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Abstract 

This cl1aplcr c.lcscribes severa! nonparamctric cstimalion and lesling methods for 
cconomctric modcls. lnslcad of using paramclric assumptions on thc functions and 
distributions in an cconomic model, the methods use lhc restrietions that can be 
dcrivcd from the modcl. Examplcs of such rcstrictions are lhc concavity and 
monolonicity of functions, cquality condilions, and cxclusion restrictions. 

The chaplcr shows, first, how economic rcstrietions can guarantce thc identifica
tion of nonparametric functions in severa! structural models. It then describes how 
shapc restrictions can be used lo estímate nonparametric functions using popular 
methods for nonparamctric estimation. Finally, thc chaptcr describes how lo test 
nonparametrically the hypothcsis that an cconomic modcl is correct and the 
hypothesis thal a 11011parametric function satisfics sorne spccificd shapc propcrtics. 

1. Introduction 

Increasingly, it appcars lhal restnct1011s implicd by cconomic theory provide 
exlremely uscful tools for dcveloping nonparamctric cstimation and testing methods. 
Unlikc parametric methods, in which thc functions and distributions in a modelare 
spccified up to a finile dimensional vector, in nonparamctric methods the functions 
and distributions are lcft parametrically unspecified. Thc nonparamctric functions 
may be required to satisfy sorne propcrtics, bul thcsc propcrtics do nol restrict thcm 
to be within a parametric class. 

Severa! econometric modcls, formerly rcquiring vcry rcstrictive paramclric 
assumptions, can now be estimated with minimal parametric assurnptions, by 
making use of thc restrictions that economic thcory irnplies on the functions of 
those models. Similarly, tests of cconomic modcls that have previously been 
perfonncd using paramctric structures, and hcncc wcrc conditional on the pará
mclric assumptions made, can now be performed using fewcr parametric assump
tions by using economic rcstrict ions. This chaptcr describes sorne of the cxisting 
rcsults 011 thc development of nonparametric methods using the rcstrictions of 
cconomic thcory. 

Studying restrictions on the rclationship bet wccn economic variables is one of 
the most important objcctives of economic theory. Without this study, one would 
not be able to determine, for example, ,vhether an increase in income will produce 
an incrcasc in consumption or whether a proportional increase in prices will 
produce a similar proportional increase in profits. Examples of economic restrictions 
that are used in nonparamctric methods are the concavity, continuity and 
monotonicity of functions, cquilibrium conditions, and thc implications of optimi
zation 011 solution functions. 

Thc uscfulncs·s of lile rcstrictions of economic tlicory 011 paramctric modcls is 
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by now well undcrstood. Sorne restrictions can be uscd. for examplc, to decrcasc 
lhc variance of parameler estimators, by requiring that tlic cstimated values satisfy 
the cond itions that economic thcory implies 011 the valucs or tlic parameters. Sorne 
can be used to derive tests of economic modcls by testing wlicthcr the unrestricted 
para meter estima tes satisfy the conditions implied by the ccm1omic rcstrictions. And 
sorne can be used to improve thc quality of an cxtrapolation beyond thc support 
of lhc data. 

In nonparametric modcls, economic restrictions can be used, as in parametric 
modcls, to reduce the variancc of estimators, to falsify thcorics, and to cxtrapolate 
beyond the support of the dala. But, in addition, sorne economic restrictions can 
be used to guarantce the idcntiíkation of sorne nonparamelric models and the 
consistcncy of sorne nonparamctric cstimato rs. 

Suppose, for cxamplc, thal wc are intcrested in estimating the cost function a 
typical, perfcclly competitive lirm faces when it undertakcs a particular projcct, such 
as the dcvclopmcnt of a new product. Suppose that thc only available data are 
independcnt obscrvatinns o n thc price vector faccd by thc firm for the inputs 
req uired to perform thc project, and whcthcr or not thc tirm deci<lcs lo undcrtakc 
the project. Supposc that thc rcvcnuc ofthe project for the lypical lirm is distributed 
indepcndently of the vcclor of input prices faced by thal firm . Thc firm knows the 
revenue it can gel from the project, and it undertakes lhe projccl if its revenue 
excecds ils cost. Then, using lhe convcxity, monotonicity and hornogcneity of degree 
one 1 properties, that economic theory implies on thc cost function, onc can identify 
and cslimatc both thc cost function of the typical llrm and the distribution of 
revenues, without imposing paramctric ·assumptions on cithcr of thcse functions 
(Matzkin (1992)). This result requircs, for normalization rurposcs, that the cost is 
known at one particular vector o f input priccs. 

Let us see how nonparametric estimators for the cost function and the distribution 
of the revcnue in the model described abo ve can be obtaincd. Let (x 1 , •.• , xN) denote 
the observed vectors of input prices faced by N randomly sampled firms possessing 
the same cost function . These could be, for example, firrns with the same R&D 
technologies. Let i equal O if thc ith sampled firm undcrtakes the project and 
equal l othcrwise (i = 1, ... , N). Lct us denote by h*(x) the cost of undertaking the 
projcct whcn x is thc vector of input prices and le t us denote by r. the revenuc 

A associated with thc project. Note that 1: ~ O. T he cumulativc distribution function 
of 1; wi ll be denoted by F*. We assumc that F* is strict ly incrcasing over the non

. negativc real numbcrs and the support of thc probability distribution of x is IR:. 
(Since we are assuming that i: is independenl of x, F* <loes not dcpcnd on x.) 

-.¡ According to thc model, thc probability that i = 1 givcn x is Pr(c ~/¡*(xi))= 
F*(h*(xi)). Thc homogcncity of degree onc of h* implics that h*(O) =O. A neccssary 
normalization is imposed by rcquiring that h*(x*) = o:, whcrc both x* and o: are 
known; o:EIR. 

_ 
1 A fun<.:lion h: X ..... 6l, whcrc X e lf~" is <.:onvcx, is rn111·ex if Vx. _\'E X and Vi.E [O, 1 J. h(i.x + ( 1 - i.)y)::;; 

1./i(x) + ( 1 - i.)li(y); h is humoge11em1s cf clcyrí!e <me if VxEX an<l Vi.~ O, h(i.s) = i.h(x). 

J 
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Nonparamctric cstimators for h* ami F* can be obtaincd as follows. First, onc 
estimates thc valucs that /¡* attains at cach of thc obscrvcd points x 1

, • .. , x.'" and 
one estima tes thc valucs that F* attains al h*(x 1 

), ••• , h*(xN). Sccond, onc intcrpolatcs 
between thesc valucs to obtain functions Ji ano P that cstimate, respcctively, h* and 
F* . The nonparamctric functions Ji ano f satisfy thc propertics that h* and F* are 
known to posscss. In our modcl, thcsc propcrtics are that h*(x) = a, h* is convcx, 
homogeneous of dcgrcc one and monotonc incrcasing, and .F* is monotonc 
increasing and its valucs lic in thc intcrval [O, 1 J. 

The estimator for thc llnitc dimensional vector {h*(x 1
), •.. , h*(x"'); F*(h*(x 1

)), • • • , 

1-:*(h*(xN))} is obtaincJ by solving thc following constraincd maximization log
likelihood problcm: 

N 

maximizc I {/ log(/.-i) + ( 1 - /) log( 1 -- /."¡): 
{F1},{l, 1) .{ '/" ) i = 1 

subjcct to 

i,j= l, ... ,N, 

í= 1, ... ,N, 

i =O, ... , N + 1, 

i, j =O, .. . , N + 1, 

i =O, . .. , N + l. 

( 1 ) 

(2) 

(3) 

(4) 

(5) 

(6) 

In this problcm, J¡i is the value of a cost function h at xi, Ti is the subgradient2 of h 
at xi, and Fi is the valuc of a cumulative distribution at J¡i (i = 1, ... , N); xº = O, 
xN + 1 = x*, hº = O, and hN + 1 = a. The constraints (2)- (3) on F 1, ... , FN characterize 
the behavior that any distribution function must satisfy at any given points h1, ... , J¡N 

in its domain. As we will see in Subsection 3.1, thc constraints (4)-(6) on the values 
hº, ... , j¡N+ 1 and vectors Tº, ... , TN + 1 charactcrizc thc behavior that the values and 
subgradicnts of any convex, homogencous of dcgrcc one, and monotone function 
must satisfy at thc points xº, ... , xN + 

1
. 

Matzkin (1993b) providcs an algorithm to llnd a solution to the constrained 
optimization problem above. The algorithm is bascd on a search over randomly 
drawn points (~, I) = (h 1 , • • • , JiN; Tº, . . . , TN + 1

) that satisf y (4)-(6) and o ver convex 
combinations of these points. Given any point (~, T) satisfying (4)-(6), the optima! 
values of F 1

, . .. , FN and the optima! value of the objcctive function given (b, T) are 
calculated using the algorithm developed by Asher et al. (1955). (See also Cosslett 
(1983).) This algorithm divides the observations in groups, and assigns to each Fi 
in a group the value equal to the proportion of observations within the group with 

2 If /:X-+ IR,; is a convex function on a convex set X e O~K anti xEX, any vector TEIR\ such that 
'v'yEX h(y) ~ h(x) + T(y- x), is calle<l a subgra<licnt of h at x. lf h is <li!Tercntiablc al x, thc gradicnt of 
h al x is the unique subgra<licnt of h al x. 
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;/ = 1. Thc groups are oblaincd by firsl ordcring the obscrv:1tions according lo the 
valucs of the //'s. A group cnds at observation i in thc jth place and a ncw group 
starts at obscrvation k. in thc (j + l )th place i!T /=O ano/ = 1. lf the values of the 
F;'s corresponding to two adjaccnt groups are not in incrcasing order, the two 
groups are mcrgcd. This mcrging proccss is rcpcatcd till thc va lucs of the Fi's are in 
increasing order. To randomly genera te points (~, T), severa! rnethods can be used, 
but the most critica! one prncecds by Jrawing N + 2 hornogcncous and monotone 
linear functio11s and thcn letting (~,]')be the vector of valucs and subgrad ic nts of 
the function that is thc maximum of those N + 2 linear functions. The coefficients 
ofthc N + 2 linear functions are drawn so that onc of the functions at tains the value 
ex at x* ami the othcr functions attain a valuc smallcr than si: al x*. 

T . 1 b 1 . (/-¡ ,-,..,. T-º ·¡'·\'+ 1 1-·l J ..... "') o 111terpo ate ,etwecn so ullon 1 , .•• , z ; , . . . , · ; · , ... , · , one can 
use differcnt interpolation methods. Onc possible method rrocccds by interpolating 
linearly betw_een P1, . •. , fN to obtain a function P and using thc following intcr
polation for h: 

- - . \ 
h(x)=max{T'·xli=Ü, ... ,N+ li. 

Figure 1 presents sorne value sets of this nonparametric cslimator Ji when xEIR~. 

For contrast, Figure 2 prescnts somc va lue sets for a pararnctric estimator for /¡* 

that is specified to be linear in a pararneter {J and x. 
At this stagc, severa! questions about the nonparamelric cstimator described 

above may be in the reader's mind. For example, how do we know whcther these 
cstimators are consistent'? More fundamentally, how can the functions /¡* and F* 
be identified when no parametric spccification is imposcd on lhem? And, if they are 
identified, is the estimation mcthod dcscribed above thc only one that can be used 
to estímate the nonparametric model? Thcse and severa! othcr relatcd questions 
will be answcrcd for thc modcl dcscribcd abovc and for othcr popular modcls. 

In Scction 2 wc will sce firsl what it means for a nonpararnetric function to be 
identified. We will also see how rcslrictions of economic theory can be used to 
identify nonparametric f unctions in thrce popular types of rnodels . 

Figure 1 

UN\1/BSIO~O OE s~u MfüRES 

BIBLIOTECA 
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figure 2 

In Section 3, we will consider various mcthods for estimating nonparametric 
functions and wc will sce how properties such as con ca vity, monotonicity, and 
homogeneity of degrcc one can be incorporated into those estimation methods. 
J3esicles estimation methods like the one described abovc, we will also consider 
seminonparametric methods and weighted average metho<ls. 

In Section 4, we will describe sorne nonparamctric tests that use restrictions of 
economic theory. Wc will be conccrned with both nonstatistical as well as statistical 
tests. Thc nonstatistical tests assume that the data is observcd without error and 
the variables in the models are nonrandom. Samuelson's Weak Axiom of Rcvcalcd 
Prcfcrence is an example of such a nonparamct ric test. 

Section 5 prcsents a short summary of the main conclusíons of the chapter. 

2. Idcntification of nonparnmctric rnodcls using cconomic rcstrictions 

2.1. Deji11itio11 of 11011para111etric ide11tijicaticm 

Formally, an econometric model is speciíied by a vector of functionally dependent 
and independent observable variables, a vector of functionally dependcnt and 
independent unobservable variables, a set of known functional relationshíps among 
the variables, ancla set of restrictions on thc unknown functions and distributions. 
In the example that wc have bcen considering, thc observable and unobservable. 
inclcpcndent variables are, respcctively, .\'EIR:~ and cEIR+. A binary variable, y, that 
takcs the value zero if the firm undertakcs thc project and takes the value 1 otherwise 
is the observable clcpcndcnt variable. Thc prolit of thc firm if it undertakes thc 
project is thc unobscrvable dependent variable, y*. The known functional relation
ships among thesc variables are that y*=¡; - h*(x) and that y= O when y*> O and 
y= 1 othcrwisc. Thc restrictíons on the functions and clistributions are that Ir* is 
continuous, convex, homogcneous of degrec onc, monotonc increasing and attains 
thc value a at x*; thejoínt dístríbution, G, of(x,1:) has as íts support thc set IR~+i 
and it is such that e and x are índepcndcntly distributed. 
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The restrictions imposed 011 the unknown functions and distributions in an 
econometric model define thc set of functions and distributions to which these 
belong. For exarnple, in thc econometric model dcscribed a bovc, h* belongs to the 
set of continuous, convcx, homogencous of dcgrce o nc, monotonc incrcasing 
functions that attain the value (J. at x*, and G bclongs to thc set of distributions of 
(x,1:) that have support IR\+ 1 and satisfy thc rcstrictil)ll that x and e are 
independcntly distributed. 

O ne of thc rnain objcctivcs of specifying an cconomctric modcl is to uncovcr thc 
"hiddcn" functions and dist r ibutions that drivc thc bchavior of the observable 
variables in the model. Thc idcntification analysis of a modcl studics what functions, 
or fcaturcs of functions, can be rccovercd from thc joint distribution of the observ
able variables in thc model. 

Knowing thc hidden functions, or sorne features of thc hiddcn functions, in a 
model is necessary, for examplc, to study properties of thcsc f unctions orto predict 
the behavior of other variables that are also driven by thcsc functions. In the model 
considered in the introduction, for example, one can use knowlcdge about the cost 
function of a typical firm to infcr propcrtics of thc product ion function of the firm 
orto calculatc the cost of the firm undcr a nonpcrfectly compctitive situation. 

Lct M denote a set of vcctors offunctions such that cach function and distribution 
in an econometric modcl corrcsponds to a coord ina te of thc vcctors in M. Suppose 
that the vecto r, 111*, whose coordina tes are the true functions and distribution in the 
model belongs to M. Wc say that we can identify within M thc functions and distri
butions in the model, from the joint distribution of the observable variables, if no 
other vector 111 in M can generate the. same joint distribution of the observable 
variables. We next define this notion formally. 

