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Abstract 

This paper looks at the dynamic management of risk in an economy 
with discrete t ime consumption and endowments and continuous trad
ing. I study how agents in such an economy deal with ali the risk in 
the economy and attain their Pareto optima! allocations by trading in 
a few natural securities: prívate insurance contracts and a common set 
of derivatives on the aggregate endowment. The parsimonious nature 
of the implied securities needed for Pareto optimality suggests that in 
such contexts complete markets is a very reasonable assurnption. 

Keywords: risk-sharing, insurance, hedging, point-processes, complete 
markeLs, general equilibrium 
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1 Introduction 

In January 1994 an earthquake of magnitude 6.7 shook Northridge, an urban 
neighborhood of Los Angeles, causing over 13 billion dollars in damage. The 
Northridge earthquake is one of a number of natural catastrophes to have 
hit the U.S. in the recent past; many more will surely occur in the near 
future. The risk presented by such phenomena has been analyzed from two 
different perspectives: insurance and finance. I propose to construct a model 
that allows me to combine both perspectives and better understand what it 
takes to manage risks dynamically and how plausible it is for markets to be 
complete. 

From the insurance perspective, the main risk from an earthquake is that, 
given any fixed insurance premium, actual fluctuations in claims will at sorne 
point exceed the amount collected from the premia. From Malinvaud (1972, 
1973), a significant part of the literature on insurance has dealt with how do 
insurance markets work despite this risk. Malinvaud showed that this risk is 
minimized in industries where there are a very large number of independenL 
individual risks and where, as we know from the Law of Large Numbers 
(LLN), actual claims will differ very little from expected claims. Natural 
disasters pose a challenge because the individual risks being covered are 
intrinsically not independent. This problem is noL exclusive to caLastrophic 
insurance but is a generic property of economic situations in which there 
is a substanLial component of risk in the aggregaLe. Cass, Chilchininsky, 
and Wu (1996) proposed a way to <leal wiLh this risk by having additional 
securities to <leal with the aggregate component of risk as well as private 
insurance contracts. Ellickson and Penalva (1997) deal with this by allowing 
the possibility that accidents happen gradually as part of a process that 
unfolds over time. 

The second approach is the finance perspective. From this perspective 
the risk posed by natural catastrophes is just another risk which appropri
ately securitized and traded can be dealL with through optima! portfolio 
diversification, as we know from Markowitz (1952) and the literature on 
the Capital Asset Pricing Model (CAPM, Breeden (1979), Duffie and Zame 
(1989)) . From this perspective, earthquake risk is in no way different from 
the risk of biotechnological innovation or movie-making: it is just an un
likely event with a very high (or low) possible payoff. As such, it can easily 
be incorporated as a small proportion of a well diversified portfolio. The key 
aspect from the finance point of view is that there be enough securit1es to 
deal with all t,he possible risks, i.e. markets are complete (Duffie and Huang 
(1985), Duffie and Zame (1989)). 
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The approach I take in this paper builds on the insurance approach of 
Cass, Chilchininski, and Wu, and of Ellickson and Penalva that looks at 
the origin of the risk and its role at the level of the individual to extend 
the results of the optimal risk sharing literature (Wilson, Diamond, Mace, 
and Townsend) in the context of a continuous trading economy as in Duflie 
and Zame. The main resulL is a very parsimonious description of optimal 
trading behaviour, suggesting that markets will be complete. 

2 The Framework 

In this section I will describe the main elements that define the framework 
and introduce the econornic prirnitives and necessary notation that I will 
use later to study how agents use markets to share risks. 

2.1 Hybrid Time 

I model time on Lwo scales, a discrete one for consumption and a continuous 
one for security trading. This approach combines the benefits of existing con
tinuous Lime and discrete time models in a single framework, while avoiding 
sorne of Lhe problems with modeling time either as continuous oras discrete. 

The approach I propose is a generalization of the framework first used to 
sLudy continuous pricing and trading (see the survey by MerLon [1990]) . The 
framework they used is to have time defined overa finite interval. Consump
Lion and endowments would take place at two discrete dates, the beginning 
(call it date O) and the end of the period (date T), and security trading and 
pricing took place at any date within the period. These models describe 
uncertainty as a stochastic process on the interval between O and T. The 
great advantage of these models is that uncertainty is revealed gradually. 
Th.is implies that agents can manage a great <leal of uncertainty if they are 
allowed to trade often even if it is in a finite number of securities. Also, 
such models will have a Walrasian equilibriwn and the equilibrium can be 
implemented as a security market equilibrium. This is because of the special 
properties of the VonNeumann-Morgenstern expected utility representation 
of preferences. On the practical side, these models have been very useful for 
pricing stocks and financial derivatives, such as options, which are traded 
continuously in the stock exchange. 

The two date consumption model cannot be used to study dynarnic 
econornies. Among other things, such models are insufficient for the study 
of the term structure of interest rates. A solution is to allow agents to 
have endowments and consume at intermediate dates. New models were 
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introduced in which agents had endowments and could consume at every 
intermed.iate date. These models have been extensively studied and used. 
But introducing consumption and endowments over continuous time poses 
serious problems for implementalions, both in terms of the right preferences 
to use and the interpretation of endowments as flows of commodities that 
are totally ephemeral: commod.ities only exist during the instant in time at 
which they arrive in the economy. 

These problems do not arise in models that describe time using a d.is
crete scale. It is very easy to write down preferences for d.iscrete time models 
which are relatively easy to work with and their welfare properties are well
understood. Also, endowments and cornmod.ities are very easy to interpret 
using existing data. These advantages explain why discrete time models are 
used to study many aspects of dynamic economies: growth, unemployment, 
inveslmenl, inflation, .. . IL is fair Lo say thal di serete models are the main 
ingred.ient of down-to-earth applied work in economics. Unfortunately, it is 
very d.iflicult to use Lhese d.iscrete time models to study pricing and trad
ing in financia! markets Lhat are continuously open. Also, agents lack the 
trading opportunities available with continuous time models and hence the 
assumplion of complete markets is hard to juslify. 

In this paper I propose a particular way to combine d.iscrete time with 
conlinuous time finance in a coherenl way and in a way that takes advan
tage of the benefits of both continuous time finance models and d.iscrele time 
economic ones. The key is to take advantage of the separation of the op
Limal consumption problem and the wealth allocation problem. With this, 
the economy can be defined on two time scales. The optima! consumption 
problem is defined in d.iscrete time (via preferences and consumption com
mod.ities) and agents make their wealth allocation decisions in continuous 
time, via securily markets that are open between consumption dates. 

