the aim of sustaining the necessary 

growth.  
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Once the financing has been obtained for the development of the solution and 

its release to the market to capture data that allows the AI engine to learn up to 

an acceptable level of precision, investment rounds are opened to maintain and 

expand the solution in operation. 

As an example of funding programs of health associations, we can see the 

PAHO (Pan American Health Organization) “Health technology assessment”, 

the PAHO’s web site says:  

“Given the growing interest for health technologies, PAHO has launched 

several initiatives in HTA with member countries to promote and strengthen 

health technology assessment in the Americas. PAHO's role is important for the 

development and implementation of HTA in the Americas, and to support the 

promotion of evidence-based decision-making processes, which contribute to 

the incorporation of cost-effective technologies.  

In 2012 member states adopted the resolution "Health Technology Assessment 

and incorporation into Health Systems" (CSP28.R9). The resolution proposes 

linking HTA with the decision-making processes involved in incorporating these 

technologies into health systems. Since the approval of CSP28.R9, there have 

been clear advances in the institutionalization of HTA in the Region, both at 

regional and national levels. Despite the major progress, the implementation of 

HTA remains at a low level in some countries. PAHO encourages the 

establishment of an institutional framework for HTA-based decision-making. 

This framework would establish linkages between HTA and decision-makers, 

encouraging institutional responsibility and creating linkages between the use of 

technologies and evaluative data to feed into the decision-making process. 

To support the development of HTA in member countries, the Medicines and 

Health Technologies Unit is involved in many activities, such as:  

Human resources development:  establishing a regional strategy to assess 

different regional needs. Promotion of regional meetings, workshops, and 

training through online courses, and webinars. 
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Dissemination of information: identifying existing opportunities and 

disseminating findings amongst stakeholders and decision-makers, through the 

Regional Platform on Access and Innovation for Health Technologies (PRAIS). 

Rational use of health technologies: developing and implementing clinical 

guidelines to evaluate the use of health technologies in health services. 

Promotion of network collaboration: promotion of regional cooperation among 

member countries, strengthening the HTA Regional Network through the 

Regional Network of Health Technology Assessments for the Americas 

(RedETSA). “ 

(PAHO, s.f.) (19) 

Globally growing diagnostic imaging equipment market 

 

In the case of an AI solution based on data, it is important to deepen the 

concept mentioned in the previous section on the sustained trend of 

overcrowding of diagnostic imaging equipment, which manages to reach more 

diagnostic centers, reduce the cost of their service and therefore increase the 

amount of images and data available that can be stored on a platform that uses 

them as an information base. 

The following study presents the evolution trend of the diagnostic imaging 

equipment market in the United States until the year 2025. For the cases of 

nuclear medicine equipment, magnetic resonance imaging, ultrasound systems, 

computed tomography and X-ray equipment Taking the installed base of the 

year 2015, it is seen in all cases the market growth for the year 2025 is close to 

double. 
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The statistic shows the size of the U.S. medical imaging market from 2015 

forecasted until 2025, by product type. In 2021, the total U.S. market stood at 

around 13 billion U.S. dollars, of which 3.2 billion dollars were generated by 

nuclear imaging devices and 2.9 by X-ray devices. (Stewart, 2019) (20) 

A second statistic that supports the massification of diagnostic images has to 

do with the evolution of computed tomography performed in the United States 

since the first equipment with these characteristics arrived on the market in the 

early 1980s until the year 2005, the growth curve is completely clear, showing 

that the adoption of these devices and the results they generate is massive and 

they are widely used by the medical community today. 
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(Montagnese, 2012) (21) 

According to the latest results from “iData Research’s medical imaging 

procedures analysis”, over 75 million CT scans are performed each year in the 

United States. This number is forecasted to grow to reach 84 million procedures 

by 2022. (Research, 2018) (22), and in the same way more than 95 million MRI 

(Magnetic resonance imaging) scans per year worldwide. 

(Lakrimi, 2018) (23) 

 

Platform’s main functionalities 

 

To meet the proposed objective of the platform, we can mention two perfectly 

defined functionalities that it must implement: 

1) Data Gathering 

This functionality of the platform is responsible for obtaining the data, the 

essential fuel required by the AI engine implemented in the platform to be 

able to fulfill its mission of accurate early diagnosis. 