Lct m* denote the vector of the unknown functions and distributions in an 
econometric model. Let M denote the set to which m* is known to bclong. For each 
mEM Jet P(m) denote the joint distribution of the observable variables in the model 
whcn m* is substitutcd by 111. Thcn, thc vector of functions m* is ide11tified withi11 M 
if for any vector mEM such that m =/- m*, P(m) =/- P(111*). 

One may consider studying the recoverability of sorne fcature, C(m*), of m*, such 
as the sign of sorne coordina te of m*, or one may consider the rccoverability of sorne 
subvector, mf, of m*, where m* = (m'f, m!). A feature is identified if a different value 
of the fcature generates a different probability distribution of the observable 
variables. A subvector is identified if, given any possible remaining unknown 
functions, any subvector that is different can not genera te thc same joint distribution 
of the observable variables. 

Formally, the fcature C(m*) of 111* is identified within thc set { C(m)lmEM} if 
V111EM such that C(m) =I- C(m*), P(m) =I- P(m*). The subvcctor 1117 is ide11 rijied within 
M 1,whereM=M 1 x M 2 ,mfE1H 1 ,andm!E.M2 ,ifVm 1 EAJ 1 such thatm 1 =f..111f,it 
follows tha t Vm 2 , m~ E M 2 P(m i, 111~) =f.. P(m 1 , m2 ). 

When the restrictions of an econometric model specify ali f unctions and distri• 
butions up to the value of a finite dimensional vector, the rnodel is said to be 
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parametric. When sorne oJ the functions or <listributio11s are left parametrically un
spccificd, the model is said to be semiparametric. Thc model is nonparamctric if 
none of thc functions and distributions are specified parametrically. For example, 
in a nonparnmetric modcl, a cerlain distribution may be required to possess zcro 
mean and finite variance, while in a parametric model the same distribution may 
be require<l to be a Normal <listribution. 

Analyzing the identification of a nonpara metric eco 11 ometric mo<lcl is useful for 
severa! reasons. To establish whether a consistent estimator can be devcloped for 
a specific nonparamctr ic function in the model, it is csscntial to determine first 
whether the nonparametric function can be i<lentificd frnm the population behavior 
of observable variables. To single out the recoverability properties that are solely 
<luc to a particular parametric specificat ion bcing imposed 011 a nrn<lcl, one has to 
analyze firsl what can be recovered withoul imposi ng that parametric specification. 
To determine what sets of parametric or nonparametric restrictions can be used to 
identify a modcl, it is important to analyze the idcntification of the model first 
without, or with as few as possible, rcstrictions. 

Imposing restrictions on a modcl, whether they are parametric or nonparamctric, 
is typically nol desirable unless those rcstrictions are justified. While sorne amount 
of unjustified rcstrictions is typically unavoidablc, imposing the restrictions tha t 
economic theory implies on sorne moclels is not only desirable but also, as we will 
see, ver y usef ul. 

Considcr again thc moclcl of the firm thal considcrs whether to undertake a 
project. Let us see how the properties of the cosl function a llow us to identify the 
cost function of the firm and the <listribution of thc revenue from the conditional 
distribution of the binary variable y given the vector of input prices x. To simplify 
our argument, let us assume that F* is continuous. Recall that F* is assumed to be 
strictly increasing and the su pport of lhe probabilily meas u re of x is lll!. Let g(x) 
denote Pr(y = l lx). Thcn, u(x) = F*(h*(x)) is a conlinuous function whosc values 
on lll~ can be ident ificd from thc joint dislribution of (x, y). To sec that F* can be 
rccoverc<l from y, note that sincc h*(x*) = C( and /,* is a homogeneous of dcgrce one 
function, for any t EO~ +, F*(t) = F*((t/C() C() = F*((t/CJ.) h*(x•)) = F*(h*((t/a) x*)) = 
g((t/a)x*). Next, to see that /z* can be recovcred from g and F*, wc note that for 
any xEIR~, h*(x) = (F*)- 1g(x). So, we can recover both h* and F* from the 
observable function o. Any ot her pair (h, F) sa tisfying thc same properties as (h*, F*) 
but with h i= h* or F i= F* will genera te a d ifferent continuous function g. So, (h*, F*) 
is i<lentified. 

In the next subsections, we will see how economic restrictions can be used to 
identify o ther mo<lcls. 

2.2. lcle11 tijicatio11 of limit ecl clepe11de11t vMiahle models 

Limite<l dependent variable (LDV) models have bcen cxtcnsively used to analyze 
microeconomic data such as labor force participation, school choice, and purchase 
of commodities. 
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1, A typical LDV model ca n be dcscribcd by a pair of íuncli t> nal rclalionships, 
1f'. 
r, . 
' I· y = G(y*) 
'/ 

and 

y* = D(h*(x), 1:), 

where y is an observa ble dependen! vector, which is a lransformalion, G, of an 
unobservablc dependen! vector, y*. The vector y * is a tra11síor111alion, D, of thc 
value that a function, h*, allains al a vector oí observable variables, x, and the valuc 
of an unobscrvablc vector, 1:. 

In most popular examples, the íunction D is additi vc ly separable into the valuc 
.. of !, * and 1:. The model of lhe !irm that we have becn considering satisfies this 

restriction. Popular cases of G are the binary thrcshold crossing model 

y = 1 if y*;?: O and y = O o thcrw ise, 

and thc tobil model 

y = y* if y* ;?: O ano y = O o lherwise. 

2.2.1. Generalized regressio11 1110clels 

Typieally, the functi on /,* is the o bject oí most intcrest in LDV modcls, since it 
aggrcgates the iníluence of the vector of observable explanatory variables, x. lt is 
therefore o f interest to ask what can be lcarned about h* whcn G and D are unknown 
and thc distribution of 1: is also unknown. /\n answer to this qucstion has been 
provided by Matzkin (1994) for the case in which y,y*,h*(x), and t: are real val~ed, 
1: is distributed independently of x, and G 0 D is nondccrcasing and nonconstant. 
Roughly, the rcsult is that /,* is idcntificd up to a strictly incrcasing transformation. 
Formally, we can state the followin g result (see Matzkin (1990b, 1991c, 1994)). 

Theon.!111. Identijication <fh* in 5¡e11eralizecl reyressio11 muclds 

Suppose that 
(i) G 0 D: !ll2

-. lll is monolone incrcasing and nonco nslanl , 
(ii) h*: X-. !ll, where X e lll", bclongs to a set W of functions h: X-. IR that are 

continuous and strictly increasing in the Kth coordinate of x , 
· •· (iii) 1:Elil is distributcd indepcndently of x, 

(iv) the conditio nal probability of the Kth coordina te oí x has a Lebesgue density 
that is everywhere positive, conditional on the othcr coordinates of x, 

(v) for any x , x' in X such that /,*(x) < /,*(x') therc cxists t EIR such that 
Pr[G 0 D(/,*(x ), c) ~ t] > Pr[G 0 D(h*(x'), e)~ t], whcre thc probability is taken 
wilh rcspccl to the probabilily mcasure of 1:, and 

(vi) thc supporl oí the marginal distributi on of x includes X. 
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Then, h* is idenlificd within W if ami only ir 110 l wo funclions in W are slrictly 
incrcasing lransformalions of each olher. 

Assumplions (i) and (iii) guaranlcc lhal i11crcasi 11g values of /,*(x) gcncralc non
increasing values or lhc probabilily of _\' givcn .,. /\ssumplion (v) slightly slrenglhens 
lhis, guaranlecing thal varialions in the valuc or /,* are translalcd inlo varialions 
in !he valucs of lhe co ndilional dislribulion of _1· givcn x. /\ssumplion (ii) implics 
thal whcncvcr lwo funclions are nol slrictly i11crcasi11g lrni1sformations of cach 
olhcr, wc can llnd l wo neighborhoods al which cach fu nction allains difTcrenl values 
from the othcr funclion. Assumptions (iv) and (vi) guaran lec that lhose neighbor
hoocls havc posilive probability. 

Nolc the gencrality of the rcsult. One may be considering a vcry complicatcd 
modcl detcrmining thc way by which an observable vector x iníluenccs thc valuc 
of an observable variable y. Ir lhe inllucnce nf x can be aggrcgalcd by lhc valuc oí 
a funclion h*, lhe unobscrvablc random variable 1: in lhe model is distribuled 
in<.kpendcnlly of x, and bolh /,* and 1: inlluencc _r in a nondecreasing way, lhen 
onc can idcnlify lile aggrcgator function /,* up lo a striclly incrcasing transfor
malion. 

Thc idenlifica lion of a more general modcl, whcre e is not necessarily independent 
of x, /,* is a vector of functions, and G O D is nol neccssarily monotone increasing on 
ils clomain has not yet bcen studied. 

For the rcsult of the abo ve lheorem to ha ve any practicalily, one needs to find 
sets of functions that are such thal no two funclions are strictly increasing lrans
formalions of cach olhcr. When the functions are linear in a finile dimensional 
parameler, say /,(x) = /J·x, one can guaranlcc this by rcquiring, for example, lhat 
11 /J 11 = I or /lx. = 1, whcre /J = (/J 1 , ••• , /Jx_). Whcn !he functions are nonparamelric, 
one can use lhe rcslriclions of economic lheory. 

The set of ho 111ogencous of clcgrce one funclions that attain a given value, o:, at a 
given point, x*, íor cxamplc, is such lhat no lwo functions are slrictly increasing 
transformations of each olher. To sec this, suppose thal /, and /,' are in this sel and 
for some strictly increasing funclion f, /,' = f 0 /,; thcn since h().x*) = h'(Xx*) for each 
,t ~ O, it follows lhat f(t) = .f(a(t/a)) = f(h((t/(1.)x*)) = h'((t/a )x*) = t. So, f is the 
idenlily funclion. ll follows lhat /,' = h. 

Malzkin ( 19906, 1993a) shows that lhe sel of least-conca ve 3 functions that atlain 
common values al t wo points in lheir doma in is also a se t such that no t wo functions 
in the set are striclly incrcasing transformations of cach other. The sets of addilively 
separable functions described in Matzkin ( 1992, 1993a) also satisfy this requircment. 
Other sets of reslrietions thal could also be used ·remain to be sludied. 

3 A function 11: X->~. where X is a convcx subsel uf O!". is least-co11ce11·l• if it is concavc an<l if any 
concave function, 11', that can be writtcn as a strictly incrcasing lra11sformatio11, /, uf 11 can also be writtcn 
as a con ca ve lra11sfor111alio11, !/, of 11. For cxamplc, t·(x 1 • x !) = (x 1 • x 2) 11

2 is lcast-conca ve. but r(x 1• x !) = 
log(x ¡) + log(.\· 2 ) is 110I. 
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Sum111arizi11g, wc havc sliown that restrictions oí economic theory can be used 
to idcnlify lhe aggregalor íunction /,* in LDV models whcre lhc íunclions D and G 
are u11k11ow11. 111 the next subsL:clions wc will sce lww much rnurc can be recovered 

. in sorne particular modcls wherc thc functions D ami G are k110w11. 

· 2.2.2. Bi11ary tl,reshold crossi110 111odels 

A particular case of a gcncralized rcgression model where G and D are known is 
thc binary threshold crossing model. This modcl is widcly used not only in 
economics but in othcr scienccs, such as biology, physics, ami medicine, as wcll. Thc 
books by Cox (1970), Fi1111ey (1971) and Maddala (198:1), ;1mo11g olhers, describe 

• severa! cmpirical applicalions oí lhesc modcls. The semi- and nonparamctric 
identilication ami cstimation of lhcse models has becn studicd, among others, by 
Cossletl (1983), Han (1987), 1-lorowitz (1992), Hotz and Millcr (1989), lchimura 
(1993), Klcin and Spady (1993), Manski (1975, 1985, 1988), Matzkin (1990b, 1990c, 
1992), Powcll el al. ( 1989), Stoker ( 1986) and Thompson ( 1989). 

The following lhcorcm has bccn shown in Matzkin (1994): 

Tl,eoren1. lde111Uicatio11 e?((/,*, F*) i11 et hi11ary choice 111oclel 

Suppose that 
(i) y*= /,*(y)+ 1:; y = 1 if y* ~ O, y= O othcrwise. 

(ii) /i*: X - IR, whcre X e IR\ bclongs lo a set W oí functions /,: X - IR lhat are 
continuous and strictly incrcasing in the Kth coor<.linate lo x, 

(iii) e is distributed independently of x, 
(iv) the conclitional probability of the Kth coorclinatc of x has a Lcbcsgue clensity 

thal is cverywhere posilive, conclitional on lhc other coordina tes of x, 
(v) F*, the cumulalive clistribution f unclion (cdf) oí i;, is strictly increasing, and 

(vi) lhe supporl of the marginal distribution of x is includcd in X. 
Lcl r denote the set of monotonc incrcasing functions on IR with values in thc 
interval [O, I]. Then, (/i*, F*) is idcntiflcd within (W x r) ií ancl only if W is a set of 
funclions such that no two functions in W are strictly incrcasing transformations 
of each other. 

Assumplions (ii)- (iv) and (vi) are the same as in the prcvious theorem and they 
play thc samc role here as thcy did thcrc. Assumptions (i) and (v) guarnntee lhal 

, assumptions (i) and (v) in thc previous theorcm are satisfice!. They also guarantee 
that the cclf F* is idcntiflcd whcn /,* is identificd. 

Note that thc set of functions W within whieh /,* is idcntilicd satisíies thc samc 
properties as lhe set in thc prcvious thcorcm. So, onc can use sets oí homogeneous 
or degrcc onc functions, least-concavc functions, and additivc si..:parablc functions 
to guarantec the idcntification of /,* ami F* in binary thrcshold crossing modcls. 
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2.2.3 . Discrete choice 111<1clcls 

Discrcle choice modcls ha ve bccn ex lc11si vcly u sed i11 cco11nm ics s i11 ce the pionccring 
work of McFadde11 ( 1974, 198 1 ). The choice am o 11 g modcs of trn11sporta tio11, the 
choice amo11g occupati ons, a11d lhe cho ice amo11g applia11ces havc, for examplc, 
been stuclie<l usi11g thcsc models. Sec, for example. 1\-taddala ( 1983), for an extensive 
Iisl of empírica) applications of thcse modcls. 

111 discrelc choice modcls, a lypica l agc11t chooscs 011c altcrnative from a se t 
¡\ = {1, ... ,J} of alternalivcs. Thc agcnl posscsscs an llbsc rvablc vector, sES, of 
sociocco nomic characlcristics. Each a ltcnia ti vcj in ,\ is charactcrizcd by a vector 
of observable altributcs :iE Z, which may be diffc rc111 l'ur cach agent. For cach 
allcrnativcjE/\ , lhc agc11t's prcfcrcnccs for altcriwli vcj are reprcscntcd by lhe valuc 
of a ran<lom funclio11 U dcltned by U (j) = V*(J, s,:) + 1:i , whcrc 1:i is an unobservable 
ran<lom term. The age11t is assumcd to choose the altcrnalivc lhal maximizcs his 
ulility; i.c., he is assumed lo choose allernativej iff 

fo r /.; = 1, ... ,.l:k. =/J. 