2.2 Marked Point Processes 

The second main element I propose to use is Marked Point Processes (MPPs). 
MPPs have been substantially used in the finance literature to describe the 
dynamics of security prices and d.ividend process. I propose to use it as 
the way to model the fundamental, underlying uncertainty in the economy. 
Because security prices will reflect that uncertainty, their dynamics will be 
determined by the properties of the underlying MPP, but they will also be 
affected by economic considerations. This approach follows the tradi tion of 
the general equilibrium treatment of asset prices, and departs from the more 
pure mathemalical approaches that take prices and price dynamics as given. 
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As I have described in the introduction, the discrete nature of the pro
cesses I wish to study requires a different mathematical representation than 
the more usual Brownian Motion. That is why I use MPPs. MPPs are 
continuously revealing information but they differ from Brownian motion in 
that for the most part the information being revealed is of the form: 'nothing 
new has happened'. MPPs have already been used in finance (Aase(l993], 
Cox and Ross(1976], Merton(l990]) but the approach I take is slightly dif
ferent in that instead of assuming that prices or dividends follow a marked 
point process, I will assume that MPPs describe the primitive uncertainty 
in the economy. The reason I wish to focus on MPPs is two-fold: they are 
more practical and they are a better description of the kinds of shocks we 
observe in real economies. 

MPPs are a generalization of Poisson processes. The classic example is 
the arrival of customers to a bank teller's window. A customer can arrive 
at the window at any point in time. Those random times are described by 
a Poisson process. MPPs behave in much the same way, but they gener
alize Poisson in two ways: first, the arrival rate does not have to be Lime
independent, so that at any given time the probability of an arrival over the 
next time interval can depend on what has happened up until the time of the 
arrival; and second, MPPs allows coding additional information about the 
arrival, such as whether the customer wants to make a deposit, withdraw 
cash, open a new account, etc. The arrival times are called jump times and 
the additional information describing an arrival time is called the mark of 
the jump. 

These properties of MPPs make them ideally suited for dealing with the 
kind of information arrival needed in practica! economic applications. The 
main examples I will be working with in this paper are insurance markets. 
In such a context, the kind of information described by an MPP is the oc
currence of an accident: a car accident, the diagnosis of a malignant tumor, 
an earthquake. In other contexts, the MPP can describe the discovery of a 
new technology, the destruction of a harvest by a particularly strong storm, 
changes in tax laws, the announcement of an interest rate increase, etc. 
The uncertainty surrounding these kinds of applications is particularly well 
suited to MPPs. 

Also, MPPs are easier to work with than difussion processes like Brow
nian Motion. The stochastic calculus of MPPs uses standard Lebesgue
Stieltjes integration, and the paths followed by an MPP have very intuitive 
descriptions: the path of a marked point process is entirely described by a 
list of the times at which a jump took place and the type of jump that took 
place. 
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MPPs combined with hybrid time provide the essential elements with 
which to construct a theoretical framework that is both general and application

friendly. 

2.3 The Economic Primitives 

In this section I will present the formal description of the framework. It con
sists of a dynamic exchange economy with uncertainty, a single commodity1 

at each date-event, and a finite number of agents. 

Assumption 1 Nis a MPP, where 

is a vector of counting Junctions, Nk(t) , describes the number of jumps of 
type k that have taken place up to and including time t ET:= (O, T] (T can 
be either finite or infinite). N admits a bounded intensity, A. Let O be the 
space of all possible paths of the MPP N. N describes a filtration on O, 

F := (Ft)tcT, 

where2 Ft := a(N(s), s :s; t), and F = UteTFt- Let I' a probability measure 
on (O, F). The fundamental uncertainty in the economy is described by 
(O, F, I', F). 

This assumption describes the kind of uncertainty facing the economy. 
The main things to note are: 

• Uncertainty is exogenous. This assumption is quite restrictive but is 
the necessary starting point. It precludes problems that involve moral 
hazard and adverse selection, but such issues are diffi.cult for general 
equilibriurn frameworks more generally. 

• By assuming that N admits an intensity, I am limiting the rate at 
which accidents can take place. The very notion of a rate is intimately 
linked to the intensi ty ( see Bremaud( 1981]). 

• A bounded intensity means that accidents are spread out over [O, T]. 
This ensures that with probability one, the nurnber of jurnps in any 
fi.nite time interval will be finite. 

1The framework has been extended tu deal with any finite number of commodities -
see Penal va[ 1997]. 

2a(x(s), s ~ t) denotes the a-algebra generated by the process x(t) up to and including 
time t . 
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The following definition will be useful later. Denote 

as the canonical martingales3 • A process x(t) is a martingale with respect to 
measure P and filtration (Ft)s~O, if it is measurable with respect of (Ft)s~t, 
Ep[lx(t)I] < oo for ali t, and for all s s; t, Ep [x(t)IFs] = x(s). M1;(t) is a 
P-martingale and the M1;'s forma basis for the space of P-martingales4

• 

Assumption 2 The commodity space, L, is the space of absol·utely bounded 
real-valuedfunctioni' on OxT, measurable on.Ft far allt ET:= {O, 1, .. . , T}, 
the index set of consumption dates 

L := L00(0)T = {x I x: D X T-+ R, x(t) E Ft, bounded \ft ET} . 

The dual of L {the space of prices} is denoted U := L1(f2)T as I use the 
Mackey topology. 

The MPP enters the description of the economy in Lhe definition of the 
commodity space, by making commodities be functions from the probability 
space. Also the information revealed by the MPP affects the commodity 
space because commodities at daLe t E T have to be rneasurable with respect 
to the filtration generated by N up to t, .Ft, 

Assumption 3 There are n < oo agents indexed by i E I := {l, 2, ... , n}. 
Each agent is described by a consumption set, Xi = L+, an endowment, 
wi EL+, and VonNeuman-Morgenstern preferences of the form 

Ui(x) = ¿ ,Bf Ep[u;(x(t) )], 
tET 

where u;(x) is a monotone increasing, concave real-valued function. Denote 
the aggregate endowment by w = LiEI Wi. w > O P-a.s. 

3In general, Mk(t) would be local martingales but they will be martingales for processes 
that admita locally bounded intensity. 

~ A set of martingales forros a martingale basis if the space of ali linear combinations 
of the rnartingales in the set is the space of ali rnartingales. See Brernaud[l98ll or Last 
and Brandt[1995l and the Appendix for more formal definitions and the corresponding 
rnartingale representati.on theorems. 

5 Naturally, I identify functions as being equal up to sets of measure zero, P a.s. 
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Note that I am assuming agents have common priors. This assumption 
will be important in section 4. The assumptions on endowments, consump
tion sets and preferences are quite standard. 