The mission of the data gathering module is the "ingestion" of the 

information provided by medical centers, diagnostic centers, and any other 

institution related to medicine that has been contracted to provide images 

and laboratory results such as CT scans, MRIs, X-rays, and lab results. The 

module is the one who presents the front end through which these medical 
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institutions send the information to the platform with its corresponding 

registration, validation and storage in the platform's database. 

When the information is correctly stored, the module sends the confirmation 

to the information provider, executes the accounting registration process of 

the information received for subsequent payment management to the 

provider and sends the communication to the AI module about the 

information received. 

2) AI engine core functionality. 

This is the Deep Learning algorithm implemented in the platform, the AI 

engine that, based on the information it receives from the previous module 

and uses it to "learn" about the data and raise the level of precision of the 

queries made by users. medical specialists in the next module. 

The complete system will achieve acceptance and use by the community to 

which its service is aimed, to the extent that this module manages to 

develop with the necessary precision so that the learning process on the 

ingested data provides answers to early diagnosis queries, allowing rapid 

treatment that increases the chances of overcoming the disease in patients. 

3) Patient information AI check  

This module is the front end of the doctor who connects to the platform to 

validate the results of his patient's clinical studies. The doctor seeks to 

connect, upload the images and diagnostic data of his patient and get the 

answer from the AI about the possibility of having detected cancer. In 

addition to delivering the report to the doctor, the platform validates with the 

doctor if it is authorized to load these images and results in the application's 

database to increase the sample of data on which the AI engine learns. 

4) Backoffice 

The Backoffice module is in charge of all the administrative tasks, for 

example customer management, finance and accountability, business 
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administration, any other process needed for the business but not directly 

related to the platform’s core modules. 

5) Statistics 

Module responsible for all the metric dashboards, reporting for all user 

levels, statistics regarding the AI performance when it is used by customers, 

statistics regarding the data used to train the AI engine. Typically, this 

module uses different business intelligence and advanced analytics 

engines, ingestion and ETL technologies and custom code for data 

manipulation and data visualization needs. 

Technical Approach  

 

The state of maturity of different fields of technology together, makes it possible 

for us today to be sure that the platform we seek to create is implementable, 

and not only that, but we have more than ten possibilities of providers in the 

cloud that we can evaluate. to select the technological partner on which to 

develop our solution. 

The technological fields to which we refer are: 

• Internet connectivity. 

• Cloud computing. 

• AI software as a service. 

Regarding this market, the Gartner Group refers to it as “Cloud AI Developer 

Services” and defines it as “cloud-hosted or containerized services/models that 

allow development teams and business users to leverage artificial intelligence 

(AI) models via APIs, software development kits (SDKs), or applications without 

requiring deep data science expertise.” (Groll, 2022) (24) 

In its latest edition of its classic "Magic Quadrant" market analysis, we see 

which technology providers participate in this market and what level of maturity 

/ execution capacity Gartner Group assigns to each of them: 
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The magic quadrant shows us that there are at least 13 cloud technology 

providers in the market today that we can evaluate for the development of our 

platform. In the upper right quadrant appear the best qualified, those providers 

whose solutions have the highest ability to execute combined with a high 

degree of maturity, in the same are the large global computer companies of 

today IBM, Microsoft, Amazon Web Services and Google, about them the 

report says “Leaders have robust offerings in all three key service areas: 

language, vision and autoML. Their services are API-accessible and do not 

require developers to have data science expertise. Leaders also have ancillary 

services that support or enhance the capabilities of their core services. Leaders 

serve multiple geographies and support multiple languages.” 

Hiring any of these providers guarantees us that the solution has the latest 

technology, products that are in constant development and evolution, global 

technical support, the possibility of making commercial agreements tailored to 

our organization. 
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Some words about two of the software providers leaders IBM (the higher 

completeness of vision) and Microsoft (the higher Ability to execute), About IBM 

with its solution Watson, pioneer AI solution with more than 10 years in the 

market: “IBM Watson solutions come pre-integrated and pre-trained on a 

flexible information architecture optimized to accelerate production and 

deployment of AI. They’re designed to allow developers to build models and 

create applications to help business make more accurate predictions, automate 

processes, interact with users and customers, and augment expertise. 