(We are assumi11g thal thc probability of a tic is zc ro.) 
The i<le11lification of these mo <l els co ncerns lhc u11k11own function V* and thc 

distribution of the unobservable random vec to r 1: = (1: 1, . . . , 1:J). T he observable 
variables are the chosc11 alternatives, thc vector s of socioeconomic charac terislics, 
and the vector z = (z 1 , ••• , zJ) of attribulcs of the alterna ti ves. The papers by Strauss 
(1979), Yellott (1977) ami those mentioned in thc previ o us subsection concern the 
11011para metric an<l semiparametric identifica tion of discrete choice models. 

A resull in Matzk in ( 1993a) concerns the identificat io n of V* when the distri
bulion of the vector of u11observable variables (1: 1, .. . , 1:1 ) is allowed to dcpcnd on 
1 he vector of observa ble varia bles (s, z 1, . . • , zJ ). Let ti ng (1: 1 , • . . , i:J ) <lepcnd on (s, :) 
is impo rtan! beca use thcre is evi<lenee that thc estimators fo r discrete choice models 
may be very scnsitive to helcroskedasticity of 1; (Hausman and Wisc ( 1978)). The 
identificalion rcsull is obtained using the assumptio ns lhat (i) lhe V*(j, ·) functio ns 
are conlinuous and lhe samc for ali j; i.e. 3u* such that Vj V*(j, s, z) = u*(s, zi), and 
(ii), condilio nal o n (s, z 1 , . . • , zJ), thc F./s are i.i.cl .4 Matzkin ( 1993a) shows lhat a 
su flkicnl con<l ition for u*: S x Z-► IR lo be identil1ed wit hin a sel of continuo us 
functio ns W is thal for a ny lwo fun cli ons u, u' in W there exisls a vector s such that 
v(s, ·) is not a striclly increasing lransformation of v'(s, ·).So, fo r example, when the 
functions u: S x Z-t IR in W are such that for cach s, u(s, · ) is ho mogenco us of degrce 
o ne, continuous, convex and altains a value ex al so rne given vector z*, one can 
idcnlify lhc functi on v*. 

A secon<l result in Matzkin (1993a) cxtcnds lcchniqucs developed by Ycllott (1977) 

4 Maflski {1975, 1985) uscd this conditio nal indcpcn<lcncc assumpt ion to analyzc thc idcntiíication of 
scmipa ramctric d iscrclc choice modcls. 



i : 

,: 
I 

Ch. 42: /{cs1riC1i1111s o( Ec·111w111ic '/'lwory i11 Nr111¡1w·11111c1ric ¡\fr1h11tls 2535 

and Strauss ( 1979). Thc result is obtained under the assumption I hat the distributio n 
of s is independent of thc vector (s, z). It is shown that using shape restrictions on 
the distributi on of e and on thc function JI*, one can recover the distribution of the 
vector (i: 2 -e 1 , •• • , c; - t: 1) and the Jl*(j,·) functions ovcr sorne subset of their 
domain. The res trictions on JI * involve knowing its valucs at so rne points and 
requiring that V* attains low enough values over so1ne sccti ons of its domain. Fo r 
example, Matzkin (1993a) shows tl1at when JI* is a monolone increasing and 
concave function whosc valucs are known al somc poinls, JI* can be idcntified ovcr 
sorne subscl oí ils domain. 

Thc nonparamclric idc111ificatio11 o í discrctc choice nHH.kls undcr othcr 110 11 -

paramctric ass umptions 0 11 thc dislributi on of thc 1:'s rcma ins In be sludicd. 

2.3 . J de11t íjicat ion cf.[111,ct iv11s ye11 ernt i11g reyression fi111ct ions 

Severa! models in economics are spccified by the functio nal rela tion 

y = I*(x) + 1:, (7) 

whcrc x and 1: are, respccti vc ly, vec tors of observable ami unobscrvable functionally 
independent variables, a nd y is the observable vector of dcpcndent variables. 

Under sorne weak assumptions, the function /*:X -►~ can be recovered from 
the joint distribution of (x, y) without need of specifying any pa rametric structure 
for f *. To see this, supposc tha t E(clx) = O a.s.; thcn E(ylx) = f*(x) a.s. Hence, if 
/* is continuo us and the suppo rt of the marginal distribution oí x includes the 
domain off* , we can recovcr f* . A similar result can be obtained making other 
assumptions 011 thc conditional distribution of e, such as l'vtcdian(1: lx) = O a.s. 

In most cases, however, the object of interes t is no t a conclitional mean (or a 
conditional median) funclion /*, but sorne "deeper" function, such as a utility 
function gcncrating the distribution of dcmand far commodities by a consumer, or 
a production function gencra ting the distribution of profit s of a particular firm. In 
these cases, one could still recover these dceper f unctions, as long as they influence 
/*. This requires using results of economic theory about thc properties that f* 
needs to satisfy. 

For example, suppose tha t in the modcl (7) with E(1:lx) = O, x is a vector (p, 1) o f 
prices of K commodities and incomc of a consumer, and thc function f* denotes 
fo r each (p, 1) the vector of commodities that maximizes l he consumer's utility 
function U * over the bud gct set {z ~ Olp·z ~ /}; 1: denotes a mcasurement error. 
Then, imposing theorctical restrictions on I* we can guaran lec that the preferences 
represented by U* can be recovered from /*. Moreover, sincc /* can be recovered 
from the joint distribution of (y, p, 1), it follows tha t U* can also be rccovered from 
this distribution. Hcnce, U* is identified. The required thcorctical restrictions on 
f * ha ve been devclopcd by Mas-Colell ( 1977). 



253ú /U .. M111::ki11 

Theore111. Recoverahility of 11tility ji111ctio11s Ji'o111 cle111e111d ji111ctions (/'vlas-Colell 
(1977) ) 

Lcl W cieno le a se l of monotone increasing, continuous, concave and slrictly quasi
concavc functions such thal no lwo functions in W are strictly increasing trnnsfor
malions of each other. For any UEW, let /(¡,,/;U) denote the demand function 
generated by U, where pE~~. denotes a vector of priccs and I Elll++ denotes a 
consumer's incomc. Thcn, for any U, U' in W, such that U :f U' onc has that 
/(·,·;U) :f f(', ·; U'). 

This result slates that ditrerent utilily functions gencrate difTcrent demand 
funclions when lhe set of ali possible values of the vector (p, 1) is IR~+ 1

. Thc 
assumption thal lhc utilily funclions in lhe set \V are concave is the critica! 
assumplion guaranleeing lhal lhc sa me demand fun ction can nol be generaled from 
lwo dilTcrcnl ulility funclions in lhc sel W. 

Mas-Colcll ( 1978) shows lhal, under ccrtai n regularily condilions, one can 
conslrucl thc prefcrcnces rcprcsented by U* by laking the limil, with rcspect toan 
appropriale dislance fu11clio11, of a scquence or prcferences. Thc sequencc is 
construcled by lelting {¡/, /;} ;'~ 1 be a sequcncc that bccomes dense in IR~+ 1

• For 
each N, a ulility funcli on VN is conslruclcd using /\fr iat\ ( 1967a) conslruction: 

.. , N}, 

wherc z; =/*(¡/,Ji) ami thc ¡;i•s and )_;,s are any numbers salisfying the inequalities 

i, j = 1, ... ,N, 

i = l, ... ,N. 

The prcfcrcnce relation rcprcscnlcd by U* is thc limil of the sequcncc of preference 
relations rcpresenled by thc funetions VN as N goes to oo. 

Summarizing, wc havc shown that using Mas-Colcll's (1977) result about the 
recoverability of utility functions from dcmand funclions, we can idcntify a utility 
function from thc distribution of its dcmand. 

Following a proccdure similar lo the onc dcscribcd abovc, one could obtain non
paramctric idcntification rcsults for othcr modcls of cconomic theory. Brown and 
Matzk in (1991) followcd lhis path lo show lhal lhc prcfcrcnccs of hetcrogcncous 
consumcrs in a purc cxchangc cco nomy can be idcntificcl from thc conditional dis
tribution of cquilibrium priccs givcn thc endowmcnls of thc consumcrs. 

2.4. Jde11tificatio11 of si11111lta11eo11s eq1wtio11s mod<!ls 

Restrictions of cconomic theory can also be u sed to idcntify the structural equations 
of a system of nonparametric sirnultancous cquations. In particular, when the 
functions in the systcm of cquations are continuously difTercntiable, this could be 

1 1 
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done by determining what type of restrictions guarantee thal a given rnatrix is of 
full rank. This malrix is prcscnlcd in Rochrig (1988). 

Following Rochrig, lct us describe a systcm of structural cquations by 

r*(x, y) - 11 = O 

whcre. xE~K, y, 11 E~c, and r*: ~K x ~e - ~G; y denotes a vector of observable 
endogcneous variables, x denotes a vector of observable exogenous variables, and 
11 denotes a vector of unobservable exogenous variables. Let e/,* denote thc joint 
dis tribution of (x, 11). 

Supposc that (i) V(x, y) ur*/vy is full rank, (ii) thcre exists a function rr such 
thal y= n(x, 11), and (iii) cf,* is such that u is distributcd in<lcpcndcntly of x. Lct (r, c/J) 

~ be anothcr pair salisfying these same conditions. Then, under ccrtain assumptions 
on thc support of the probability measures, Roehrig (1988) shows that a necessary 
and sulTicient condition guarantceing that P(r*, e/,*) = P(r, </>) is that for ali i = 1, ... , G 
and ali (x, y) the rank of the rnatrix 

( 
ur;/'o(x, y)) 
ur*/u(x, y) 

is less than G + 1. In the above expression, I'¡ denotes the ith coo rdinntc function of 
,. and P(r, </J) is thc joint distribution of thc observable vcctors (x, y), when (r*, 4>*) 
is subslitulcd with (r, rj,). 

Consider, for examplc, a simple syslcm of a dcmand ami a supply funetion 
describcd by 

q = d(/,p, w) + eq, 
p = s(w, q, 1) + es, 

where q denotes quantity, p denotes price, J denotes the income of the consumcrs 
and III denotes input price. Then, using the rcstrictions of cconomic theory that 
od/ow = O, us/ol = O, ucl/uJ -=f. O and os/ow -=f. O, onc can show that both the demand 
function and thc supply function are identified up to additive constants. 

Kadiyali (1993) provides a more complicatcd example where Roehrig's (1988) 
conditions are used to determine whcn the eosl and dcmand functions of the firms 
in a duopolistic rnarket are nonparametrically identified . I am nol aware of any 
other work that has used these conditions to identify a nonparametric model. 

3. Nonparametric cstimntion using cconomic rcstrictions 

Once it has been established that a function can be idcntiftcd 11onparametrically, 
onc can procecd to devclop nonparametric estimators for that function. Severa! 
mclhods cxisl for nonparnmctrically cstimati11g a given furn.: tion. In the following 
subsections we will describe sorne of thcsc methods. In particular, we will be 

1 
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conccrncd with thc use of lhcsc met hods to cs timatc nonparamc tric functions 
subjccl lo rcslricti ons of cconomic thcory. Wc wi ll be conccrncd only with 
in<lcpcndcnl obscrva lio ns. 

lmposing reslriclions of economic lhcory on cstimalor of a funclion may be 
ncccssary lo guaran lec thc idenlifkalion of lhe function being cslimaled, as in the 
models describcd in thc previous sccl ion. They ma y also be uscd lo reduce lhe 
variancc of lhe eslimato rs. Or, thcy may be imposcd lo guaranlce lhal lhe resul ts 
are meaningful, such as guaranlecing lhal an es timatcd demand fu nction is d own
wards slopi ng. Morcover, for some nonparnmctric cs timal o rs, imposing slwpe 
rcstrictions is critica! for thc fcasibilit y o f thcir usc. l l is to thcsc cslima to rs thal wc 
lurn ncxl. 

3. / . Estinllltors tllllr d<!/H'1ul 011 rhe shape ofthe esti111<1tC'd.fi111ctio11 

When a funclion lh a l one wants lo estímate sa tisfics ccrta in shape propcrlics, such 
as monolonici ty and concavity, one can use llwsc prupcrtics to estima te the function 
nonparamelrically. Thc main practica! lool for o btaining thesc esl imalors is lhc 
possi bilily oí using lhc shapc propcrlics of lhc nonparamclric funclion lo charac
lcrizc lhc sel oí va lucs lh a l il can allain al any finilc number oí poinls in ils domain. 
T hc cs limation met hod proceeds by, lirsl, cslimating thc values (and possibly thc 
gradienls or subgradicnts) oí thc nonparamclric íunclio n al a finilc number oí poi nts 
of its do ma in, an<l second, inlcrpolating among thc oblaincd valucs. The cstimalo rs 
in lhe firsl slcp a re subjecl lo lhe reslrictions implicd by lhe shapc properlies oí lhe 
íuncl ion. Thc intcrpo la ted íunclion in lhc sccond slep sa lisfies those sume shapc 
properlies . 

The eslimalor prcsenled in the inlroduction was obta ined using this melhod. In 
tha l case, the conslraints on thc vector (/1

1
, .. . , /, '\ Tº, . .. , T,.,. + 1) oí values and 

subgra<l icnls of a convcx, homogencous oí <legrce om:, and monotone function were 

J,i = Ti .:.,/, i = O, . .. , N + 1, 

J,i;?: yi. ;,J, i, j = O, ... , N + 1, 

Ti ?: O, i = O, ... , N + l. 

The conslrainls on lhe vecto r (F 1
, ••• , FN) oí va lues oí a cdí were 

J;-i ~ J,'i ·r J i J i . . - 1 N ~ 1 1 < , , 1,J - , ... , , 

O ~ Fi ~ 1, i = 1, . . . , N. 

(4') 

(5') 

(6') 

(2') 

(3') 

Thc necessily oí the first sel o í conslra in ts follows by dclin ition. A íunclion h: X-. IR, 
where X is an open and convex sel in IR\ is convex ií and on ly if fo r all xEX lherc 
exisls T(x)EIRK such lhal for a ll )'E X, h(y) ;?: h(x) + T(x)·(y - x). Lel h be a convex 
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funclion and 'J"(x) a subgradicnl of /¡ al x; /¡ is homogcncous of dcgrcc onc if and 
only if /r(x) = T(x)·x and /, is monolonc incrcasing if and only if T(x) ~ O. Lelling 

, x =_../,y= xj, h(x) = h(xt h(y) = l,j and T(x) = T¡ onc gcls thc abovc conslraints. 
Convcrscly, lo·sce lhal if !he vector (/1°, ... , 1,N + 1; Tº, ... , ·¡-·'·' ') satislics lhe abo ve 
conslrainls wilh hº = O ami 1,,,·+ 1 = o:, lhen ils coordinatcs mus! correspond lo tbc 
valucs and subgradicnls al xº, ... , xN + 1 of sorne convcx, monolonc and horno
geneous of degrcc onc function, wc note that lhe function h(x) = max{Ti·xlí = 
O, ... , N + l} is onc such funcli on. (See Malzkin (1992) for a more dctailed 
discussion of thesc arguments.) 