This economy is completely described by e := (L, (Ui, wi)iEI ). e is a 
very simple, and well-behaved economy as we will see in the next section. • 

3 Existence of Equilibrium 

This section looks at the welfare properties of the economy and establishes 
that a Walrasian equilibrium can be implemented as a Radner equilibrium. 
Th.is is essential because it provides the link between Walrasian equilibrium 
anda Radner equilibrium. In particular, it will characterize security prices 
and trading which I need to establish the relationship between risk sharing 
agreements in the Walrasian equilibrium and Lhe way agents trade in a 
securiLy markets equilibrium to implement those agreemenLs. 

The discrete time economy has very well-understood properties, in par
ticular, the two fundamental theorems of welfare economics hold and an 
equilibrium exists. But what is most interesting from the point of view of 
down-to-earth applications is the relationship between the results for the 
state-contingent commodity economy and the one with financial markets. I 
will show thaL any Walrasian equilibrium of Lhe state-contingent commod.iLy 
Lrading economy can be implemented as a security trad.ing equilibrium. For 
this I adapt the result in Duffie and Huang[1985] to deal with intermed.iate 
consumption in the hybrid Lime framework. 

3.1 Arrow-Debreu Equilibrium 

When seUing up a general modeling framework as I propose to do here, 
one wants to ensure that the framework has certain properties. Key prop
erties are whether the two fundamental theorems of welfare economics hold, 
i.e., whether an equilibrium is Pareto optimal, whether a Pareto optimal 
allocation can be decentralized as an equilibrium, and whether a Walrasian 
equilibrium exists. These properties are generally well-unders tood but we 
will need to refer to them when analyzing the economy with financial mar
kets. 

A Walrasian equilibrium is an allocation of resources and a price for 
commodities such that each agent is assigned an allocation in her budget 
constraint such that she cannot be better off by add.itional trading. Such 
allocations are limited in that they cannot exhaust available resources. This 
is defined formally as 
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Definition 1 An allocation, x = (x1, ... , xn) is a.tta.ina.ble if Xi E Xi far 
all i E I and LiE I Xi ::; w. Denote the set of all attainable allocations by Z. 

With this one can define a Walrasian equilibrium 

Definition 2 A n allocation x and a price vector p E L • define a Wa.lrasia.n 
Equilibrium if p · w =f. O, x is attainable, far all i E I, p · xi ::; p · wi, and 
p · x~ > p · Wi far all x~ such that Ui(xD > Ui(xi)-

The two welfare theorems for the state-contingent commodity economy 
follow from the standard result (the first welfare theorem) and from a the
orem in Bewley[l972] (the second welfare theorem)6 . Also, the Bewley's 
theorem ensures that a Walrasian equilibrium exists. 

3.2 Radner Equilibrium 

In general, state-contingent commodity markets are not observed in the real 
world. The main motivation for this framework is its value for down-to-earth 
applications. What we do observe are markets with financia! sectors that 
trade in securities so it is important to know whether the welfare implications 
of the state-contingent commodity trading economy carry over to financia! 
markeLs. In particular, one would like that the Walrasian equilib1ium, whose 
existence and welfare properties we looked at in the previous section, can be 
implemented as an equilibrium in security trading. The appropriate notion 
of equilibrium is that of Radner[l972]: an allocation together with security 
trades for each agent, such that the trades are feasible and they, together 
with the allocations, satisfy the agents dynamic budget constraints. Also, 
agents cannot improve their alloca.tions by changing their trades in securities 
at any time given securi ty and spot~ commodity prices. 

3.2.1 Security Markets 

In order to study security markets I need to define what a security is and 
what do I mean by trading in security markets. 

Securities When one thinks of a security it is usually in the form of a 
sLock: a claim on a firm's assets that receives dividends on a regular basis 
(quarterly, biannually, or annually) which depend on the firm's performance. 
If the firm is doing well it will pay a higher dividend, if not a lower, maybe 
a zero dividend. And when one thinks of trading in a financia! market, the 

6For more details see Mas-Collel and Zame[1991]. 
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stock market comes to rnind, where these stocks (claims to future dividends) 
are exchanged at sorne mutually agreed price. The idea behind stocks can 
be generalized to model ali kinds of financia! contracts: 

Definition 3 A security is a promise to deliver a fixed, possibly mndom, 
quantity of real commodities at dates t E T. Securities are indexed by j E 

:r := {l, ... , J}. dj(t) E :Ft is a mndom variable representing the dividends 
paid by security j at date t ET and dj(O) = O. 

This abstract definition is broad enough to cover ali financia! instru
ments 7 : stocks, bonds, options, futures, etc. It also covers insurance con
tracts, for what are insurance contracts but 

an exchange of money now for money payable contingent on 
the occurrence of certain events. (Arrow[l 984]) 

Hence I will refer to the securities in the context of insurance markets as 
insurance contracts, where an insurance contract is a claim on commodities 
at certain dates contingent on the occurrence of certain events. 

'lrading Trading of stocks takes place in stock exchanges and are de
scribed in terms of units of stocks involved in an exchange. In this frame
work I wish to allow agents to trade freely at any date, even at times for 
which no commodities are defined - in between consumption dates. This is 
quite standard in finance models and is usually modeled by describing stock 
holdings as a function of time: 0; : n x T-+ R, where 0}(t) is a random 
variable representing the number of shares of security j held by agent i at 
date t E T := [O, T] (where trading is the change in stock holdings). But 
describing trades just as a stochastic process is not enough to accurately 
characterize stock holdings: 

Definition 4 The set of feasible tmding stmtegies, 8, is the set of P -locally 
integrable, predictable pmcesses on F, such that their discounted value at any 
date t is ft,nite. 

This defines trading as dynarnic plans that imply stock holdings ( 0 E 8) 
that do not anticípate future news (are predictable and measurable with 
respect to F) and that do not create money from nothing (are P-locally 

7
Note that the securities I will be using in thls paper are securities written on exogenous 

events. Many financia! instrnments traded in stock markets are written in a way that 
depends al.so on prices. Such securities can be included and be priced as redundant 
securities once a complete markets equilibrium has been established . 
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integrnble and have finite discounted value). The discounted value of a 
portfolio between consumption dates is the stochastic integral of the trading 
process with respect to the discounted gains process: 

V(s) = V(t) + ¡s O(u) dG*(u), t ::,; s < t + 1, t ET, 

where V(t) is Lhe initial value of the portfolio at date t, and G•(s) is a 
stochastic process representing the discounted gains from the security (the 
price plus the accumulated dividends) at date s . The combination of allow
ing stock holdings to be locally integrable and have finite value in discounLed 
terms strikes a balance between allowing agents enough flexibility to attain 
consumptions that may require trades bounded away from zero into the 
infinite horizon, while ruling out money-making strategies such as Ponzi 
schemes. 