Developer tools make it easy to incorporate conversation, language and search 

into applications. 

For example, ready-to-use Watson APIs for language, vision, speech and data 

such as Watson Discovery, a cognitive search and content analytics engine that 

extracts value from unstructured data and IBM Watson™ Knowledge Studio. 

Watson Discovery’s engine works easily with Watson Knowledge Studio – 

allowing users to integrate custom models suited to any industry. This provides 

flexibility to apply Discovery’s document-enhancing capabilities with domain 

specific information – drawing upon public data and proprietary data.” 

 

In the case of Microsoft: “Gartner believes that enterprise development teams 

will increasingly incorporate models built using AI and ML into applications. 

These services currently fall into three main functional areas: language, vision 

and automated machine learning (autoML). The language services include 

natural language understanding (NLU), conversational agent frameworks, text 

analytics, sentiment analysis and other capabilities. The vision services include 

image recognition, video content analysis and optical character recognition 

(OCR). The autoML services include automated tools that will let developers do 

data preparation, feature engineering, create models, deploy, monitor and 

manage models without having to learn data science.” Azure AI enables you to 

develop AI applications on your terms, apply AI responsibly, and deploy 

mission-critical AI solutions. 

(Gartner, 2021) (25) 

https://www.ibm.com/account/reg/us-en/signup?formid=urx-39230
https://www.ibm.com/cloud/watson-knowledge-studio
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If it were my responsibility to select the technological platform to develop this 

solution, I would recommend doing so on one of these four options within the 

leader’s quadrant, favoring the technological strength and maturity of the 

solutions over other providers that are still on the path of development of your 

solutions.  

Real cases today 

 

In the previous sections it has been mentioned that the level of maturity of 

various fields of technology makes it possible today to implement a platform 

with these characteristics. Next, I will present examples that are happening 

today from the digitalization of health in the case from Estonia to Silicon Valley 

startups that offer precisely the service that we are describing in this work: 

The Estonia’s digital health system 

 

Estonia is known for being the most digital country in the world, the government 

has been carrying out a digitization program for years of all aspects of society 

and government services. Within this initiative to deploy digital government 

solutions called e-services, the health area has been considered one of the 

highest priorities in implementing this type of service, as described by the 

official Estonian site www.e-estonia.com in its health section https://e-

estonia.com/solutions/healthcare/e-health-records/ patients, doctors, hospitals 

and the government itself benefit from having the information that the electronic 

health service delivers, from the point from the point of view of quick and 

accurate access to information as well as cost reduction.  

Each person in Estonia that has visited a doctor has an online e-Health record 

that can be tracked. Identified by the electronic ID-card, the health information 

is kept completely secure and at the same time accessible to authorized 

individuals. The use of KSI Blockchain technology in the system ensures data 

integrity and mitigates internal threats to the data. 
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The Electronic Health Record (e-Health Record) is a nationwide system that 

integrates data from Estonia’s different healthcare providers to create a 

common record that every patient can access online. 

Functioning very much like a centralized, national database, the e-Health 

Record actually retrieves data as necessary from various providers, who may 

be using different systems, and presents it in a standard format via the e-

Patient portal. A result is a powerful tool for doctors that allows them to access 

a patient’s records easily from a single electronic file. Doctors can read test 

results as they are entered, including image files such as X-rays even from 

remote hospitals. 

KSI Blockchain technology is used to ensure the integrity of retrieved electronic 

medical records as well as system access logs. 

With the implementation of the e-health system, the initial benefits mentioned 

are real and contribute to a better quality of life for the population, but 

additionally, other solutions have been built on the basis of this system, such as 

the e-Ambulance, is a quick-response solution that can detect and position an 

emergency phone call for the responding ambulance within 30 seconds and 

send the emergency ambulance to the point of need quickly. In an emergency 

situation, a doctor can use a patient’s ID code to read time-critical information, 

such as blood type, allergies, recent treatments, on-going medication, or 

pregnancy. 