Thc cslimators for (/,*, F*) oblaincd by inlcrpolaling lhc rcsults of lhc oplimization 
in ( 1) · ((i) are consisten l. This can be provcd by noling llwt thcy are maximum likcli
hood cslimalors and using rcsults aboul thc consislcncy of 1101-ncccssarily para
mclric maxirnum likclihood cslimalors, such as Wald ( 1949) and Kiefcr and 
Wolfowilz ( 1956). To scc thal (I,, [)isa maximum likclihood cs limalor, lcl lhc set 
of nonparamctric cstimators for (Ji*, F*) be thc sel of íunctions that sol ve thc 
problcm 

N 

max LN(h, F) = ¿ {;/ log [F(h(x;))] + ( 1 - yí) log [ 1 - F(/i(x¡)) J} 
(h,F) i = 1 

subjccl to (h, F)E(H x r), (8) 

whcrc H is thc set of convcx, mono tone increasing, and homogcncous oí degrec onc 
funclions that altain the value o: at x* and r is thc sel of monolone increasing 
functions 011 lR! whose valucs lic in lhc inlcrval [O, 1]. Noticc lhal !he valuc of LN(h, F) 
depends on h and F only lhrough lhe values that thcse funclions atlain al a finite 
number of poinls. As sccn above, lhc bchavior of lhesc valucs is completely charac
lcrizcd by lhe rcslriclions (2)-(6) in thc problem in thc introduction. Hcnce, lhe set 
of solutions of lhc oplimizalion problem (8) coincides with the sel of solutions 
oblained by interpolaling lhc solutions of thc oplimization problem described by 
(1)- (6). So, thc cst imalo rs we havc bccn considcring are maximum likclihood 
cslimalors. 

Wc are nol awarc of a11y cxisting rcsulls aboul lhc asymplotic dislribulion of 
thcsc nonparamclric maximum likclihood cstimalors. 

Thc principies lhat havc bccn exemplificd in lhis subscction can be gcneralized 
to eslimale other nonpararnctric models, using possibly othcr types of extremum 
cslimalors, and subjecl lo difTercnt sets of rcslriclions on thc estimatcd functions. 
The nexl subsection presenls general resulls lhat can be uscd in those cases. 

3.1./. Ge11ernl types ofshn¡>e restrictions 

Gcncrally spcaking, onc can intcrprcl thc lhcory bchind cslimators of thc sorl 
dcscribcd in thc prcvious subseclion asan immcdiatc cxlc11sion of thc thcory bchind 
paramctric M-cslimalors. Whcn a function is cslimalcd paramctrically using a 
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maximization proccdurc..., thc function is specilkd up to thc value of sorne finite 
dimensional parameter vec to r OE0~'-, ami an est irnalm for the pararncter is obtained 
by maximizing a cr ilcrion function over a subsel oí 0~ 1

·. When the nonparametric 
shape restricted meth od is used, the function is specified up lo sorne shape 
reslriclions andan eslimalor is obtained by maximizing a criterion function over the 
sel of funclíons salisfying lhe speciíied shapc restrictions. 

The consistency of lhese nonparamelric slwpe restricted estimators can be proved 
by ex lending thc usual arguments to apply to subscts of functions ínstead of subsets 
of finile dimensional veclors. For example, lhc following resull, which is díscussed 
at lcngth in thc chapter by Newey and Mcl7adde11 in this volumc, can tyrical ly be 
used: 

Theore111 

Lct 111* be a function, ora vector of functions, that belongs lo a sel of functions M. 
Let L N: M-. IR denote a criterion function that depends on the data. Let 111 ,,. be an 
cstimalor for 111*, defined by 1f1N Eargmax {LN(111)l111E M }. Assumc that the following 
conditions are sat isfied: 

(i) Thc function LN converges a.s. uniformly over M to a nonrandom continuous 
function L: M-. IR. 

(ii) The fun ction 111* uniquely maximizes L ove r !he set M. 
(iii) The set M is cornpact with respect to a 1111.:tric d. 

Then, any sequence of estimators {111N} converges a.s. to 111* with respecl to the 
metric d. That is, with probability one, lirnN -• w c/(111,,., m*) = O. 

See the Newey and McFadden chapter for a description of the role played by 
each of thc assumplions, as wcll as a list of alterna ti ve assumptions. 

Thc mosl substantive assumptíons are (ii) and (iii). Depending on the definilíon 
of LN, lhe identification of 111* typically implies lhat assumption (ií) is satisfied. Thc 
satisfaction of assumption (iii) dcpcnds on the deflnitions of the set M and of thc 
mctric d, which mensures the convergence of thc eslimator to the true function. 
Compactncss is more diflJcult to be satisfied by sets of functions than by sets of 
finite dimensional parameter vectors. Onc often faces a trade-off betwcen the 
strength of the convergcnce rcsult and the strength of the restrictions on M in the 
sense that the strongcr the metric d, the stronger thc convergencc result, but 
the more restricted thc set M must be. For example, the set of convex, rnonotone 
increasing, and homogcneous of dcgree one functions that a ttain the value a at x* 
ancl have a common open domain is compact with respcct to thc L1 norm. If, in 
addition, thc f unctíons in this set possess uniformly boundcd subgradicn ts, thcn the 
set is compact with respect lo the suprem urn norrn on any compact subsct of thcir 
joint domain. 

Two properties of thc cs tímation methocl allow one to transform the problcm of 
finding functíons tha t maximizc LN ovcr M inlo a finitc dimensional optimization 
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problem. First, it is necessary tlrnt the function LN dcpends on any 111E M only 
through the values that 111 atlains al a finite number of points. And second, il is 
necessary that the valucs thal any funclion me M may altain al those finitc number 
of poinls can be characterize<l by a flnitc sel of inequality constrainls. Whcn thcsc 
comlitions are satisfied, onc can use standard routincs to sol ve lhc finitc dimensional 
optimizalion problcm tlial ariscs whcn cstimaling functions using this mcthod. Thc 
second rcquirement is not trivially salisfied. For cxamplc, thcrc is no known finite 
set of ncccssa ry and sullicicnl conditions on lhc valucs ora function al a linitc 
nurnbcr or points guarnntecing lhat thc function is diffcrcntiablc and o:- Lipschitzian 5 

(o:> O). In the cxarnple givcn in Scction 3.1, the concavity of thc functions was critica! 
in guaranlecing lhat we can characlcrize thc bchavior or thc l'unclions al a linitc 

· number of points. 
While the results discussed in this scction can be applicd to a wide variety of 

models an<l shape restrictions, sorne lypcs of modcls and slwpc rcstrictions havc 
rcceived particular attcntion. Wc next survcy sorne of thc litcraturc concerning 
estimation subjecl to monotonicily and concavity reslrictions. 

3.1.2. listi111atio11 <if111011oto11eji111ctio11s 

A large bo<ly of lilcrature concerns thc use of monotonc rcstnct1ons to estímate 
nonparametric functions. M ost of this work is summarizcd in an cxccllenl book by 
Robertson et al. ( 1988), which updatcs resulls surveycd in a previous book by 
l3arlow et al. ( 1972). (Sec also, Prakasa Rao ( 1983).) The book by Robcrtson et al. 
describes results about thc computation of the cstimators, their consistency, rntes 
of convergencc, and asymplotic distributions. Subseclion 9.2 in that book is of 
particular intcrest. In that subsection thc authors survcy cxisling rcsults abo\:_lt 
monot one rcstrictcd cstimalors for the funclion f* in lhc nwdd 

y = I*(x) + ,;, 

wherc E(1;jx) = O a.s. o r Mcdia11(1;jx) = O. Kcy papcrs are Brunk (-1970), whcre thc 
consistcncy and asymptotic distribution of the monotonc rcstrictcd least squares 
cstimators for f* is studicd whcn E(r.lx) = O and xE[0, I]; and Hanson et al. (1973), 
where consistency is proved when xE[Ü, l] x [O, 1]. Earlicr, /\shcr et al. (1955) had 

• prove<l sorne weak convcrgcncc rcsults. Recently, Wang ( 1992) dcrived thc ratc of 
convcrgcncc of the monotonc rcstrictcd estimator for f* whcn E(1:lx) = O a.s. and 
xE[0, 1] x [O, 1 J. Thc asymptotic distribution of the lcast squarcs estimator for this 
!alter case is not yct known. 

Of course, thc general mclhods described in lhc prcvious subscction apply in 
particular to monotonc functions. So, onc can use thosc rcsults to determine the 
consistcncy of monotone restricted cstimators in a varicty of models that may or 
may not foil into the catcgories of models that are usually studied. (See, for example, 
Cosslctl ( 1983) ancl Matzkin ( l 990a).) 

5 
/\ funclion Ji: X-> IR, whcrc X e Ot'\ is a-Lípschit ziw, (o: > O) if Vx, )'E X. 1 h(x) - h(y)I ~ o: 11 x - y 11. 
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.U .3. Est i111c1t io11 ,f co11ce1l'C! .fi111ct ions 

Concavit y is a shape propcrty that is oflen satisfü:d by functi ons typically found in 
economic 111 0<.kls, such as utility and production runcti ons. Estimation subjcct to 
these res trictions has rcccivcd considerable attcntiun in sta tistics as well as in 
CCOll OllllCS. 

Hildrcth (1954) proposcd using thc n1011 o tonici1 y oí thc slo pc of concave func
tions to derive a least squarcs estimator íor a univariatc concavc function /*, in thc 
modcl 

.I' = f*(x) + ,:. 

Thc scalar x was assumcd to attain only a linitc numb<.:r of valucs: x 1 < x2 < ·· · < xN. 
Thc est imators for the valucs of /* al x 1, ••• , x·'· ,v<.: re obtained by solvi ng the 
problem 

¡\' 

11111111111 ZC ¿ 11'¡( fi - /i)2 
lf1, ... ,J•'• : i = 1 

subject to 

f i - t -1 /¡ + 1 - t 
--,- . ---- ~ -- . ------·--., 
x 1 _ x1 - 1 x1 + 1 _ x 1 

i = 2, ... , N - 1, (9) 

where IV; is the number of obscrvations with x = x; and fi is thc average observed 
valuc of y whcn x = x;. Hilclrcth's paper co ncerned thc computa tion of this 
cstimato r. 1-lanson ami Plcdger ( 1976) proved consistency of this estimator when 
E(Dlx) = O and thc support of thc probability mcasurc of x is [O, !J. Ncmirovskii 
et al. (1983) and Mammcn (1991b) st udicd the ratc ofconvcrgcnce. The asymptotic 
distribution of this cstimator was recently found by Wang ( 1992). Let ](xº) denote 
the value of the concavity rcstrictecl lcast squares cstimator al xº and !et 0'

2 denote 
thc variance of B. Wang showed that , undcr certain conditions, 

2/5 6 
11 - ----- ---- -

f"(x º)a4 

1/5 

(] (.xº) - .f (xº)) 

converges to a randorn variable, Q, that has a sy mmctric distribution. Using a 
Monte Cario method, Wang showed that Q has a bell shaped density, with a 
standard cleviation of approximately 0.8 and a 95'.X, quantilc of approximately 1.8. 
The asympto tic distribution of this cstimator whcn the dimension of x is bigger lhan 
1 is not yet known. 

The computation of a concavity restricted estimator for a nonparametric multi
variatc funclion can be obtaincd by estimating no t only the values but also thc sub-
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gra<lients of thc conca ve fun ction (Matzkin ( 1986, 199 1 a), l3alls ( 1987)). The 
constraints in (9) bccome 

i, j = 1, ... , N , 

ami thc minimization is over lhc valucs {.t} an<l thc vcctors : '/';J·. To a<ld a 1110110-

to nicit y rcs triction, one includcs thc constrnints 

i = l , ... , N. 

To bound thc subgradicnls by a vecto r 13, or lo bound thc valucs o f thc function 
by thc valucs of a function h, onc uses, rcspccli vcly, thc co 11strai111s 

i = l, .. . , N, 

and 

i = l , .. . , N . 

Algorithms fo r thc resulting constrainecl optimization problcm were developed 
by Oykstra ( 1983) and Goldman and Ruud ( 1992) íor thc lcas l sq u a res es timator, 
an<l Matzkin (1 993b) fo r general typcs of objective functions. The algorithms by 
Oykslra and by Goldman an<l Ruu<l are cxtcnsions of thc mc thod proposc<l by 
Hil<lrcth ( l 954). This algorithm proceeds by solving the problcm 

minimize 11 y - A' A 112, 
).~ o 

where A is a matrix whose rows are ali vecto rs /J Efíl.N with /J; = 1 (some i), /Jk ~ O 
(ali I< =I= i), and /J'X = O. The rows of thc N x K ma tri x X are thc o bserved points xi, 
the first coordina tes of which are ones. T his is the dual of thc problem of finding the 
vecto r z that minimizes the sum of squa red errors subjcct to co ncavity constraints 

minimizc II y - z 11 2
. 

A· z ~ O 

The solution to this problem is i = y - A'i, whcre X is thc solution to the dual 
· problcm. Whilc the dual p roblcm is minimizcd over more variables, the constraints 

are much simpler than thosc of thc primal problcm. The algo rithm minimizcs the 
o bjectivc function o ver one coordinate of A al a time, rcpea ting the procedure till 
con vergence. 

The consistency ofthe concavity rcs tricted lcast squares estimalo r o f a mullivariate 
nonparamctric concave function can be provcd usin g thc consistcncy rcsult 
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presented in Seclion J.1.1 . Suppose, for cxampk. thal in the modcl 

y = I *(x ) + ,:, 

xE X, where X is an open ami convex subse l of Ir~\ f*: X-► Ol'', and !he uno bserved 
vector cEIRq is dislributcd independenlly ofx wilh mean O and variance .E. Lct BEIR~ 
and /;: x -111•1• /\ssumc that / * belo ngs lo !he sel, H. oí concave funclions f: X - !Rq 
whose subgradicnls a re uni fo rmly boundcd by 13 and thcir values satisfy that Vx EX, 
1/(x)I ~ b(x). Thcn, H is a compact sel, in thc sup norm. of cquiconlinuous functions. 
So, following !he same argumcnls as in, e.g., Epstcin and Yatchew (1 985) and 
Gallant ( 1987), onc can show th at the functi on L8 : H -• ~ defined by 

co nverges a .s. uni fo r111l y l o the co nlinu ous functi on L: 1-1 -► IR dcfincd by 

L(/ ) = </ + f U(x) - · /*(x) )'( f( x ) - / *(x)) d¡i(x), 

where ¡t is the probability measure of x . Since thc functions in H are continuo us, L 
is uniquely rninimized at /*. Hcnce, by the theorem of Subscctio n 3.1. l it follows 
that the least squares eslimalor is a strongly consistcnt cstimator for f *. 

For an LAD (lcast absolute devia tions) nonparametric concavity rcstricted 
es timator, Balls ( 1987) proposed proving consislency by showing that the distance 
bctween !he concavity reslricled cstimator and lhe true function is smallcr than the 
distancc be tween an unres tricted consistent nonparametric splines estimator (see 
Scclion 3.2) and !he true functi on. Malzkin ( 1986) showed consislcncy of a 110 11-

parametric concavity res tricted maximum likelihood cstimator using a variation 
of Wald's (1949) thcorem, which uses compactness o í thc set H. No asympto tic 
distribution results are kno wn for these cstirnators. 

3.2. Esti111ativ11 11si11y se111i11011purc1111etric: 111 etlwds 

Scminonparnmetric methods proceed by approx i111a ting any function of interest 
with a paramctric approx imation. The larger thc numbcr of obscrva tions available 
to estímate thc functi on, the larger thc numbcr of paramclcrs used in thc approxi
mating function and thc bcllcr thc approximation. Thc parnmctric approximations 
are chosen so that as the num bcr of observations increascs, thc sequencc of parametric 
approximations converges to the true function, fo r appropriatc valucs of the 
parnmetcrs. 