3 .2.2 Security Pricing 

Having defined the main elemenLs of securiLy markets, I wish Lo look at 
how securities would fare within the state-contingent comrnodity market 
of Lhe previous section. This will give us an idea of how security markeLs 
and state contingent commodity markets are related, and start us on how 
and if a Walrasian equilibrium can be implemenLed as a security markeL 
equilibrium8 . 

The first result I need is that the state-contingent value of a security's 
dividends can be expressed as the expected discounted value of the divi
dends. This involves a change of probability measure (from P to Q, where 
Q is called the martingale measure). The new measure, Q, will turn out to 
be very important when it comes to proving that a Walrasian equilibrium 
can be implemented as a security market equilibrium. Nevertheless, this 
result is of interest in itself as it relates two important notions: one is the 
intuitive economic notion of pricing an investment today as the expected dis
counLed value of its future returns, and the other, the price of those returns 
in the context of a global economy-wide equilibrium. 

Theorem 1 Given any 1r > O, there exists a measure Q and an interest 
rate process, r(t), t ET, such that 

p · d = I: Eq [d*(t)], (1) 
tET 

8 Here I am following the approach in Ellickson and Penalva[l997] . 
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where d•(t) denotes the discounted dividend 

d•(t) = t d(t) . 
IL=1 l +r(s) 

Proof: I will proceed by constructing Q and r and showing that Q is a 
probability measure and that Equation (1) holds. 

First, note that L* = L1, and hence p E L• can be represented by a 
vector of random variables, 7r(t) E :Ft such that Ep(7r(t)] < oo, and for all 
X EL, 

p · x = ¿ Ep[7r(t)x(t)]. 
tET 

Define the interest rate process r(t) as 

7r(t- 1) 
l + r(t) = Ep[7r(t)IFt-il, Vt E { 1, 2, ... , T} 

As 7l' > O, r(t) is well-defined. ConsLruct the martingale measure using Lhe 
functions <; : T X n --+ R, z ; T X n --+ R 

z(t,w) = 
7r(t,w) 

VtE{l,2, ... ,T} 

,;(t,w) = f1!=1 z(s,w) 

LeL ,;(O) = z(O) = l. ,;(t) defines Lhe Iladon-Nikodym derivative of an 
absolutely continuous measure Q(t) with respect to P on the filtration :Ft, 
For any event A E :Ft 
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By repeatedly conditioning on :Fs, s = t -2, ... , 1, O, inside Ep[·I, we obtain 
Q(t,n) = 1. 

As the Q(t)s are consistent, by the Kolmogorov Extension Theorem there 
exists a measure Q such that for all A E :Ft, t ET: Q(A) = Q(t, A). 

All that is left to show is that Equation (1) holds. Start with 

for an arbitrary t E T. 

As 1r(0) = l, 

Ep[n(t)d(t)] 

So that 

Ep[n(t)d(t)], 

= Ep [rr Ep[1r(s)IFs-1l ~(t)d(t)] 
s=l n(s - l) 

Ep [~(t) g l + ~(s) d(t)] 

EQ[d*(t)] 

p · d = ¿ Ep[n(t)d(t)] = ¿ EQ[d*(t)]. 
tET tET 

3.2.3 Implementing a Walrasian Equilibrium 

• 

In this section I will show how a Walrasian equilibrium can be implemented 
as a security trading equilibrium. 
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As with the Walrasian equilibrium, I need to introduce a couple of defi
nitions to formalize two concepts: what the budget constraint is for an agent 
in an economy that only has security markets, and what is an equilibrium 
in that economy. 

First, denote an agent's net trades at date t E T by D.wxi(t,w) := 
(xi(t,w)-wi(t,w)). 

Given an interest rate process, denote the cumulative discounted value 
of past dividends at date s ET:= [O, T], s E [t, t + l), t ET, by D*(t), 

t 
D*(s) = ¿ d*(u), 

U=l 

the undiscounted cumulative dividends as 

t 

D(s) = ¿ d(u), 
u=l 

and the cumulaLive discounted value of future dividends as 

T 

n•+(s) = ¿ d*(u). 
u=t+l 

Define Lhe gain process of a security with cumulative dividends D(t) and 
security price process S(t) as 

G(t) = S(t) + D(t) Vt E T. 

Definition 5 An agent's budget constraint, Bi(S, Wi), is the set of consump
tion bundles the agent can obtain given security prices, and using feasible 
trades 

30 E 8, 
t J 

¿ D.wx;(s) + ¿OÍ (t) (Sj(t) + dj(t)) 
s=O j=O (2) 

J t 

= ~fo 0{ (t) dGj(t), Vt ET, P - a.s. 

With this definition I can define an equilibrium in security trading. 

Definition 6 A Ra.dner equilíbríum is a triple of security prices, tmding 
stmtegies, and consumption allocations, (S, 0, x*), such that 
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1. For all i E/, xt E B;(S, wi) 

2. For all i E I, U;(x;) > Ui(x;) implies Xi (J. Bi(S, w;) 

3. LiEI0i = O, and x E Z. 

Given the differences between a Radner equilibriurn and a Walrasian 
one, it is a bit surprising that one can be transformed into the other. 

Theorem 2 Given a Walrasian equilibrium pair (p, x) for economy &, there 
erists K + 1 securities, and a triple ( S, 0, x•) such that 

1. (S, 0,x*) is a R.adner equilibrium 

2. x• = x P-a.s. 

Proof:9 This proof proceeds as follows: first I will use previous results 
to construct a pricing scheme. This pricing scheme is constructed from 
Walrasian equilibrium prices, p. It also takes into account that trading 
takes place aL intermediate dates, s E [t, t + l], t E T. Toen, I describe Lhe 
properties of the 'right' kind of securities needed and construct the trading 
plans. Finally, I show that the prices of the dividends construcLed from the 
announced pricing scheme, together with the trading plans and the Pareto 
optimal allocation forro a Radner equilibrium. 

The interiority of w and monotonicity of preferences implies that p > O. 
Hence, by Theorem 1, there exists a martingale measure Q and interest 
raLes r(t) that describe the value of a stream of dividends as the expected 
discounted value of those dividends. 