Also, they are implemented the e-Prescription application, a centralized 

paperless system for issuing and handling medical prescriptions. When a 

doctor prescribes medicine using the system, he or she does so electronically, 

with the aid of an online form. At the pharmacy, all a patient needs to do is 

present an ID-card. The pharmacist then retrieves the patient’s information from 

the system and issues the medicine. 

So, here we have a real case where the combination of a successful digital 

transformation project combined with blockchain technology has delivered a 

complete solution of digital health that is happening today.  
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Examples of current companies working under this idea 

 

The “data commons” concept and the National Cancer Institute case: 

In his article “How Data Commons Can Support Open Science “Robert 

Grossman explains the concept of “data commons”, data commons are used by 

projects and communities to create open resources to accelerate the rate of 

discovery and increase the impact of the data they host. It is important to note 

that data commons are not designed for individual researchers working on an 

isolated projects to ignore FAIR principles and to dump their data to satisfy data 

management and data sharing requirements. 

More formally, data commons are software platforms that co-locate: 1) data, 2) 

cloud-based computing infrastructure, and 3) commonly used software 

applications, tools and services to create a resource for managing, analyzing 

and sharing data with a community.  

A good example of how data commons can support open science is the 

Genomic Data Commons (GDC) that was launched in 2016 by the National 

Cancer Institute (NCI). The GDC has over 2.7 PB of harmonized genomic and 

associated clinical data and is used by over 100,000 researchers each year. In 

an average month, 1–2 PB or more of data are downloaded or accessed from 

it. The GDC also interoperates with three cloud computing platforms: Broad’s 

FireCloud, the Seven Bridges Genomics Cancer Genomics Cloud, and ISB’s 

Cancer Genomics Cloud. 

The GDC supports an open data ecosystem that includes Jupyter notebooks, 

RStudio notebooks, and more specialized applications that access GDC data 

via the GDC API. The GDC saves the research community time and effort since 

research groups have access to harmonized data that have been curated with 

respect to a common data model and run with a set of common bioinformatics 

pipelines. By using a centralized cloud-based infrastructure, the GDC also 

reduces the total cost for the cancer researchers to work with large genomics 

data since each research group does not need to set up and operate their own 

large-scale computing infrastructure. 

(Grossman, 2019) (26) 

https://gdc.cancer.gov/
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So, in this example we can see that today we have the possibility to access big 

quantities of specialized data “as a service” taken advantage of some of the last 

tendencies in technology like, big data, cloud computing, fast internet access 

and APIs. 

Example of a startup that implemented this Platform idea 

 

A very interesting example of how some startups are beginning to produce 

platforms like we are describing in this chapter is “Arterys” (www.arterys.com) 

a startup based in San Francisco who offers different AI services to analyze 

diagnostic images. According to its web page: The Arterys platform extracts 

actionable insights from medical images to add clinical value, improve 

diagnostic decision making, efficiency and productivity. Arterys is the medical 

imaging AI platform allowing you to weave leading AI clinical applications 

directly into your existing PACS or EHR driven workflow to make it a natural 

extension of what you already do. Accessible anywhere from any validated 

device via the cloud for faster performance, ease of deployment with no PHI 

exchange and completely secure. Arterys is the market leader in bringing 

human and AI together to improve patient outcomes through precision medicine 

and insights not previously achievable. Physician experience is improved by 

automating findings and results – removing the tedium of radiology. 