A popular cxamplc of such a class of pa ramctric approx imations is the set of 
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funclions dcflned by lhc Fouricr llcxiblc form (FFl7) cxpansion 

fl 8 (x, O) = h'x + x ' Cx + ¿ ak e;k·.-, 
lk I' · ·r 

2545 

where i = j - 1, h E0,~ \ C is a K x K matrix, ctk = 11k + ir\ rur some real numbcrs 
11k and 1\ , k. = (/.; 1 , . . . , k,,;) is a vector wilh inlegcr coordina les, and lkl* = Lt= 1 lk;I. 
(Sec Gallant ( 1981 ).) 

To guarantcc lhat lhe above sum is real valucd, it is imposcd thal v0 = O, 11k = 11_k 

and vk = - v-k · Morcovcr, thc valucs of cach coordina le of x nccd lo be modified 
to fall inlo lhc [O, 2n] intcrval. Thc coordina les o f thc param<.:ler vector O are thc 
11/s, thc u/s and lhc cocfficicnts of !he linear ami quadratic terms. Importanl 
aclvanlagcs of this cxprcssion are thal it is linear in lhe parametcrs and its partía! 
derivalivcs are casily calculaled. As K - co, lhc FFF and its parlial clcrivalivcs up 
lo ordcr 111 - 1 approximale in an U' norm any 111 times uilkrcntiablc funclion and 
ils 111 - 1 clerivalives. 

lmposing rcstriclions on thc valucs of lhe paramelcrs of lhc approximalion, onc 
can guarantec that lhe resulling eslimalor salisfies a desircd shape propcrty. Gallant 
and Golub (1984), for example, impose quasi-convcxity in the FFF estimator by 
calculaling lhe cstimalor for O as the solulion to a constrained minimizalion 
problcm 

min sN(O) subjccl lo r(O) ;?: O, 
(/ 

wherc sN( ·)isa data dcpcndenl funclio n, such as a weightcd sum of squared crrors, 
r(O) = minx v(x, O) and v(x, O)= min= {z'D 2yN(x, O)zlz'Dy 8 (x, O) = O, z'z = 1 }. DyN and 
D2uN denote, respcclivcly, thc grndicnt and Hcssian of y,.,. with rcspecl lo x. Gallant 
and Golub ( 1984) ha ve dcvcloped an algorithm to sol ve lhis problcm. 

Gallant ( 1981, 1982) dcvcloped rcstriclions guarantccing lhal lhc Fouricr flexible 
form approxirnalion salisfics homothcticity, linear homogcneily or separability. 

Thc consistcncy of scminonparamclric eslimalors can lypically be shown by 
appcaling lo the following thcorem, which is prcscnled a11d Jiscusscd in Gallant 
( 1987) all(I Gallant and Nychka ( 1987, Thcorcm O). 

Theure111 

Supposc lhal 111* bclongs to a sel of functions M. Lcl L,.,.: M -► líl denote a criterion 
function lhat depends on thc dala. Lcl { M"'} denote an infinilc sequence of subsels 
of M such that ··· M¡y e MN+ 1 e MN + i ···. Lct 111~ be an cslimalor for m*, defined 
by 111~ = argmax {LN(111)l111E M,..,. }. Assumc lhal lhc following condilions are satisfied. 
(i) Thc function LN converges a.s. unif ormly o ver M lo a nonrandom conlinuous 

function L: M - R 
(ii) Thc funclion 111* uniqucly maximizcs L ovcr thc sel M. 
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(iii) The set M is compacl wilh respccl lo a mctric el. 
(iv) There exists a sequcncc of fu11ctio11s {!Is} e M such thal rJNEM ,,, for ali 

N = 1, 2, ... and c/(y8 , 111*) -► O. 

Then , thc sequence of estimators {111 ,,.} converges a.s. to 111"' with respccl to lhc 111etric 
d. Thal is, wilh probabilily 011c, limN -• •(• d(111,,., 11,•¡ = O. 

This resull is ver y similar lo lhe lhcorc111 in Subs<.:clion 3.1.1 . I ndecd, Assumplions 
(i)- (iii) play lhc samc role l]cre as lhey playcd in lhal lheorem. Assumption (iv) is 
necessary to subslitule for the facl thal the maximizalion of LN for cach N is not 
o ver the whole space M bul only o ver a su bsct, M ,.,., of M. This asumption is satisfled 
when lhe MN sets become dense in M as N _. ,r.:. (See Gallant (1987) for more 
discussion aboul this resull.) 

Asymplolic normalily results for Fourier flcxibk forms and olher seminonpara
mclric eslimators havc bccn dcvclopcd, among olh<.:rs, by Andrcws ( 1991 ), Easlwood 
( 1991 ), Easl wood and Gallant ( 1991) and Galla111 and Souza ( 1991 ). None of thcsc 
considers thc case where lhc estimalors are reslrictcd to be concave. 

The MN sets are typically defined by using rcsults that allow one to characterize 
any arbitrary funclion as thc limit of an inflnite sum of parnmctric functions. Thc 
Fouricr flexible form dcscribed above is one cxamplc of this. Each set MN is defincd 
as the set of functions oblained as the sum of lhe firsl T(N) tcrms in the expansion, 
where T(N) is incrcasing in N and such that K(N)-> UJ as N-> UJ . 

Some other types of expansions lhat havc bccn used to deftne parametric 
approximations are Hermile forms (Gallan! and Nychka ( 1987)), powcr series 
(l3crgslrom ( 1985)), splines (Wahba ( 1990)), and M üntz- Szatz typc series (I3arnctt 
ami Yuc (1988a, 1988b) and Barnell el al. (1991)). 

Splines are smooth functions that are pieccwisc polynomials. Kimeldorf and 
Wahba(l971), Utreras(l984, 1985), Yillalobosand Wahba(l987)and Wong(l984) 
studied thc imposition of monotonicity and convexity restrictions on splines 
estimalors. Yatchcw and Bos (1992) proposed using splines to cstimate a consumer 
dcmand funclion subjccl lo lhe implicalions of economic theory on dcmand 
funclions. 

Barnctt el al. ( 1991) impose concavily in a M lintz··-Szalz typc series by requiring 
that each term in thc cxpansion satisfics conca vity. This rnclhod for imposing 
concavity restrictions in series eslimalors was proposcd by. McFadden (1985). 

3.3. Esti111atio11 11si11g weighted avernye 111etl10ds 

A weightecl average cstirnator, f, for lhe function F* in the modcl . . 

y= f"'(x) + 1;, 
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where E(1:lx) = O, has lhe form 

N 

/(.\') = ¿ l\',v_¡(.,)/. 
¡ ~ 1 

l 11 lhis cxpressio11, {/, x;l"' is a sel of N observalions a11d thc 11·.,· ,; funclions are such 
lhal ¿~~ 1 ll'N_¡(.x) = 1. Thc fu11ctio11s 11•.v.; are typically 1w1111cgative and decreasing in 
lhc vector (x - x 1, ••• , .\' - x''°), so thal observations al ncarby poinls are given more 
weighl in lhe eslimalion of/*(x) lhan furlhcr away points. Thc scquencc offunclions 
{ ll'N,i} is ch osen so as lo guaran lee lhc consíslency allCI asymptolíc normalily of the 
eslimator. The melhod of kcrnels (Nada raja ( 1964), Watson ( 1964)) and the method 
of nearesl ncighbors (Royal! ( 1966)) are cxamplcs of wcightcd average mclhods. 

Whcn no particular restrictio11s are imposcd on thcsc cslimalors, lheir calculalion 
does 11ot requirc maximizalion of a fu11clion. This is a11 advantage ovcr the esli
nplors discussed in lhc prcvious sections. Thc asymplolic dislribulion of thc 
unreslriclcd cslimalors has bccn cxlcnsivcly sludicd. Scc thc chaplcr by Hürdle and 
Linlon in this volume for a survey of lhosc rcsulls. 

To use shapc rcslrictions wilh wcighlcu average cstimators, one can firsl use a 
wcighled average mclhod lo smoolh lhe dala and lhc11 use a shapc reslrictcd 
rnelhod, such as lhc mellwds dcscribcd in Scclion J.1.1, with lhc smoolhcd data. 
Or, onc can interchange thesc sleps. The cslimalors dcvclopcd by Fric<lman and 
Tibshirani ( 1984), Wrighl ( 1982) ami M ukarjec's ( 1988) are of thcsc lypcs. Mammcn 
(1991a) sludied !he bchavior of lwo eslimalors, 111s, a11d 111,s, Thc ms, eslimator 
rcsulls from f1rsl obtaining /(x) as 

N 

/(x) = ¿ wN(x - xi)i, 
j = l 

ami sccond, calculaling a monolone eslimalor as a solulion lo 

whcrc H is a sel of monolonc functions. The 111,s cstimator is obtaincd by rcversing 
lhc slcps. He showcd lhal whcn thc { ,n are i.i.d. and lhe _,; E [ - 1, 1] and are cq ually 
spaccd, lhc cslimalors for /*(O) rcsulting from cilhcr or lhcsc proccdurcs are bolh 

· of lhc ordcr N - 215, for an approprialc { wN(-)} sequencc. 
M uka1jcc and S!crn ( 1994) proposcd using a (irsl-smoolh sccond-monolonizc 

procedure to allcvialc lhe compulalional burdcn involvcd wilh cslimaling a 
mullivarialc rnonolonicily rcslricted lcasl squarcs cslimalor. The cslimalor, (, is 
dcfined by . 

](x) = (]u(x) + J,Jx))/2, 
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wherc 

and whcre ],_ is a kernel est imalo r for /. The consistc11cy of this cstimator follows 
írom the consislcncy oí !he kernel eslimalor. No asymplotic distribution for it is 
known. 

A kernel eslimalor was also uscd in Matzk in ( 199 1 d) to o btain a smoo th intcr
polalion of a concavily rcslrictcd nonparamctric maximum likclihood eslimator 
and in Malzkin and Ncwcy (1992) lo cslimale a homogeno us funclion in a binary 
threshold crossing modd. Thc Malzkin and Newcy cstimalor posscsscs a known 
asymplo lic dislribulion. 

4. Nonparnmctric tests using cconomic rcstrictions 

The testing oí cconomic hypothcscs in paramctric modds suffcrs from drawbacks 
similar to thosc oí lhc cslirnation oí paramctric modcls; thc conclusions dcpcnd on 
the paramctric spccifications uscd. Supposc, for cxamplc, lhal onc is intcrcstcd in 
tcsting whclhcr sorne givcn consumcr dcmand data providc support for lhc classical 
moclcl of utility maximization. The parnmctric approach would proceed by: first, 
spccifying paramclric slruclures for lhc demand funclions; sccond, using thc 
dcmand data to cslimalc thc parnmetcrs; ancl thcn lcsti ng whcther thc estimated 
demand functions sa tisíy the integrability conditions. But, if the integrability 
conditious are nol satisflcd by the paramctrically cslima ted dcmand functions it is 
nol clear whcther this is cvidcncc against the utilily maximization rnoclel ar against 
thc particular paramelric slruclures choscn. In conlrasl, a nonparamctric test of thc 
utility maximization modcl wo uld use demand funclio ns cstimated nonparamct
rically. In this case, rcjeclion of the inlegrnbility co nditions provides stronger 
cviclcncc against thc ulilily maximization modcl. 

4.1 . No11statistical tests 

A largc body of litcraturc dating back lo thc work oí Samuclson (1938) and 
Houlhakkcr ( 1950) on Rcvcalccl Prcícrcnce has dcvclopcd nonparametric tests for 
the hypolhcsis that data is consisten! wilh a particular choice modcl , such as the 
choice macle by a consumcr o r a flrm. Most oí thcsc tests are nonstatistical. The 
data is assumcd to be obscrvcd without error and the modcls contain no 
unobservablc random tcrms. (Onc exccption is lhc /\ xio m of Rcvcalcd Stochastic 
Rationality (M cFaddcn and Richtcr ( 1970, 1990)), whcre conditions are given 
charactcrizing cliscrctc choice probabilitics gcneratcd by a random utility funclion.) 
In the nonsta tistical tests, an hypo thesis is rejcctccJ if al lcast one in a set of 
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nonparamelric reslriclions is violaled; lhe hypolhesis is accepled olherwise. The 
nonparamelric reslriclions uscd to tesl lhe hypothescs are typically expressed in 
onc of lwo diíTerent ways. Eilher lhey eslablish lhal a solution must cxist for a 
ccrtain finite system of inequalilies whose cocfticients are determined by thc data; 
or thcy establish lhat ccrlain algcbraic conditions must be salisficd by the data. For 

' cxamplc, the Strong Axiom of Rcvcalcd Prcfercnce is onc of thc algcbraic conditions 
t ha t is u sed in t hesc tests. 

To providc an examplc of such resulls, wc state bclow Afrial's ( 1967a) Thcorem, 
which is fundamental in this literalurc. Afriat's Theorcm can be uscd to test the 
consistency of demand data with the hypothesis lhat obscrved commodity bundles 
are lhe maximizers of a common utility function over lhc budgct sets determincd 
by obscrvcd prices oí thc commodilies and incomes of a consumer. lf the data 
correspond to diíTerent individuals, lhe conditions of the theorcm can be used to 
test thc existencc of a utility funclion lhat is cornmon to ali of lhcm. 

Afriat 's Theorem ( 1967 a) 

Let {xi, pi,/;}~= 1 dcnolc a sel of N obscrvalions on commodity bundles xi, prices pi, 
and incomes ¡i such lhat Vi, pi· ,·/= Ji. Thcn, lhc following con di lions are cqui valen t. 

(i) Thcre exists a nonsatialcd funclion V:IR" -► IR such thal for ali i = l, ... , N and 
ali yEIR", [/·y:(; Ji]~ [ V(y) :(; V(xi)]. 

(ii) The data {xi,¡/, Ji}~= 1 satisfy Cyclical Consistcncy; i.c., for ali sequenccs 
{i,j, k, ... , r, l} 

(iii) Therc exist numbers ,li > O and Vi (i = 1, . . . , N) salisfying 

i,j = l, ... ,N. 

(iv) Thcre cxists a rnonotonc incrcasing, concavc and conlinuous function V: IR"---+ IR 
such lhat for ali i = 1, ... , N and ali yEIR", [¡/·y:(;/;]~ [ V(y) :(; V(xi)]. 

This result stales that the data could have bcen gencralccl by lhe rnaximization 
of a common nonsatiatcd utility function (condition (i)) if and only if that data satisfy 
thc set of algebraic conditions statcd in condition (ii). In Figure 3, two observations 
that do not satisfy Cyclical Consistency are graphcd. 111 lhcsc observations, 
/J 1 . x 2 < 1 , = p 1 . x, a n d /J 2 . x 1 < 1 2 = ¡/ . x 2. 