Define the following pricing scheme: for any dividend process (d(t))tET, 
and any s E [t, t + 1), t ET, let the discounted value of the stream of future 
dividends be 

and the undiscounted price be 

t 

S(s) = S*(s) IT (1 +r(u)), 
U=l 

where for s E [O, 1), S(s) = S*(s). Note that the discounted gains process, 
G•(t) = S*(t) + D*(t) is a martingale. For any t ET, s E [t - 1, t) 

9This proof is a modification of the proof of similar results in Duf!ie and Huang[l985] 
and Duf!ie and Zame[l989]. 
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Eq[S·(t) + D'(t)f:F,] Eq [ Eq [ =t:-cu) :F, l +t.,,. (u) :F, l 
- Eq [ .t., d'( u) :F,] + Eq[d• (t)f :F,] + ~ d•(u) 

= s·(s) + v·(s) 

In order to be able to decentralize the Pareto optimal allocation, I need 
to have a set of securities such that trading in them will be sufficient to 
attain the desired allocation. Following method of Duffie and Huang[l985], 
construct a sequence of riskless bonds and J{ securiLies as follows: 

l. Each riskless bond exists for a single period: at each daLe t E T a new 
bond is created which pays 1 + r(t + 1) units of consumption at date 
t + l and is valueless LhereafLer. ILs price So(s) aL any s E [t, t + 1) is 
l. 

2. The gains processes of the other [( securities, Gj(t), forma basis for 
the space of Q-martingales. 

NoLe Lhat I have given the exact number of securities needed. This is 
because Lhe space of martingales defined by a marked point process with [( 
marks has martingale multiplicity J{ which guarantees that such securities 
exist (see the Appendix). 

Given these securities and their prices, define the Q-martingale Xi for 
all i E I \ { l} as 

where 

l:i.wx;(t) = rrl:i.wxi(t\ ) , 
S=l l + T s 

and the x/s are agent i's Pareto optimal allocation from the statement of 
the theorem. 

By the martingale representation theorem10 there exists 0) E 0 such 
that 

K lot Xi(t) = ¿ 0;(s) dGj(s). 
j=l O 

10See Appendix. 
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A great benefit of using MPPs is that these Ois are the solutions to a system 
of stochastic differential equations which can be used using the standard 
Stieltjes-Lebesgue calculus. The Bis solve 

¿ (gt(t)6.Nk(t) - gt(s)Ak(s) ds) = 
kEK 

J 

¿ ¿ (ej(s)JÍ (s)6.Nk(s) - B)(s)JÍ(s),\k(s ) ds) , 
j=l kEK 

(3) 

where 6.Nk(s) = N1;(s + ds) - Nk(s), and gt(s) and the f{s are the repre
sentations of Xi(t) and the discounted security gains processes. 

Let those o; be the trading plans for all but the first agent, i E J. In 
order for these trading strategies to be budget feasible, define the agents' 
trade in the riskless bond, Ob, as follows: for alis E (t , t + 1), t ET, 

This ensures that the agents' plans will be budget feasible by construction 
(note that dGó(s) = O for alis ET, the change in the gains from the bond 
is always zero). To show Ob(s) E e, I refer to Lemma A .l in Duffie and 
Huang(l985]. The outline of the proof is that by the left limit property of 

martingales: 

K t K 

L lo o;(s) dc;(s) - L O}(t)c;(t) 
j=l O j = l 

I( t- I( 

= L lo o;(s) dG;(s) - L o;(t)c;(t) + O)(s) 6.c;(t) 
j=l O j=l 

Using, 
o;(t)c;(t) = B)(t)c;(t-) + B}(s) 6.c;(t), 

demonstrates Bb is predictable. 0b is now obviously locally integrable and 

has finite discounted value. 
For the first agent, let 

i=2 

01 E e because 8 is closed under finite sums. 
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I claim that ((S1).f=o• (0i,xi)iEI) is a Radner equilibrium for E. By con
struction, Xi is agent i's optimal allocation from the Walrasian equilibrium 
for ali i E I. x1 is also agent one's optimal allocation from the statement of 
the theorem. This follows from the fact that Li 0i = O, the budget equalities 
for all i E I \ { 1}, and monotonici ty of preferences. 

I need to show that Xi will also be optimal for the sequence of Radner 
budget constraints. To show that this allocation together with the given 
trades is optimal one makes use of the Pareto optimality of x, the definition 
of feasible trading strategies, and the derivation of Q from equilibrium prices: 
if there is a feasible trading pattern 0 E 8 such that for all i E I, Ui(x~) ~ 
U;(xi), and there is sorne agent j such that U1(x1) > U1(x1) then it will be 
more expensive, p·x¡ > p·x1, and any feasible trading strategy implementing 
it will have the property that 

Prom the budget constraint at date zero, 

~ E [ Xj(t) ] _~E [ w1(t) ] L.J Q t -L.J Q t . 
tET Ils=l l +r(s) tET Ils=l l +r(s) 

Substituting this into the previous equation we obtain 

But this last line contradicts x' being budget feasible at date zero. ■ 

4 Risk Sharing and Trading Patterns 

In this section I will show that the risk-averse agents in E would optimally 
wish to pool their risks and look at whal this risk sharing implies about 
the way agents behave in security markets. Risk pooling is a standard 
and intuitive property of the contingent commodity equilibrium. The main 
questions I wish to answer is how this risk-sharing rule is implemented in a 
security trading equilibrium and whether agents' trading patterns will look 
anything like observed trading patterns. The main result of this paper is that 
this model predicts agents will optimally share risks by buying insurance on 
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themselves and participating in others' risks by buying securities that pool 
those risks: derivatives writhen on the aggregate endowment process such as 
mutual funds, catastrophe bonds, etc. In order to characterize the portfolio 
of securities traded, I introduce the concept of a risk class, where a risk class 
describes a set of shocks that can be pooled as a single one in terms of their 
effect on the aggregate endowment. I also describe how agents' idiosyncratic 
risks have to be related to the risk class, the pool, so that agents would only 
need to trade on one personal insurance contract per risk class. Putting 
these two together I obtain a full characterization of the agents' trading 
portfolios. 

4.1 Risk Sharing 

The first step is to look at how agents would behave if markets for ali 
commodities were available. As we saw in the second section, in such a 
circumstance agents will attain first best Pareto optimal allocations. In this 
section I wish to characterize these first best allocations to see if they could 
be attained when the economy uses financia! markets rather than state
contingent commodity markets. 

It will be useful to make an additional assumption. I will assume that 
endowments ignore the exact timing of the jumps. Define the filtration on 
T : 

9t = <J'(N(s) , s ~ t, s ET) t E T. 