One of the modules that is part of the platform is “Breast AI”, it has the objective 

of provide early detection of breast cancer, as the web site says “Breast AI 

provides innovative solutions for breast cancer detection, measure breast 

density and assess personalized risk that offer clinically proven benefits to 

clinicians and patients, and are designed to optimize efficiency, enhance the 

patient experience, and improve outcomes. Breast AI uses deep learning 

technology that is intended to be used concurrently by radiologists while 

reading digital breast tomosynthesis (DBT) exams. The algorithm detects soft 

tissue densities (masses, architectural distortions and asymmetries) and 

calcifications in 3D DBT slices. The suspicious areas that are detected and 

highlighted and the unique certainty of finding and case scores assist 

http://www.arterys.com/
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radiologists in identifying and assessing soft tissue densities and calcifications 

that may be confirmed or dismissed by the radiologist”  

A second example is a module called “Neuro AI” who allows “The Neuro AI 

platform is a vendor neutral comprehensive suite of clinically useful AI 

neuroimaging applications that provide physicians with fully automated, and 

easy-to-interpret customizable reporting -- facilitating fast and accurate 

diagnostic and treatment decisions for stroke, neurodegenerative disease, 

multiple sclerosis and brain tumor patients. The neuro oncology suite provides 

you with the tools to non-invasively distinguish tumor from pseudo-progression 

with >95% accuracy. IB Neuro offers the most robust algorithm to post-process 

your DSC perfusion MRI, IB DeltaT1 allows rapid and objective identification of 

TRUE enhancing regions in pre- and post-contrast T1 MRI. IB Diffusion 

calculates (ADC) maps, and other diffusion parameters and IB DCE for 

Automated generation of perfusion parameter maps (Ktrans, Vp) all with zero 

clicks.” 

Then, we can see that the idea of a platform dedicated to provide early 

diagnosis to different type of cancer with the objective of grow the success 

patient’s treatment is today a reality, a company (surely not the unique one) is 

providing the service thru the web, and although is incipient we are looking the 

birth of a new era in cancer detection. 

Non happy case 

 

Although throughout the previous chapters multiple success stories have been 

presented in the use of deep learning as a technological support to achieve 

early diagnoses and reduce the research cycle of new drugs against cancer, 

not all of them are success stories in the application of these new technologies 

in this field. It should not remain in the reader's mind that the implementation 

and training process of an AI engine in a field as sensitive as the one we are 

studying is a simple task or that it can be done with "out of the box" software 

from minimal settings. Next, I will summarize the case of the “Oncology Expert 
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Advisor (OEA)” project developed by the MD Anderson Cancer Center 

(MDACC) in the USA. 

The MADACC: 

Founded at the University of Texas in 1941, MDACC was the first 

comprehensive cancer hospital to affiliate with a major university and was 

considered one of the most prominent cancer centers in the world. MDACC’s 

mission was to uncover knowledge and share discoveries about cancer 

research throughout the world, eventually eradicating cancer altogether. In 

2014, MDACC employed more than 20,000 people and treated 127,000 

patients. In 2016, MDACC’s total revenue was more than $4.4 billion. Some of 

the MDACC big contributions to the science were, the development of the first 

affordable radiotherapy machine in the 1960s, the beginning of use combination 

chemotherapy to treat adult cancers, by the 2000s, MDACC had become 

known as a vanguard trial site for smart drugs that were able to target cancer 

cells at the molecular level. 

The technology partner, IBM Watson 

Since 2000s, IBM researcher had been searching for a major project that could 

also reveal new business opportunities. Following its groundbreaking innovation 

with Deep Blue, the computer that beat the chess champion Garry Kasparov in 

1997, the research team was looking for challenges that had the potential to 

garner wide media attention. The team landed on the TV Q&A show Jeopardy, 

which would require rapid technology development in the field of Q&A. Over the 

next three years, IBM’s team constructed the foundational architectures of the 

AI product Watson, called “DeepQA”. At that time, computers were 

exceptionally good at making calculations but struggled with tasks such as 

interpreting human language, so IBM’s research team implemented new ways 

of processing texts and contextual information implementing new algorithms for 

parsing, question classification, question decomposition, automatic source 

acquisition and evaluation, entity and relation detection, logical form generation 

and knowledge representation and reasoning obtaining the base of the new AI 
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product called “Watson”. IBM research’s core algorithmic team of 20 

researchers spent nearly three years testing and tweaking the technology and 

eventually overhauled everything about their original Q&A architecture. By 

2011, Watson had played over 100 rounds of Jeopardy against past winners 

but shocked the world after besting two grand champions in a $1 million match. 