Thc thcorem also slatcs thal a conclition cquivalenl to Cyclical Consistcncy is 
that one can find numbcrs ,li > O and Vi (i = 1, ... , N) salisfying the linear incquali
lics in (iii). For cxample, no such numbcrs can be found for the obscrvalions in 
Figure 3; since whcn p 1 ·(x2 

- x 1
) < O, p2 ·(x 1 

- x 2) < O, and ). 1, }. 2 > O, the incqualities 
in (iii) imply thal V1 

- V 2 < O and J/ 2 - V1 < O. 
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Figure J 

Finally, thc equivalence belween conditions (i) and (iv) implies that if one can find 
a nonsaliated funclion lhat is maximizcd al lhe observcd xi•s thcn one can also find 
a monolonc increasing, concavc, and conlinuous funclion lhat is maximizcd al lhe 
obscrvcd xi•s. 

Varian (1982) statcd an altcrnativc algcbraic condition to Cyclical Consislcncy 
and developcd algorithms to test lhe conditions of lhc above thcorem. 

Along similar lines to thc above lheorcm, a largc literalurc deals with 11011-

paramelric tests for thc hypothcsis lhal a given sel of c.kmand dala has bccn generalcd 
from thc maximizalion of a utility function that salislics ccrtain shape reslrictions. 
For cxample, Afrial ( 1967b, 1972a, 1973, 1981), Diewcrl ( 1973), Dicwert and Parkan 
( 198S), and Varían ( 1983a) providcd tests for lhe consislency of demand dala with 
additively separable, wcakly separable and homolhclic utility functions. Matzkin 
and Richter ( 1991) providec.J a test for lhe strict cunea vity and strict monotonicity 
qf the utility function; and Chiappori and Rochct ( 1987) c.Jevelopcd a test for thc 
consistcncy of demand data with a strictly concavc and infinitcly difTcrentiable 
utility function. To provide an example of one such set of condilions, the algebrnic 
conditions developed by Chiappori and Rochct are that (i) for ali sequenccs 
{ i,j, k, ... , r, /} in { 1, ... ,N} 

(ii) for ali i,j [xi = xi]=>[¡/ = a¡l for sorne CJ. > O]. 
Yatchew (1985) provided nonparamclric rcstrictions for demand data generaled 

by utility maximization subject to budget sets lhat are the union of linear sets. 
Matzkin (1991 b) developcd restrictions for dcmand dala generated subjcct to choice 
sets that possess monotone and convcx complemenl and for choices that are cach 
supported by a unique hyperplane. 

Nonstatistical nonparamctric tests for thc hypolhcsis of cost minimization and 
profit maximization ha ve also bcen developed. Scc, f o r examplc, Afriat ( 19726), 
Dicwert and Parkan (1979), Hanoch and Rothschild (1978), Richtcr (1985) and 
Varían (1984). Supposc, for cxample, that {/, pi} are a set of observations on a vector 

r 
1 

l 
l 
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of inputs and outputs, y, anda vector of the corresponding priccs, P. Then, one ofthe 
rcsults in the above papcrs is that {/, ¡/} is consistent wilh profit maximization 
ilT for ali i,j = 1, ... , N, p1 ·y'~ ¡/· y1 (Hanoch and Rothschild ( 1978)). 

Somc of thc above mcntioncd tests havc bccn uscd in cmpirical applications. See, 
for examplc, Landsburg ( 1981 ), McDonald and Manscr ( 1984) and Manser and 
McDonald ( 1988). 

Nonparametric restrictions havc also bccn developcd to tes t cflkicncy in produc
tion. Thcsc tests, typically appearing under the heading of Data Envelope Analysis, 
use data on the input and output vcctors of differcnt facilities (decision making units 
or DM U's) that are assumccl to possess thc samc tcchnology. Thcn, making assump
tions about the tcchnology, such as constan! returns to sca lc, they determine the 
set of vectors of inputs and outputs that are cfficient. A DM U is not efficient if its 
vector of input and output quantities is not in thc cíl1cicncy set. Scc thc papcr by 
Seiford and Thrall (1990) for a survcy of this litcraturc. 

Reccntly, nonparamctric restrictions charncterizing data gcncrntcd by modcls 
other than thc single agent optimization problem havc been devcloped. Chiappori 
(1988) developed a tes t for the Pareto optimality of the consumption allocation 
within a household using data on aggregate household consurnption and labor 
supply of each household member. Drown and Matzkin ( 1993) developed a test for 
thc general cquilibrium modcl, using data on market priccs, aggrcgatc cndowmcnts, 
consumers' incomcs, and consumers' shares of profits. Nonparametric restrictions 
characterizing data consisten! with other equilibrium moclcls, such as various 
impcrfcct compctition modcls, havc not yct bccn dcvcl opcd. Varian (1983b) 
devcloped a test for the modcl of investors' bchavior. 

Some papers have devcloped statistical tests using the nonstatistical restrictions 
· of sorne of the tests menlioned above (Varian (1985, 1988), Epstein and Yatchew 
(1985), Yatchew and Bos (1992) an<l Brown an<l Matzkin (1992), among others). As 
wc will sec in the next subscction, thc test devclopcd by Yatchew and Bos ( 1992), in 
particular, can be uscd with several of thc abovc restrictions to obtain statistical 
nonparametric tests for economic models. 

4.2. Stalislical tests 

Using nonparamelric methods similar to those usecl to estímate nonparametric 
functions, it is possible to develop tests for the hypothesis that a nonparametric 

· regression function satisfies a specified set of nonparametric shape restrictions. 
Yatchew and Bos (1992) and Gallant (1982), for examplc, present such tests. 

Thc consistenl test by Yalchew and Bos is bascd on a comparison of the rcstricted 
and unrestrictcd weighted sum of square errors. More spccifically, supposc that the 
modcl is specificd by y= f*(x) + 6, where yEIRq, xEIR'\ 6E!Rq, x and s are independent, 
E(c) = O, and Cov(e) = I . The null hypothesis is that f * E f. e F, while the alterna ti ve 
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hypothesis is that J* E F\f. The Sobolev6 norms of the functions in the sets F and f 
are uniformly boun<led. The test procceds as follows. First, divide the sample into 
two independcnt samplcs of thc samc sizc, T. Compute thc cstimators ~i· and s~ 
using, respectively, the first and sccond samplcs, wherc 

ancl 

s~. = min }..r, [y1 -f(x;)]' X: - 1 [y1 
- f(x;)]. 

/r:F 

To transform thesc 1111111m1zation problems inlo r,nilc dimensional problcms, 
Yatchew and I3os (1992) use a mctho<l similar lo lhc onc describcd in Section 3.1. 
They show lhat, unclcr thc null hypothcsis, the asymplotic distribution of tF = 
T 112 [s;. - s;.] is N(O, 2v), whcre v = Yar 1:' ..r - 1 c. So, onc can use standard statistical 
tables- to determine whether thc dilTercnce of thc sum of squared crrors is 
significantly dilTercnt from zcro. (This test builds on the work of Epstein and 
Yatchew (1985), Varian (1985) and Yatchew (1992).) . 

The Yatchew and I3os ( 1992) test can be uscd in conjunction with the nonstatistical 
nonparametric tests c.Jcscribed in the previous subscction. Suppose for cxample that 
i denotes a vector of commodities purchascd by a consumer and xi denotes the 
vector of prices ¡/ and income JÍ faccd by the consumcr when he or she purchased 
yi. Assume thal the observalions are indepcndenl and for each i, / = f *(xi)+ e, 
whcrc 1: satisfies thc assumptions made abovc. Thcn, as it is dcscribcd in Yatchcw 
and Bos (1992), we can use their mcthod to test whcthcr the data is consisten( with 
the utility maximization hypothcsis. In particular, Afria(s inequalities (in condition 
(iii) in Afriat's Thcorcm) can be uscd to calculatc ~;. by minimizing the value of 

T 

L [yi - j1]'..r- l[i - Ji] 
i = l 

with respccl lo Vi, J.\ and Ji (i = 1, ... , T) subjccl lo (i) thc Afriat incquali-
lics: Vi~ vJ+JJ¡l·(./·i_fi) (i,j= l, .. . ,T), (ii) thc budgct constraints: p1·f1=Ji 

6 The Sobolev norm is <lefined 011 a set of III times conlinuously differentiablc functions cm by 

q [ f ]''2 llfll = ¿ ¿ [D•J~] 2 dx 
k = 1 l•I >; m 

where a= (a 1 , • • • ,a,J is a vector of inlegers; D'J(x) is lhe value resulling from <liffcrentialing / al x,a 1 
limes with respect to x,,a2 limes wilh respect lo x 2 , •.• ,a,_ limes wilh respect to x,_; and !al= max,la1j. 
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(i = 1, ... , T), and (iii) inequalities that guarantee that the Sobolev norm of-the 
function f is within spcciíled bounds. 

Gallant (1982) presenls a seminonpararnclric mcthod for tcsting whether a 
regression funclion salisílcs some shape reslrictions, such as linear homogcneity, 
separnbilily and hornothclicily. The mcthod procccds by tcsling whethcr the 
parnrnetric approximalion used lo estima te a nonparamclric funclion salislics thc 
hypolhesized restrictions. 

Following Gallant ( 1982), supposc lhal we are inlcrcstcd in lesling the linear 
homogeneity of a cost function, c(p, 11), where p = (p 1, ... , f>k)' is a vector of input 
prices and 11 is the output. Lct 

whcre I¡ = In /J¡ + In a¡ an<l u= In 11 + In ªx + 1 . (Thc a¡'s are location parnmclcrs thal 
are dctcrmined 'from thc data.) Then, linear hornogencity of thc cosl function e in 
priccs is equivalent to requiring that for all -r, g(/ + -rl, u) = r + g(/, v). The approxi
mation gN of g, given by 

YN(x lO)=b'x+x'Cx+ ¿ akelk':-= 
lkl' ~ 'J' 

satisíies these restrictions, for C = Ekckl<k', if 

I{ 

ancl if ak = O and ck = O whcn ¿ ki i=- O. 
j = 1 

Linear homogeneily is then tested by determining whethcr thcsc restrictions are 
satisfied. Gallant ( 1982) shows that by increasing the degrec of approximation (i.e. 
the numbcr of paramcters) at a particular speciílcd ratc, as the number of 
obscrvations increascs, one can construct tests that are asymptotically free of 
specification bias. That is, for any givcn level of significancc, o:, onc can construct a 
test statistic lN and a critical value cN such that if the true nonparametric function 
salisfies the null hypolhesis then limN_,w Pr(tN > cN) = o:. 

Severa! other melhods have been developed lo test restriclions of economic 
theory on nonparametric functions. Stoker (1989), for example, prescnts nonpara
metric tests for additivc constraints on the first and sccond derivatives of a 
conditional mean function f*(x). These tests are based on weighted-average 
derivalives estimators (Sloker ( 1986), Powell et al. (1989), Hürdlc and Stoker ( 1989) ). 
Linear homogeneity and symmetry constraints are examples of properties off* 
lhal can be lested using this method. (See also Lewbcl (1991).) Also using average 
derivatives, Hürdle et al. (1992) testcd the positive dcfiniteness of the matrix of 
aggrcgate income effecls. 
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Hausman and Newcy ( 1992) dcvclopcd a lest for the symmetry and negative slope 
of the Hicksian (compensated) demand. The test is dcrivcd from a nonparametric 
estimator for a consumer surplus. Sincc symmctry of the Hicksian demand implies 
that the consumcr surplus is indepcndcnt of thc pricc path used to calculate it, 
cstimates obtaincd using diffcrcnt paths should converge to thc same limit. A 
minimum chi-square test is then dcvclopcd using this idea. 

We should also mcntion in this scction thc cxtcnsive existent literature that 
deals with tests for the monotonicity of nonparamctric functions in a wide variety 
of statistical modcls. For a survey of such litcrature, we refer the reader to the 
previously mentioned books of Barlow et al. ( 1972) and Robertson et al. (1988). (See 
also Prakasa Rao ( 1983).) 

5. Conclusion 

Wc have discusscd thc use of rcstnct1ons implicd by cconomic theory in the 
cconomctric analysis of nonparamctric modcls. Wc dcscribcd advancements that 
have been made on thc theories of identification, cstimation, and testing of non
parametric models duc to the use of restrictions of economic theory. 

First, we showed how restrictions implied by economic theory, such as shape and 
cxclusion restrictions, can be uscd to identify functions in economic models. We 
demonstrated this in generalized regression models, binary threshold models, 
discrete choice models, models of consumer demand and in systems of simultaneous 
equations. 

Various ways of incorporating economic shapc restrictions into nonparametric 
estimators were discussed. Spccial attention was given to estimators whose 
feasibility depends critically on the imposition of shape restrictions. We described 
technical results that can be used to develop new shape restricted nonparametric 
estimators in a wide range of models. We also described seminonparametric and 
weighted average estimators and showed how one can impose restrictions of 
economic theory on estimators obtained by these two methods. 

Finally, we have discussed sorne nonstatistical and statistical nonparametric tests. 
The nonstatistical tests are extensions of thc basic ideas underlying the theory of 
Revealed Prefcrence. Thc statistical tests are devcloped using nonparametric 
estimation mcthods. 
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AUSTRACT 

Wc introduce a. nonparametric method for estima.ting discrcte choice models that 
<loes not rcquire tha.t <liffcrent consumers possess the sarne systema.tic subutilily. The 
melho<l lessens the possi bili ly of misspecifica.tion beca use i t <loes not require specifying 
thal the unknown functions and <lislribulions in the mo<lcl belong to known paramet
ric families. Neither the systematic subulilitics, nor the <lislribution of the random 
subutilitites, nor the distribution of lhe systematic subutililics over the population is 
requirc<l to be specified paramctrically. We show that the cstimators that we propose 
for thcse functious a.mi <lislribulions are slrongly consistcnl. 

The metho<l is an extension of the fully nonparametric cslimators for discrete choice 
models introduced in Ma.tzkin (1992, 1993a), wherc the subutility function and the dis
tribulion of the random term were nonpa.ramctric but ali thc consumers were assumed 
to possess the same subutilily function. 

The estima.tors are obtained by maximizing a log-likelihoo<l function over a set 
of functious a.nd distributions. We show tha.t these estimalors can be computed by 
tra.nsforming this ma.ximization problcm into lhe rnaximization of a finite dimensional 
vector subject to inequa.lity constraints. 

• llosa L. Matzkin gralefully a.cknowlcdges support for this resea.rch from the Na-
tional Sciencc Founda.lion. · 



l. INTRODUCTION 

Discrdc choice rno<lcls are 011e of the most popular 1110Jds that are use<l 
to analyze the choice of a typical consumcr be twecn a finitc number of al
ternatives. These mo<le ls have been applie<l to analyze, a111011g others, the 
choice between various mcans of Lransportation, Lhe choice lietwecn <lifferent 
schools, an<l thc choice be twcen <lifferent brands of a product. In this mo<le l, 
each alternative is characterized by a vector of attributes, and the consumer 
chooses the alternative from which he/she derives the highest leve! of utility. 
The utility is thc surn of a subutility of observed atlributcs - Lite ":;ystematic 
subutility11 

- and a ran<lom Lerm - the unobserved II ra11do111 subutility11
• For 

example, in a mo<lel of a commuter choosing between various means of trans
porlation, the alternatives may be car an<l bus, a n<l the observable aLLributes 
may be the cost and time associated with each altcrnative. The utility of 
the commuter for a mea.ns of transportation is the sum of a function of the 
time an<l cost of that means of transportation (thc systcmatic subutility) 
and an unobscrvable ran<lom term that reprcsents tite valuc o f a subutility 
of unobserved aUributes of the means of transportation, such as comfort. 