Assumption 4 For all i E J, wi(t) is measurable urith re.spect to 9t for all 
t ET:= {O, 1, ... , T}, the index set of consumption dates. 

Let E' represent the economy E but with endowments described by As
sumption 4. Toe main consequence of this assumption is that 9t can be 
described by a countable partition, Gt := {G{,G'f, ... }, so that consump
tion at date t can be represented by x(t) = (x(Gl), x(G;), .. . ), where x(G{) 
is a constant for ali j (a similar representation holds for endowments and 
prices). With this one can show that agents will wish to pool their risks in 
equilibrium. 

T heorem 3 11 There exists a Walrasian equilibrium (p, x) Jor E' such that 
the Walrasian equilibrium price, p EL*, can be represented by g(t, w) where 

11This result is a corollary of Huang[1987]'s representE>tive agent construction itself an 
extension of earlier results by Wilson[l968], and Diamond[l967]. 
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for any x EL 
p · x = ¿ Ep[g(t, w)x(t)], 

tET 

and the corresponding equilibrium allocations, ( x; )iE ¡ can be represented by 
the sequence of vectors 

Xi= (/i(t, w))tET. 

Proof: First note that an equilibrium will exist (Bewley[l972]) so all 
I need to show is that equilibrium consumptions and prices will have the 
desired property. 

Let us look at consumption and prices for an equilibrium at each con
sumption date separately. First note that the price functional p can be 
represented by the sequence of random vectors, 1r(t), such that 

T 

p · x = ¿ EP[1r(t)x(t)]. 
t=O 

Given Lhat 9t, can be described by a partition, take the consump
tion alloca tion for an arbitrary agent, i, at daLe t irnplied by the allo
cation x, xi(t), and two disjoint events GL G~ E et, k :f. l, with the 
same aggregate endowment, w(t, en = w(t, eD, and wiLh positive prob
abilities, P(e~), P(eD > O. I want to show that for any agent, i E I, 
xi(t, en = x;(t, GD. The first-order conditions for agents i and j at date 
t ET imply: 

P(en1r(t, e~) _ P(e~)u~(xi(t, e~)) _ P(ef)u1(xi(t, G~)) 
P(GD1r(t, GD - P(eDu~(x;(t, eD) - P(eDu1(xi(t, eD) 

Note that the rate of time preference, /Ji, cancels from the top and the bot
tom for both" agents. From strict concavity: ui(xi(t, e~))/ui(xi(t, GD) = 1 if 
and only if xi(t, G~) = xi(t, eD (and sirnilarly for agent j), so that Lhis con
dition together with the previous equation irnply that if Xi(t, e~) > Xi(t, GD, 
it will also be the case for j (and all other agents). By monotonicity 
of preferences, this would lead to an allocation that is not feasible ( as 
w(t, ef) = w(t, GD), so that the only feasible allocation that satisfies the 
first-order conditions is xi(t, G~) = Xj(T, GD for all agents. As for the repre
sentation of prices: x;(t, en= xi(t, GD, irnplies 1r(t, cn/1r(t, GD = l. The 
existence of the functions, gi and /, is now merely an issue of representation . 

• 
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What I have shown is that agents' optimal allocations will ignore what 
happens to each agent's endowment and give each agent a share of the 
aggregate endowrnent. Note that this risk sharing agreements are the gen
eralization of insurance to situations with aggregate endowrnent risk. In 
such cases, it is physically impossible to provide 'full insurance' to every 
agent and eliminate uncertainty completely. If Lhere is aggregate uncer
tainty, agents will participate in the aggregate risk and they will do so in 
an optimal way: letting the less risk-averse agents carry a higher proportion 
of the risk. Ideally, this is what insurance contracts should do, and we see 
sorne of this with coinsurance and partial insurance, specially at the level of 
major economic enterprises such as trade (the risk stemming from currency 
fluctuations) where insurance takes the form of hedging. 

4 .2 Trading Patterns 

Risk pooling is interpreted in financial markets as insurance and hedging. 
The aim of this section is to make this link explicit and see how risk pooling 
is translated into optimal trading strategies thaL have Lhe interpretaLion of 
taking insurance and hedging. 

Let us look at the earthquake example: suppose LhaL you have an econ
omy in which all agents have fixed but when an earthquake happens the 
economy loses a fixed amounL L. The risk sharing result from the previ
ous section tells us that for purposes of optimally allocating consumption it 
<loes not matter who was hit: wheLher the earthquake destroyed Lwo hun
dred homes in Bel Air where each house costs one million dollars or wheLher 
it destroyed two thousand homes in Inglewood each costing one hundred 
thousand dollars. In a sense, agents consume as if they had full insurance 
conditional on the number of earthquakes. 

The question I want to address is how would this optimal allocation be 
implemented. In a small isolated and relatively homogenous economy, such 
as a rural village in India or in medieval Europe, one can imagine that it 
would relatively straight-forward to set up institutions that would enforce 
such outcomes. On the other hand, as the economy develops and becomes 
larger and more complex, the kind of institutions that enforced risk sharing 
in srnall isolated communities would not function well. What one can observe 
is that such economies tend to develop financia! and insurance markets to 
share risks. How would an insurance market <leal with this earthquake 
risk? If one is to judge by the experience in California, insurance companies 
will claim that they are not willing to be exposed to such risks and would 
demand the government to put up a reserve fund to help mitigate their 
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exposure, and the government would agree. This suggests that insurance 
markets are somehow nnable to deal with this risk. But, looking back to 
the risk sharing optimal allocations, it seems that there is no reason for the 
government and insurance companies to bear all this risk. Agents would 
optimally participate in this risk as long as the idiosyncratic component 
(fluctuations in their private endowments) was taken care off. 