In August 2011, IBM believed it could leverage Watson’s advanced Q&A 

capabilities to assist healthcare professionals in decision-making, in three 

months 107 new staffers who specialized in NLP and ML joined the effort. By 

2012, IBM had already begun piloting Watson with two healthcare organization, 

one of them an competitor of MDACC for which Watson helped choose the best 

therapy options for cancer patients. 

The OEA Project  

In early 2012 some University of Texas senior officials began to discuss 

whether MDACC should engage IBM’s Watson unit in a partnership to study 

how they could apply cloud computing technology to increase cancer care 

quality and access. MDACC’s goal was to help researchers make new 

discoveries in cancer diagnosis, care, and treatment process as well as to 

recognize and avoid adverse events throughout the care continuum. On 

June 2012 MDACC and IBM agreed to explore ways to pilot Watson technology 

at MDACC. By October 2012, MDACC and IBM began developing a plan to 

build a tool based on Watson. The MDACC team hoped the OEA would assist 

doctors worldwide with cancer diagnosis and treatment recommendations. If 

everything went according to plan, even cancer patients in rural communities 

would have access to world-class cancer expertise and the latest research. For 

example, a physician without direct access to a leukemia expert would be able 

to insert a patient’s data into the OEA and receive personalized advice as if 

they were consulting with a human expert who had also recently reviewed 

millions of the latest papers on leukemia and recalled every important detail. In 

October 2013, MDACC revealed that it had collaborated with IBM to build the 

OEA.     
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Project Achievements  

The team programmed the OEA with a knowledge base of over 23 million 

summaries from medical journals and MDACC’s internal HER. They also 

loaded a training set into the OEA, preparing it to identify and diagnose a select 

number of conditions and treatment options. After a physician submitted a case 

to the OEA, ML algorithms examined its knowledge base to build a profile of a 

patient’s medical history and make recommendations for treatment or clinical 

trials. In October 2014, the system had ingested data from 10.000 leukemia 

patients, including additional medical research on the subjected, however the 

team leader considered that more data from sources around the world would be 

needed to advance the OEA’s knowledge. In December 2014, he requested an 

additional budget to support the project and start an expansion to begin 

developing a tool for lung cancer.   By the end of 2015, and after apply several 

modifications, the OEA’s matching performance for approved therapy options 

improved to 99,9% recall and 88% precision. Additionally, the OEA’s clinical 

trial screening boasted a recall and precision of 97,9% and 96,9%.  

Problems and risks. 

In October 2012, MDACC launched the “Adaptive Patient-Oriented Longitudinal 

Learning and Optimization” (APOLLO) program, which aimed to centralize the 

center’s medical data, make workflows more efficient, and build a standard 

process for collecting patient history. To advance this strategy, MDACC also 

began scouting for a new EHR system. Officials thought a new system would 

better integrate their patient data in to their clinical practice, leading to better 

patient outcomes.  By May 2016, the new EHR system rollout was completed, 

and the OEA could no longer interpret data from the MDACC’s patient records, 

so the team has to invest time in remapping the OEA to the new EHR. 

Many doctors were unsure about using AI to aid physicians in a clinical setting. 

The implementation of technology like the OEA represented a paradigm shift in 
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medical care in MDACC, success for team require changing existing workflows, 

learning strategies for clinicians, and adopting new behaviors in clinical tasks.  

MDACC had not also tested the OEA outside of their own facilities, making it 

impossible to generalize the results of the controlled introduction to a broader 

audience.  

Integrating and developing the OEA into the MDACC’s clinical process was 

already costly, by 2016 the MDACC has expended more than u$s 62.000.000 

in the OEA project and the result is an application that they just can use for 

leukemia and some lung cancer cases, with the concern about the chance of 

use the solution in other medical centers. The next picture shows the OEA 

project financials chart: 

 

 
 

Some lessons about this non happy case: 

MDACC's decision to start a project along the lines of the OEA was reasonable 

on the grounds that the medical center has 70 years of experience in cancer 
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treatment and research, possesses vast amounts of data, patient medical 

records, and literature on cancer. topic, AI was at the time an accessible 

technology for large organizations, so as an idea it had a reasonable basis. By 

the beginning of 2012, choosing IBM as a technology partner was a natural 

decision since, of the technology giants, it was the most advanced company in 

this field due to the success demonstrated with DeepBlue and DeepQA. 