For the most part, the estimation of discrete choice mo<lcls has proceeded 
in the past by assuming that the systematic subutility function and the 
<listribution of the unobservable random subutilities are the same for all 
consumers and are known up to a finite dimensional vector. Typically, the 
systematic subutility has been assumed to be linear in thc paramcters and 
the distribution of the ran<lom term has been specified to be either a Weibull 
ora normal distribution. Severa! polential problems can be causcd, however, 
when using this type of assumptions. First, thc specifications chosen for the 
systcmatic subutility fu11ctio11 and for tite <listribution of the unobservable 
random terms may be incorrect, yielding the corresponding estimators to be, 
in general, inconsistent. Second, different consumers may posscs <lifferent 
systematic subutility and distribution functions, even aftcr controlling for 
observed charn.ctcristics. lf this II unobservc<l hcterogcneit.y,, is 110L taken into 
consi<le ra.tion, the cstimators will also be, in general, inconsistent. 

To avoi<l estimating the distribution and/or the systematic subutility 
function inconsistently <lue to pa.rametric misspecifi.cations, severa! methods 
ha.ve bccn developed, following Lhe pioneering work of Ma.11s ki ( 1975 ). Man-
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ski (1975, 1985), Cosslett (1983), \ l(lcin an<l Spady (1993), and Horowitz 
(1992), among othcrs, developcd mcthods whcrc lhc <listribution of the ran
dom term is not specified pararnetrically, while Matzkin (1991), among oth
crs, <levelope<l metho<ls whcre thc systcmatic sulrntility function <loes not 
nce<l to be spccified parametrically. Thc mcthods i11 Manski (1975,1985) and 
Horowitz (1992) allow the distribution of thc unobservable additive random 
tcrms to be diffcrc11l for <liffcrent consumcrs, as long as these consumcrs pos
sess different valucs for thc observable exogcnous variables. Mctho<ls where 
ncithcr the systcmatic subutility funclion nor the distribution of the random 
lerm are spcciíie<l parametrically wcrc i11tro<luccd in Matr,kin (1992, 1993). 
/\11 thcsc methods , howcvcr, assume that Lhcre is no unobserved heterogene
ity in the systematic subutility function. In othcr words, ali these methods 
assume that ali the consumers have the same systematic subutility function, 
given the observable exogenous variables. 

The importance of unobserve<l hetcrogeneity has been recognized for a 
long time. Heckman (197'1) and lleckman ami Willis (1977) allow for hetero
gen~ity in prefcrcnccs , and Hcckman and Singer (1981) introduced a method 
of estimating the distribution of an unobservcd hctcrogencity parameter with
out specifying a parametric distribution for this para.meter. This !alter paper 
also documents the serious inconsistencies that may arise when unobserved 
hcterogeneity is not taken into consideration whcn cstimating a modcl. (See 
also Heckman (1981a, 19816) and Heckman and Walker (1990a, 19906).) 
A model of Thurstone's (1930) <lea.Is with hctcrogeneity of preferences in 
discrete choice models, and more recently, Albright, Lerman, and Manski 
(1977), Hausman an<l Wise (1978), and lchimura an<l Thompson (1993) 
have presente<l methods to estímate discrctc choice models with heteroge
neous prefercnces. These metho<ls require, howevcr, that at least sorne of 
Lhe functions an<l distributions in the model be known up to the value of 
a finite dimensional parameter. Albright, Lerman, and Manski (1977) and 
Hausman and Wise (1978) specify ali the functions and <listributions in the 
model up to a finitc dimensional paramcter. Ichimura an<l Thompson (1993) 
specify the systematic subutility parametrically, as a linear f unction of ran
<lom parameters. 

In this paper, we presenta nonparametric cstimation method for discrete 
choice models that allows the systcmatic subutility to be di!ferent across 
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inclivi<luals nnd Lh;\l rcq11ircs fcwcr paramctric as:·w111pt.io11s t.han any of thc 
ctll'l'<!lll.ly availal>le 111ctlwds. N1:il,h1:r l.lll! sysL1:11lal.ic s11l>111.ility, 11o r Lhc distri
bution of thc 111101.Jsc rvablc random Lcrms, nor thc distribution of the system
atic subutility ovcr thc population is assumcd in our mcthod Lo be completcly 
parn.111cLrically spcciflcd. Wc propase a method for csti111aLi11g ali these func
Lions a nc.l distributions co nsistently. 

In the next scction we describe Lhe model. In SccLion 3 wc sLaLe condi
Lions undcr which Lhc modcl is idenLifled. In Section •I wc prescnL sLrongly 
consistent estimators for Lhe functions and distributions in Lhe mo<lcl. A 
m ethod Lo compute Lhc cstimaLors is presentcd in Section 5; ancl a brief 
condusion is presc11Lcd in Scclion G. 
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2. THE tv10DEL: 

As usual in <liscrete choice mo<lels, wc assume that a typical consumer must 
choose one of a finite number, J, o[ alternativcs, a nd he/she chooses the one that 
maximizes the value o f a uti li ty function that depends on the characteristics of the 
a lterna tives a ucl the consumer .. Each alternative j is characterized by a vector, Zj, 

o f thc observable ;Lltributcs of the alternatives. 'vVe will assume that Zj = (xi, 1'j), 

whcrc 1'j E /l ali() :i;j E n1,· (!( 2'. 1). Each COIIS\l llle r is charactcrizcd by a vector, 
.~ E nL, of observable sociocco 110111ic: c:harncteristics for Lhe consu mer. Thc u tility 
of a co11sumer with observable sociocconomic charactcristics s, for a n a lternative, 
j, is given by 

where Ej and w denote thc valucs o f unobservablc random variables. For any 
g iven value o f w, and auy j, v•(j, ·,w) is a real value<l, but otherwise unknown, 
function. The dcpcndence of v• on w a llows us to incorporate into the model the 
possibility that this systematic subutility be different from <lifferent consumers, 
even if the observable exogenous variables posses thc same values for these con
sumcrs. We will denote the <listribution of w by G'' and we will <lenote the 
distribution of t he ra.ndorn vector ( t 1 , .. . , <:J) by F• . 

The probability that a consumer with socioeconomic characteristics s will 
choose alternativc j when the vector o f observable attributes of the a lternatives 
is z = (zt, .. ,,zJ) = (x1,r1, ... ,xJ,rJ) will be denoted by p(jls,z;V-,F•,G·) . 
Hence, 

p(j ls, z; V, F', C) = j Pr(jls, z; w, V, F') dC(w), 

where Pr(jls, z;w, V, F) denotes the probability that a consumer wilh sys
temalic subuLility \/(·;w) will choose a llernalive j , whcn the distribution off. is 
P. By the utilily maximization hypothesis, 

Pr(jls, z; w, V, F) 



which <lcpen<ls 011 thc <listribution F. In particular, if wc lct F'1 denote the 
distrilrntion of thc vector (<.2 - <: 1 , ... , C.J - ci), thcn 

Pr(lls,z;w, V,F) 

and the probability that thc consumer will choosc altcrnative 1 is then 

p(lls, z; V, F, G) = 

j Pr(lls,z;w,V,P) dG(w), 

= j F1 (V(l,s,:i; 1,w1,w)- V(2,s,x 1 ,w1,w), ... , V(l 1 8 1 :r:1,tu1,w)- V(J,s,x1,w1,w)) dG(w) 

For any j, Pr(jls, z¡ w, V, F) can be obtaine<l in an analogous way, letting 
Fi denote the distribution of (t1 - fj, ... , tJ - tj), 

3. NONPARAMETIUC IDENTIFICATION 

Our objective is to dcvelop estimators for thc function v· and the distributions 
F'º and G•, without requiring that thesc functions an<l <listributions belong to 
parametric familics. lt follows from the definition of tite model that we can only 
hope to identify the distributions of the vectors 1/j = (t 1 - Cj, . .. , tJ - ti) for 
j = 1, ... , J. Let F'l denote the distribution of 1/j (j = 1, ... , J). We will denote by 
F• the vector (F¡", ... ,F'j). 

Adapting the standard definition of identification to our model, we can state 
the following: 

DEFINITION: The function v• and the distributions p· and G• are identified 

in a set (W X l'p X l'a) such that cv·, ji'"' G·) E (W X l'p X l'c) if V(\/, F, G) E . 
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(Wxr,..xrc) 

j Pr(jjs,z; V(,;w), P) dG(,.;) = j Pr(jjs,z; V"(-;w), F") clGº(w) 

J 01' j = 1, ... , J 

=> v = v·, F= F· & e = e·. 

Thal is, ( v· 1 t· 1 e:·) is i<lenlifie<l in <L sel ( w X r',.· X [ G) Lo which (V·¡[!'" 1 e·) 

bclongs, if any t.rip
0

le , (\l,F,G), LhaL belongs Lo (IV x rF x re) an<l is diffcrcnl 
f rorn ( v· l F" I e·) generales, for al leasl one al Lc rnali ve j I choice probabili tics, 

p(jjs,z; V,P,G), Lhal are differenl (a.s.) from p(lls,z; v·,F·,G•). 

We nexL presenL a sel of con<lilions Lhal, whcn :;a.Li:;fie<l, guaranlce LhaL (V•, F" 

I e·) is identified in (W X lp X re), 

ASSUMPTION O: W is a set of diffcrentiable functions, and re and r F are 

sets of absoluLely continuous disLributions. 

ASSUMPTION 1: For ali j E {l, .. . ,J}, Lhc random vector 1u (t:1 -
Ej, ... , c-.; - Cj) is dislribuled indepcndcntly of (s, z 1, ... , z;) an<l w. 

ASSUMPTION 2: The random variable w is disLributed independently of 
(s, z1 , ... , z;). 

ASSUMPTION 3: The support of Lhc probability measure of w is R. 

/\SSUMPTION '1: For ali j, w, an<l V E W Lhe re cxisls a real value<l funclion 
v(j, ·, ·,w) such Lhat V(s, Xj, 7'j) V(j, s, :tj, 1'j,w) = u(j, s, Xj,w) + rj, 

ASSUMPTION 5: 3 s,x1 , ... ,x; an<l (a1, ... ,a;) E RJ such that Vj VwVV E 
W, u(j, s, Xj,w) = O'.j, 

ASSUMPTION 6: 3], (Ji E R, and x; such Lha.L Vs Vw VV E W, 
v(j,s, x3,w) = /Jr 

G 



ASSUMPTION 7: 3j• f] such that Vv(j",·) f v'(j·.·) 3.s,:i:,w,w' such that 
( .• ~ .•. ·)- '( '•. • .• ,) . <l au(j',;,:r,,,w) _J_ 1lu1(j',.i,r,,,w'} 

U] ,s,.t,W -V] 1 S 1 X 1 lcJ ,tll 1l(,,x,,) r iJ(,,x,,) • 

J\SSUivlPTION 8: O11c of tite following hol<ls: 

(8 .i) Vj =I j" ,], Vv, v' such that v(j, ·) =I v·(j, ·) 3s, x,w,w' such that 
( . ) '( . ') <l au(j,,,:r, ,w) ..J. av1(j,,,x, ,w') 

u J,s,x,w -v J,s,x,w an a(,,r,) -r- aa(,,x,) 

a.11<l 

3] f] fJJ E U, and :i:; such that Vs Vw VV E W, v(},s,:i:3,w) = /3;, 

(8.ii) Vj =I j•,J, Vv,v' such that v(j,·) i v·(j,·) 3.~,x,w,w' such that 
( , ) '( • ') <l 8v(j,,,r1 ,w) _J_ 8v'(i,,,x, ,w') v• ;,s,x,w - v J,s,x,w a11 a(, ,r,) -r- aa(,,x,) 

an<l 

3k such that Vs,x3,xk Vv, the function n3,k(s,x3,xk,w) = v(],s,x3,w) -
v(k, s, Xk, w) is either strictly increasing or strictly decreasing in w. 

(8.iii) Vj it is possible to fin<l a sequcnce {j1, ... ,J,\f} of altcrnatives such that 
j 1 = j, JM = j• or ], an<l Vk E { 1, ... , M -1} the function nk,k+1(s, Xk, Xk+i,w) = 
v( k, s, Xk, w) - v( k + l, s , xk+1 , w) is either strictly increasing or strictly <lecreasing 
in w. 

ASSUMPTION 9: Vj, the support of 1·i is R. 

ASSUMPTION 10 : G• is strictly increasing. 

Assumption O im plics that w hen ( v•, p•, G•) E ( W x ['p x l'c), v· is a <liff eren· 

tia.ble function, an<l p• a.nd e· are absolutely continuous distributions. Assumption 

1, together with Assumptions 11 and 5, allow us to identify F" To sce this, 
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note that Assumption 4 states that the systematic subutility is additive sep
arable into the value of the observable variable ri an<l a function of all the 
otlicr a.rgumcnts, an<l J\ssumption 5 states that t lic valucs of thcsc latter func
tions are fixed at onc point (s, x1 , ... , XJ) . Hence, tlic variation in the values of 
p(lls,x1 ,r1 , ••• ,xJ,rJ; V*,F*,G") over different values of (r1 , ... ,rJ) can only be 

attributed to F* .The differentiability of v· , the absolute continuity of G•, and 

Assumptions 2, 3, 6 and 7 allow us to use a result in Brown and Matzkin (1995) 
to ~how that G• anda function V"(j, ·,w) are identified. Assumption 8 allow us 
tr, ,_, F* and G* to identify the differences V"(j, ·,w) - V*(k, •,w) . Assumption 
6 ;• .vs us to identify each V•(j, ·,w) function from these differences. Assump-
ti1 , guarantees that the support of the difference ri - rk , for all j, k, is the 
re,ti :ine and that the value of ri can be observed éÜ large negative values . The 
first property guarantees that the va.lucs of F/ can be rccovered over the whole 
re-l space. The second property guarantees that in the limit, when for ali but 
two j' s, ri -+ -oo, the observed values of p(l ls, z; v., F•, G•) correspond to the 
values of a binary choice model. 

In the following examples, Assumptions 5-8 are satisfied: 

EXAMPLE 1: A binary choice model where each function v(l,·) is charac
terized by a function r(·), and each function v(2, ·) is characterized by·a function 

h(·) such that for ali s,x1,x2,w,where X1 = (xP',x~2
)) and x~2

) E R: 

( ") ( ) ( (1)) (2) 1 v l,s,x 1 ,w = r s,x 1 +w x 1 

(iii) r(O, O)= O 

(iv) h(O,w) = O for all w 

( v) the support of x~2l is R+, and 

(v) h is strictly decreasing in w, for all x2. 