So let us look a t how this intuition can be formalized within the model 
I am using. First, we have a result about risk sharing in a Walrasian equi
libriwn, Theorem 3, which establishes the property of optimal risk sharing, 
Xi(t) = fi(w(t) , t), and tells us something about state-cont.ingent commodity 
prices, 1r(t) = g(w(t), t). Then, we also have a result on how a Walrasian 
equilibrium can be implemented as a Radner equilibriwn so that the op
tima! allocations with security trading will be the same as those from the 
Walrasian equilibriwn. A key part of the proof of that. result is that t.he 
value of the agent.'s net t.rades, Xi(t), is given by the Q-martingale 

and that this martingale can be represented as a linear combination of other 
martingales. Toe weights in this linear combination represent stock hold
ings and the other martingales are the cumulative discounted gains of sorne 
existing securities. Putting these two resulls together we obtain 

;, [g(w(s),s) 1 ] Xi(t) = ~Ep g(w(0),0) (fi(w(s),s)-wi(s)) :Ft (4) 

So the key is to realize that agents only care about two things: how 
shocks affect them directly by changing their endowments, and how those 
shocks affect them indirectly by altering the aggregate endowment and 
prices. The way agents will deal with these effects through trades is re
flected in the martingales needed to represent Xi ( t) in equation ( 4). From 
staring at this equation it seems that all that is needed is to have sorne se
curities that take care of the aggregate endowment part and sorne that take 
care of t.he agent's endowment. The question then rernains as to what these 
securities are and how many does one need. 
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In the particular earthquake example I am using, there seems to be 
no special reason why the economic consequences of leveling Lwo hundred 
houses in Bel Air should be the same than leveling two thousand homes in 
Inglewood. But, the fact that all earthquakes have the same consequences 
on the aggregate endowment seems to suggest that one could take care of 
the effect of earthquakes on the aggregate endowment by buying a single 
security that pools all the individual earthquakes - those that hit Bel Air 
and those that hit Inglewood. This pooling idea can be generalized to all 
shocks that affect the aggregate endowment in the same way, and for which 
I define the concept of a risk class. Two types of shocks ( represented by 
the marks k and j) belong in the same risk class if one can tell what the 
aggregate endowmenL will be just be knowing the sum of the number of 
shocks of these two types that have taken place and not how many of jumps 
of each Lype, k and j, have occurred. 

First let me introduce a bit of notation. Ptom above, Nk(t), denoLes the 
number of jumps of type k that have taken place up to time t. I want to 
generalize Lhis by allowing N to be subscripLed by an index set, C, such 
that Nc(t) denoLes Lhe number of jumps of Lypes indexed by C 

Nc(t) = L Nk(t). 
k EC 

I will also need the following technical result 

Lemma 1 IJ N is a J( -marked point process, that admits intensities 

then 
K 

Ñ(t) = L Nk(t), 
k= l 

is a univariate point process with intensity 

K 

>.(t) = L >-k(t). 
k= l 

Proof: See Bremaud[l981], p.34. 
This result ensures that Nc(t) is a univariate point process as long as C 

represents indeces of the original marked point process N. 
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Assumption 5 The marks of the underlyíng poínt process N, {1, 2, ... , K}, 
can be parlítíoned into m disjoint, subsets, C1, C2, ... , Cm, such that the 
aggregate endowment, w(t), is measurable with respect to the filtration gen
eroted by the univariate point processes, Nc;(t), j = l, . .. , m: 

Definition 7 If i, k E C1 far any j = l, ... , m, then we say that Ni and N1 
are in the same risk class. 

Remark I The marked point process of economy E is described by m 

risk classes, where m s K. This follows from the observation that in a worst 
case scenario, each mark can be a class of its own. 

Now let us look at fluctuations in the agent's private endowment, Wi , One 
can approach this problem in the same way as I did the fluctuations in the 
aggregaLe endowment and define accident classes for agent i. I do not wish 
Lo follow thaL path because it implies no relationship between fluctuations in 
the aggregate endowment and in the agent's private endowment, while in fact 
flucLuaLions in Lhe aggregate endowment are due to fluctuations in agent's 
private endowments - the loss of L due to an earthquake is decomposed into 
L;'s spread over the population, agents losing their homes, forgone income, 
etc. In order Lo retain this link between private and aggregate endowment 
fluctuations, I introduce the following assumption 

Assumption 6 For every agent, i E I, and every risk class, C1, the marks 
of the jumps in C1 can be parlitioned into two subsets, A(C1) and C\A;(C1), 
such that the univariate point processes 

NA,(C;) = L Nk(t), 
kEAi(C;) 

have the properly that the agent 's endowment is measuroble with respect to 
the filtrotion they genemte 

w;(t) E F(t) := a- ( NA,(C¡) ( s), N Ai(C2)( s ), ... , NA;(Cm)(s ); s S t) , 

Vt E {O, 1, ... ,T}. 

What I intend with this assumption is to say that agent's endowments are 
associated with a single type of private shock for every aggregate shock 
(risk class) . This private shock need not take place every t ime there is 
an aggregaLe shock in the same risk class, so the agenL distinguishes the 
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earthquakes that affect him and those that do not, i.e., every time houses 
in Bel Air are destroyed, Bruce Willis' house may or may not be destroyed, 
but if it is it is totally destroyed. What this implies is that agent i (Bruce 
vVillis) does not care who else was af:fected by the earthquake just whether 
there was one, and whether it destroyed his house or not. 

Note that shocks need not be negative. In the same way I describe shocks 
as accidents (earthquakes, etc) I could also describe them as discoveries or 
announcements of good news, such a plentiful future harvest. The definition 
of risk classes and the resulLs that follow below ali go through with either 
interpretation. The content of the information represented by the marks is 

arbitrary. 
Now the characterization of trading: 

Theorem 4 Let the uncertainty in economy &' be described by m risk classes, 
then given a Walrasian equilibrium and any complete markets Radner equi
librium that implements it, every agent i 's trades can be described by a port
folio that contains at most m personalized insuronce contracts, m derivatives 
on the aggregate endowment and a bond. 

Proof: As we have seen, given a complete markets Radner equilibrium 
that implements a Walrasian equilibrium, what I need to do is construct a 
porLfolio of securiLies for every agent that represent Xi(t) in EquaLion (4). 

But first, I want to define what the securities will be that these agents 
will trade in. The filtration J=(t) has martingale multiplicity of at most 
m . Hence there are (at most) m securities whose cumulative discounted 
gains processes form a basis for the space of Q-martingales with respect to 
J=. These securities must be measurable with respect to P, so they can 
be described as derivatives on the aggregate endowment. Denote the price 
process of such securities at date t by S0.(t) and their dividends by da.(t). 

1 1 

Now for all i E I, Xi(t) is made up of prices, the agent's consumption and 
the agent's prívate endowment. Both the prices and the agent's consumption 
are functions of the aggregate endowment and hence measurable with respect 
to P. Also, the agent's endowment is measurable with respect to P. 
Hence, Xi(t) is measurable with respect to PU P. F' has martingale 
multiplicity of at most m, so, like P, there are a t most m securities that 
forro a basis for the space of Q-martingales with respect to F'. These 
securities have to be measurable with respect to F' so they can be described 
as personalized insurance contracts for i. Denote the gains processes of such 
securities at date t by Sb and their dividends by d~ . 