We can cite the following points as risks that led to the project in mid-2016 

being far from the company's expectations: 

Watson was very successful in Q&A but for health scenarios it was still in the 

experimental phase, in fact Watson for health as a product was partly 

developed in conjunction with the MDACC in this project, so we can conclude 

that the state of maturity was initial at that moment. 

The medical center makes a strategic mistake by launching the OAS project 

and the APOLLO project at the same time, since the AI engine needs data as 

its fuel, changing the transactional system that provides the data from the 

medical records of the patients to the AI without having made an adequate 

integration (in light of the results at the time of implementing the APOLLO 

project) was a mishandled risk. 

Financially, with more than u$s62.000.000 invested on the project just to have a 
solution that works with two types of cancer and, its applicability is only within 
the MDACC, creates a very bleak scenario for the MDACC board. 

(IBM Watson at MD Anderson Cancer Center, 2021) (27) 

Therefore, it is in my interest to clarify with this case that not all AI 

implementations in fields as sensitive as cancer diagnosis lead to success 

stories, risks and context conditions must be considered and handled 

appropriately as in any other technology project in order to reach a satisfactory 

end. 
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Conclusions 
 

In this paper we have reviewed the state of progress and maturity of artificial 

intelligence in today's world, as it is present in topics as diverse as virtual 

assistants, autonomous cars or search and recommendation engines. In 

particular, the technology called "deep learning", a subset of machine learning 

oriented to the processing of images and unstructured information, has made it 

possible, since its widespread use in software platforms and cloud computing 

providers, to tackle a previously impossible approach in the fight against 

cancer, the massive analysis of diagnostic images, laboratory data and medical 

literature to train AI applications to help health professionals in the early 

diagnosis of the disease, thus increasing the possibility of successful treatment. 

But it is not only about the technological development of artificial intelligence, 

other factors in parallel have contributed so that together these solutions can be 

a reality, we can mention the massive deployment of the Internet to practically 

the whole world, the massification of diagnostic devices such as being magnetic 

resonators, tomographers and X-ray devices, cloud computing and the platform 

economy all at the same time means that for the first time in history there is the 

possibility of developing applications of these characteristics and having the 

information to run them in a successful way. 

The six types of cancer that we have presented in chapter IV (cervical, brain, 

prostate, breast, lung and skin) added to the case of histopathological diagnosis 

and a brief example applied to research on COVID-19, show that it is not about 

an isolated case but rather it is a technological approach of increasing 

applicability and that is beginning to be used in treatment centers in different 

parts of the world. 

In the development of chapters IV and V we have stated that, in fact, there are 

three key areas where AI can play a role in addressing cancer. Firstly, AI 

enables an early diagnosis through diagnostic images analysis.  
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Secondly, AI and deep learning can be used for personalized treatment and 

medicines by making use of the patient’s electronic health records, data from 

sensors and wearables. By using medical history and the characteristics of the 

tumor, AI has the potential to come up with multiple treatment options for 

patients. The Natural Language Processing techniques based on AI have 

shown potential in predicting the development of diseases across healthcare 

systems.  

Thirdly, AI can be used in drug development and clinical trial designs. There are 

multiple stages of drug discovery and AI can be used in new drug discovery by 

designing protein structures, target validation and managing drug trials. It is 

expected that with the introduction of AI, not only will the costs of drugs reduce, 

but it will also enhance the drug discovery process, which currently takes as 

long as 10-15 years. 

Related to business aspects, we can say that platform like that we described in 

chapter VI could deliver a set on services to different communities, like: 

Data ingestion service: Service dedicated to capture the data (images, test 

results, medical literature) that could be a source of money for medical centers, 

diagnosis centers, research centers and individual doctors.  

Diagnosis validation service: service dedicated to validate the patient tests 

results in an early way giving to the doctor a suggested opinion about the 

patient’s possibility to develop cancer and suggestions of treatments. This 

service is the main platform’s income source. 