1 1 

Hence, Xi(t) is in the span of the (at most) m personalized insurance 
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contracts and (at most) m derivative securities on the aggregate endowment. 
As the Xi(t) is the same as in the original Radner equilibrium, one can use 
the same holdings of the riskless bond as before. So the agents' optimal 
portfolio can be fully described by holdings of at most one personalized 
insurance contra.et on himself and one common security per accident class, 
and a riskless bond, where the m common securities are derivatives on the 
aggregate endowment such as mutual funds, catastrophe bonds, etc. At date 
t, the value of agent i's security holdings 

will be 

■ 

Remark II Also, note that if ali the accidents in a risk class affect the 
agent in the same way, i.e. if Ai(C) =Cor Ai(C) = 0, then the agent will 
only need to trade in one security to <leal with that risk - be it a mutual 
fund or an insurance contra.et. 

Note that, as in CAPM, one could not have a Radner equilibrium with 
the securities implied by the portfolio holdings in this theorem (the insurance 
contracts and the mutual funds) because no agent is holding the personalized 
insurance contracts other than the agent on which they are written. Security 
holdings would then not add up to zero. If one was to count how many 
securities are being traded one may get more than K securities. What 
this result is saying is that every agent may be selling a different kind of 
insurance contra.et, but they will not be trading directly on ea.ch other's 
insurance contracts; Bruce Willis will not be selling insurance on Arnold 
Schwarzenegger's house (or on any house in Inglewood for that matter) 
but will just buy insurance on his own home and an aggregate security 
on the pool of everybody's risk such as a catastrophe bond. Each agent 
provides coverage for the others only as part of a pool, and each agent 
obtains coverage from that pool. This insight is key to understand why 
insurance and reinsurance companies exist and what their role is: eliminate 
the agent's idiosyncratic risk by pooling lots of them together. A similar 
interpretation applies to mutual fund companies, whose role in this model is 
to purchase individual stock holdings and sell them as a pool to individual 
investors. 
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5 Conclusion 

The main result in this paper ilhB'"iates the link between risk pooling in 
consumption as an optima! state-cont;;_ngent commodity equilibrium, and 
insurance and hedging as the optimal trading strategies in a financial market 
equilibrium. I have looked at how risk-averse agents would use financial 
markets to share risk. I have shown that agents' trades can be described by 
portfolios that include a riskless bond, a common set of derivatives (written 
on the aggregate endowment), and personalized insurance contracts. 

The link between risk pooling in consumption and security trading be
haviour requires the classification of idiosyncratic shocks into groups or 'risk 
classes'. Ea.ch of these risk classes represents a different shock on the aggre
gate endowment and must be treated separately from the others. But within 
each risk class, these idiosyncratic shocks are all equivalent and are indepen
dent of the wealth of the individual, their preferences, etc. The symmetry 
imposed accross agenLs in previous models that have studied idiosyncratic 
and aggregate shocks is noL a necessary requirement for a parsimonious fi
nancial market. Hence one would be more willing to accept the validity of 
the complete markeLs assumpLion. 
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6 Appendix 

6.1 The Canonical Basis 

A special property of the canonical martingales, Mk, is that they form a 
basis for the space of P-martingales12 , M. It also establishes the mlnimum 
number of securities needed to span the space, as every other bases for M 
will have the same number, K, of orthogonal elements. This can be shown 
as follows: 

Definition 8 Two martingales, M and N are orthogonal if their product 
M N = { MtNt } is a martingale with mean O. 

Also, for any process, X, let .ó.X(t) denote the jump of the process at date 
t. 

Lemma 2 (Elliott 1991, 9.25) Far M a martingale of integrable varia
tion and any bounded corlol13 martingale N 

E[M(T)N(T)] = E [L .ó.M(s).ó.N(s)] 
s~ O 

The lemma describes the expected value of the product of two processes 
as Lhe expected value of the sum of the product of their jumps. Naturally, 
a martingale of integrable variation and a bounded corlol martingale both 
have at most a countable number of jumps, hence the use the summation 
sign rather than an integral. Nevertheless note that the jump times will be 
random, hence the use of the index s ~ O for notational convenience. This 
lemma was constructed for T = oo and it naturally applies if T < oo. 

Theorem 5 The canonical martingales far K finite 

k E K form a martingale basis under P , so that M has dimension K. 

12Note that the space of square-integrable martingales, M 2
, with the norm E[A · (T)

2
] < 

=, where A"(t) = sup. <, jA(s)j, and A(t) is an adapted process, can be identified with 

the Banach space L2(rl.~:F,P) by the map that associates the martingale A(t) E M
2 

to its terminal value A(T) E L 2 (Elliott [1982], Remark 9.8). This is the key property 
exploited by DH in their 1985 paper to guarantee and construct their implementation of 
an Arrow-Debreu equilibrium as a security rnarket equilibrium. 

13 corlo! := 'cadlag' - continuous on the right, left limit. 
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Proof Define 
M(T) = limM(t), 

tfT 

For all k E K, the set {~N,.(t) > O, ~Ni(t) > O,j =/= k} has probability 
O, i. e., N,. does not charge a common jump time with any N;, j E K, j =/= k, 
by definition, so that 

So that applying Elliott's lemma on any two martingales, Mk, Mj, i =/= j in 
(M1, ... , MK) we obtain 

E[M1.(T)M;(T)] = E[¿ ~M,.(s)~Mi(s)] 
s2:0 

= o 

So that M,. is orthogonal to every other canonical martingale, M;. As the in
dex k is arbiLrary, the vector of martingales (M1, ... , MK) consists of orthog
onal martingales. As F is the filtration generated by N := (N1, .. . , N¡<), 
( M1, ••• , M K) form a martingale basis for M. As all martingale basis have 
the same dimension, the dimension of M is K. ■ 

6.2 Martingale Representation 

There is a second property associated with the canonical martingales which 
sets marked point processes apart from continuous processes such as Brow
nian Motion. This has to do with the way the canonical martingales can be 
used to represent all adapted, right-continuous processes, of which martín
gales is a subset. 

Theorem 6 14 Let {G(t) : t ~ O} be an adapted and right-continuous pro
cess. Assume the existence of a sequence tn, n E N, of stopping times 
satisfying 

Q-a.s. 

such that { G( t I\ tn) : t ~ O} is far all n E N a uniformly integrable martin
gale. Then there exists a predictable vector f such that 

¿ r lfk(s)l>-1.(s)ds < 00 
kEK}o 

14This theorem is adapted from Last and Brandt [ 1995] 
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and 
G(t) = G(O) + L rt Ík(s) dMk(s) 

kEKJo 
P-a.s. 

where the integral is standard Lebesgue-Stieltjes integral. 
• 

See Last and Brandt [1995, p.343J for the proof. 

33 .. 