Drugs research service: Service dedicated to assist researchers and 

investigation laboratories in the drugs development process. This service is the 

secondary platform’s income source.   

Statistics service: Service dedicated to provide statistics about cancer based 

on the data accumulated by the platform and the capacity of the AI engine to do 
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different types of calculus, projections and statistics. This service is a 

secondary platform’s source of income. 

All with the objective od accomplish with the platform’s value proposition "to 

unite producers of medical diagnostic images, diagnostic labs results and 

medical literature with health professionals who wish to validate the tests 

performed on a patient in order to detect possible forms of cancer early and act 

accordingly to prevent cancer disease development”. 

In economic aspects, we saw that the development of the platform requires a 

big investment, that could be done by international health organizations like 

WHO, PAHO in a first stage and then continue with investment rounds up to the 

third year where the projections shows that revenues start to grow. 

So, in base to this work’s investigation question “Can the application of AI, in 

particular deep learning models, help reduce deaths from certain types of 

cancer?” we can conclude that taking into account that is incipient, we are able 

to say that with the multiple technological advances that are happening in 

parallel for a few years, the path of the delivery of AI on this area will contribute 

to a continuous decline in the percentage of deaths caused by cancer in the 

next years. 

Expectations to 3 - 5 years. 

Since the technological advances that make AI possible, helping to reduce 

cancer deaths, are recent, but already mature, we can say that the near 

future will show a massification of this trend. The factors that support this 

trend are the following: 

• The evolution of communications with the implementation of 5G networks 

whose main benefits with respect to current data networks are tailored to the 

platforms we propose for the AI solution, namely: 

➢ An excellent network speed estimated between 15 and 20 

gigabytes per second. 
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➢ A lower latency that can reach a millisecond. The goal of 

immediacy is much easier to achieve. 

➢ Greater network security. It is easier to control all access to 

the network and receive real-time warning of any threat. 

➢ The connection of multiple devices without alterations in 

connection speed. 

➢ A higher bandwidth that allows not only to receive 

information, but also to send it correctly. 

➢ Facilitates the use of robotics, virtual reality, artificial 

intelligence and the Internet of Things. 

➢ It favors the automation of processes and allows each 

employee's working day to be streamlined without wasting 

time. 

➢ The conversion is much simpler, since the client will hardly 

need help to know how to acquire a product or service 

given the speed of response of the corresponding website. 

➢ Energy consumption will drop by around 90%, an important 

factor to save on monthly expenses. 

 
• The continuous massification of imaging and ray diagnostic equipment, 

whose new generations are digital equipment connected to networks and 

the Internet and are the main providers of data for the AI engine. 

• The digitization of medicine that we are already seeing today, as in the 

Estonian e-health case presented, will continue to expand to more 

countries and regions, enabling electronic health record systems to be 

integrated with the AI platform required your data, either on an ad hoc 

basis as a service or permanently as part of a common solution. 

• The irreversible trend of moving corporate systems and developing new 

projects in the cloud that companies of all sizes and sectors are carrying 

out and that will make the cloud the natural environment for deploying 

complex software and service solutions, given its State-of-the-art 

Software as a Service, automatic horizontal and vertical scalability, and 

pay-per-use scheme, among other benefits of cloud computing. 
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• The permanent development and evolution of AI, which has already 

reached a point of massification such that the technology giants offer 

lines of products and services of ML, DL, NLP, specific programming 

languages, development frameworks and vertical applications based on 

in AI such as Watson for Health, Watson for financials, Watson for 

customer service etc. Also, companies focused on AI have emerged that 

provide AI services and products as a core business, with which the AI 

offer in the market is more than ample to absorb the growing market 

demand. At the same time, university careers, technical specializations 

and courses have emerged to train professionals who can dedicate 

themselves to a market that is increasingly in demand. 

Therefore, we can conclude that based on what has been developed today and 

is being used in AI systems dedicated to early diagnosis of cancer and in the 

development of new drugs, added to the advances that we detail, there will be 

in the next 5 years is when humanity has begun the path that will allow it to 

lower cancer mortality in the short term and have real chances of reaching a 

cure in the next 20 to 30 years.  
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