8 



• 

In this example, As:;umption 5 is satisfied when .s = O, .x1 = ( .x~1l, x?l) = 
(O, O), i:2 = O, a1 = 0'2 = O. Assumption 6 is satisfied for J = 2, when /3; = O and 
.i2 = O. Assumption 7 is satisfied for j• = l. To see this, note that if v(l, •) =/
v'(l.·), then it must be that for some vector (s, xPl), r(s, ±\1l) =/- r'(s, xi1l), where 

( ) ( (1)) (2) d '( ) '( (1J) (2J v 1,s,x1 ,w = r s,x1 +w x 1 an v 1,s,x1 ,w = r s,x 1 +w x1 . Hence, 

since r(O, O) = r'(O, O), there must exist a vector (.s, :i:~1
)), such that ª;~•.±-l

1

;l =/-.,,:r1 

ar'(.;,±-\1

>) Let :i:(2) w w' be such that r( .s :i:(1)) + w :i/2 ) = r'(.s :i:( 1)) + w :i:(2) a<.,"' 1 ) • 1 , , , 1 1 , 1 1 • 

Then, Assumption 7 is satisfied. Finally, to see that Assumption 8 is satisfied, 
note that for ali (s_,x~1l,x\2 l,x2 ,w), ª"(;~,w) - x~2

) < O. It follows that when j = 
2, n 2 ,1(s,x1 ,x2 ,w) = v(2,s,x2,w) - v(l,s,xi,w) is strictly decreasing in w, and 
when j = 1, n 1 ,2 (s,x2 ,x 1 ,w) = v(l,s,xi,w) - v(2,s,x2 ,w) is strictly increasing 
in w. Hence Assumption 8(iii) is satisfied. 

EXAMPLE 2: A trichotomous choice model where s E R, each function 
v(l, •) is characterized by a function h(-), each function v(2, ·) is characterized by 
a, function t(·), and each function v(3, ·) is characterized by a function m(·), such 
that for all s, x 1 , x 2 , x 3 , w : 

(ii) v(2,s,x2,w) = t(x2,w) 

(iii) v(3,s,x3,w) = m(s,x3,w) 

(iv) h(O) = O 

(v) t(O,w) = O for all w 

(vi) m(O, 0,w) = O for all w, 

( v) the support of s is R+, and 

(v) mis strictly decreasing in w, for all (s,x3,w). 
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In this exampk, J\ssumption 5 is satisfied when .~ = O, :z: 1 = O, :z: 2 = O, x3 = 
O, ,wd 0:1 = n-2 = O. J\ssumpt.ion 6 is satisficd for J = 2, whcn /3; = O a.nd 
i:.! = O. J\ssumpLio11 7 is salisfied for j" = 1, by Lhc sa.rne a.rgument use<l to show 
that Lhis assumption was satisfied in the previous example. And Assumption 
8 is satisfied because n 1,2(s,x2 ,x1 ,w) = v(l,s,x 1 ,w) - v(2,s,x2 ,w) is strictly 
increasing in w, n 2 ,1 ( s, x 1 , x 2 , w) = v(2, s, x 2 , w )-v( 1, s, x 1, w) is strictly decreasing 
in w, and n3, 1(s,x3 ,x1,w) = v(3,s,x3 ,w) -v(l,s,x 1,w) is strictly decreasing in 
w. 

Using tlic assurnplions s¡.,ccificd abovc, wc c,w prnvc tlic following Lheorem: 

THEOREM 1: lf assumplions 1-8 are satisfied, thcn ( v·, G·, F*) is identified 

in ( W X f F X f G) . 

The proof of Lhe theorem is presented in the Appendix. 

This theorem shows that one can identify the distributions and functions in 
a discrete choice model with unobserved heterogeneity, making minimal assump
tions about the parametric structure of the systematic subutilities and no para
metric structure about the distribuLions in the model. In particular, the theorem 
implies thai, when sorne assumptions are satisfied, one can identify the functions 
r(·) and h(-) in Example 1, and the functions h(-), t(-), and n(·) in Example 2, 
without imposing any parametric structure in these functions. 

4. NONPARAMETRIC ESTIMATION 

. . . N 
Given N independeut observat ions {y', s', z'} i = 1 we can define the log-likelihood 

fu11clion: 
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where F'= (F1 , ... , FJ). We then define our estimators, V ,F an<l G, for 

\/", r-:__·, and e·, lo be lhc functions and dislributions th,tt 111axi111izc 1,(\/, t, G) 

uver triples (V, F, G) lhat Lelong lo a sel (W x l'¡;- x L'c;). 

Lct dw, clr,·, a11J da dcn~lc, rcspcctivcly, 111ctric:s over thc sets !,V, l'F, ami 
l'a. Let el : ( W x l'p x l'a) x ( W x l'p x l'e) ---t ll+ <lcnolc Lhc 111clric dcfincd Ly 

d[(\/, F, G), (\/', F', G')J = <tw(V, \/') + dr,(F, F') + de(G, G') . 
- - - -

Thcn, lhe consislcncy of lhc cslimalors can be estaulishcd undcr thc following 
assumplions: 

ASSUl'vlPTION 11: The set (W x fp x fe) is compact with rcspect to lhe 
melric d. 

ASSUMPTION 12: The metric dw is such lhat convcrgence with respect to 
d1v implies pointwise convergcnce. Ami the meLrics dp and da are such that 
convergence with respect to dp and de, respectively, imply a .e. convergence. 

ASSUMPTION 13: V FE rF, F¡ is continuous and sLrictly increasing, for ali 

j=l , ... ,J. 

ASSUMPTION 14: VV E W, V 1s continuous and ils value possesses an 
absolutely continuous dislribution. 

Using lhe arguments in Wald (1949L Lhe following thcorem is easily estab
lished: 

THEOREM 2: Under J\ssumptions 1-11, (V, G, f) is a strongly consistent 

estimator of ( v•, p•, G•) wi Lh respect Lo the meLric d. 

The present lhe proof in Lite J\ppendix. 
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5. COMPUTATION 

We nexL describe a meLhod to calculate the cstimalors. The method is based 
on severa! facts that can be derived from the following optimization problem, 
which is the problem used to define the estimators: 

Max L(V,F,G)= t log j [Pr(jis\zi; V(-;w),F)]Yj dG(w) 
(V,~,G)E(WxrpxrG) - i=l -

F'irst note thaL aL auy solulion, (V, t, C), of lhis opLimizaLion problem, G 
wi ll possess al most N points of support. We will dc110Lc Lhe points of support of 
any e by W¡' ... , WN, an<l wc will denote Lhc masscs LltaL éUIY e assigns Lo these 
poinls by 71'1 , ... , 1íN, Secon<l, note that lhe value of Lhe objeclive function depends 
on any function V(·,w) only Lhrough the values that V(•,w) attains at the finite 
number of observed vectors { ( s1, x}, r; );=1, ... ,J, ... , ( sN I xf, r; );=1, ... ,J}. Hence, since 

at a solution, G will possess at most N points of supporl , we will be considering 
the values of at most N different functions, V( ·,wc) e = 1, ... , N. I.e., we can 
consider for eachj (j = l, ... ,J) at most Ndifferent subutilities, V(j, ·;wc) (e= 
1, ... , N). For each i an<l e, we will denote the value of V U, i, x}, r;, wc) by V¡\. 
Next, we note that at a solution, the value of the objective function will depend 
on any F only through Lhe values lhat F attains al thc finite number of values 

- -
(";'.e - V/,c, .. . , V¡\ - VJ,c) i = 1, .. . , N, j = l, ... , J, e = 1, ... , N. We then let 
F],c denote, for each j (j = 1, ... , J), the value of a distribution function F; at 

the vector (½'.e - '11/,c, ... , ½¡,e - VJ,J. It follows that a solution, (V, f:, G), for the 

above max:imization problem can be obtained by first solving the following finite 
dimensional optimization problem, and then interpolating between its solution: 

N N J · 

Vi max i L log L II [Fj,crj 1íc 
{ ,,.}.{1rc},{F,,c} i=l c=l j=l 

subject to 

where l( is a set of a finite number of restrictio11s on {Vi}, {1rc}, {Fi }. The 
J,C ],C , 

restrictions characterize the behavior of sequences {V/e}, { 7r e}, { Fj,J whose values 
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correspond to functions V 111 W, probability measurcs G in re , and distribution 
funclions F in rF, 

To see whal is the nalure of the restrictions determinccl by the set K, con
si<lcr for examplc a binary choice model where X1 E R+, v(l, s ,x1,w) = 1·(s) + 
w x1 , v(2, s, x2 ,w) = h(x2 ,w), r(O) = O, h(O,w) = O fo r ali w, r(·) is concave 
aud i11 crcasi11g,a11<l h(,, •) is concavc an<l dccrcasing. Thcn, lhc finitc dimensional 
optimizalion problem lakcs the following form: 

N N 

rnax ¿ log ¿ [F1JYi [l - Fif -yj) 1l'c 

(V),c},{.-c},{Fj} ,{T'} ,(DD i= l c=l 

subject to 

(b) O~Fj,c ~ l, 

(e) i·i ~ rk + Tk . ( si - sk) 

if 7l'c > O 

(f) D~ ~ O, h1¿+1 = O, and x~+I = O if 7rc > O 

for i,k = l, ... ,N+ l¡ c,d= l, .. . ,N¡ j = l, ... ,J. 

Constraints (a) an<l (b) guarantee that the Fi valucs are those of an increasing 
function whose values are belween O and l. Constraint (e) guarantees that the 
ri values correspond to those of a concavc function. Constrains (d) guarantees 
tha.l the h~ values correspon<l to those of a concavc functio n, as well. Constraints 
(e) aud (f) gua rantee that the 1· ¡ and the h~ values correspond, respectively, to 
those o f a mono tone increasing and a mono tone <lecrcasing f unction, an<l that the 
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ri and the h~ values correspond to functions satisfying r(O) = O and h(O,w) = O 
for ali w. 

A solutiou to the original problcrn is obtaincd by iuterpolating the optimal 
values obtained from this optimiza.tio11. (See M¡ttzkin ( 1992,1993a,1995)) for more 
discussion of a similar optimiza.t iou problem.) 

To describe how to obtain a solution to this maximization problem, we let 

L- [( 1 N+l 7,1 yN+l) {(! 1 hN+ l Dl DN+l)} ( )] r , ... ,r , , ... , , ic,···, e , e•···, e , 7r¡, ... ,7rN 

denote the optima! value of the following maximization problem: 

subject to 

(a) if , 7r e > O, and 7r d > O 

(b) O :S F1 :S 1, 

A solution to this latter problem can be obtained by using a random search 
over vectors (Ff, .. . , FcN)c=l, ... ,N that satisfy the monotonicity constraint (a) and 
the boundary constraint (b ). 

Then, a solution Lo the full oplimization problcm can be obtained by using a 
d . 1 • ( 1 N+l y1 yN+l) {(! 1 hN+l DI DN+l)} ran omsearc1overvec"ors r , ... ,r , , ... , , ic,···, e , e>···, e , 

and (1r1 , ... ,1rN) that satisfy, respectively, constraints (e) and (e), constraints (d) 
and (f), and the following constraints: 

7rj ~ O (j = 1, ... , N) and Ef=i 7rj = l. 

(See Matzkin (19936) for a description of an a lgorithm that uses a random 
search over vectors satisfying constraints of the above type.) 

In practice, one can find the optima! values the 1r/s by first maximizing 
l[( rl, ... , rN+1, y1' .. . , yN+1)' { (h~, ... 'h~+1' D ~' ... ' D~+ ¡)}' ( 7r¡' . . . , 1f N )]' 
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subject to (c)-(f) and the constraint: 
1r1 = 1, rri = O (j = 2, ... , N) . 

Then,maximizing 
L-[( .1 .N+ t 7'1 7•N+1) {(/ l hN+I DI 1nN+l)} ( )J 1 , ... ,1 , , ... , , 1c,···, e , c1···, ../e , 7f1,,.,,7rN 

subject to (c)-(f) an<l ihe constraint: 
1r1 ~ O, 1r2 ~ O, 1ri = O (j = 3, ... , N). 

Next, maximizing 
L-[( .1 .N-H 1'1 yN+I) {(/ I / N+I DI DN+l)} ( )) 1 , ... ,1 , , ... , , ic,· -- , ic , e, ... , e , 7r¡, .. . ,7rN 

subject to ( c)-(f) and the constraint: 
1r1 ~ O, rr2 ~ O, 1r3 ~ O, rri = O (j = 4, ... , N). 

and so on . 

6 .. CONCLUSION 

We have presented a method to estímate disc"rete choice models with unob
served heterogeneity. The method does not impose parametric assumptions either 
on the systematic subutility functions or on the distributions of the unobservable 
random vectors and the heterogeneity parameter. The estimators are computa
tionally feasible and strongly consistent. 
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/\.PPENDIX 

PROOF OF THEOREM 1: 
/\.ssume w.l.o.g. that Assumptiou 1 holds for j= l. J\s it is well known, from the 

distribution of 17i = ( e:1 -C:j, ... , f.J-C:j) for sorne j, we c,rn recover the distribution of 
T/k for all k # j (see Thompson (1988). So, to establish the identification of F", it 

is enough to determine U1e identification of Fi. To sce that Fi is identified, let 
(t2, ... ,lJ) be given.- Let (u1, ... ,uJ) be such that (t2,••·,lJ) = (u1 - u2 + 0'1 -
0-2, ... ,u¡ -UJ + O'¡ - 0-J), Then, vv E W,G E re 

F((t2, ... ,tJ) = j F;(t2, ... ,tJ) dG(w) 

= j F;(u 1 -u2 +a1 -o-2, .. . ,u¡-UJ+a1-o-J)dG(w) 

where the last inequality follows from Assumption 5. It fo llows that F( is 
identified, since if for sorne F 1 and (t2, ... ,tJ), F1(l2 1 ••• ,lJ) # Fi(t2, ... ,tJ), then 
VV, V', G,G' 

Next, assume w.l.o.g. that the alternative, J, that satisfies Assumption 6 is 
J = 2, {32 = O, and the a lternative, j•, that satisfies Assumption 7 is j* = l. To 
show that v·(1, ·) and G· are i<lentified, we transform the polychotomous choice 
model into a binary choicemodel by letting ri--+ -oo for j 2: 3. Let r¡ = t:2-t:1, 
and denote the marginal distribution of t:2 - t:1 by F;. Since F* is identified, we 
can assume that F; is known. Vs,x 1,x3 , .• • ,XJ,r1,r2 , 

Pr(l ls,x1,i2,••·,xJ,r1,r2,••·,rJ) = j F;(v"(l,s,xi,w) +r1 -r2) dG*(w). 

Let 1 = v~(l, s, x1, w ). O ver any set where the values of s and x1 are constant, 
v• is incrcasing in w. Lct m• denote the inversc of t.hc function v* over any set 
where Lite values of (s, x 1) slay consLanL. Sincc (;• is absoluLely conlinuous, Lhe 
distribution, S, of 1 , conditional on (s, x 1 ), is also absolutely continuous. Let g"( ·) 
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denotes the density of w . Using the standard change of variables technique we get 
t.hat Vu 1, tt2 

Pr(l Is, Xt, u1, u2) = j F,;b + llt - tt2) dG•(w) 

= j F,;(u"(l,s,:1: 1 ,w) + tt 1 - u2 ) y•(tv) dtv 

--/ ( ) ( .( )) ¡am·(18,~X1,w)I d-v F,;,+u1 -u2g·m.l,s,x1,w 
1 

, 

= j F,;(, + 1t1 - u2) dSº(,) 

= j F,;_-r(u1 - u2) dSº(¡) 

Dy Tcichcr (196 1 ), s•(-) is identific<l. Let f(s, xt) be the marginal <listribution 
of (s,x 1). J(-) is i<lentific<l since it is justa marginal clistribution of observable 
variables. Hencc, since s•(-) is the distribution of I conditional on (s,x 1),we 
can identify the joint distribution, f(,, s, xi), of (;, s, x 1) . Since w is distributed 
indcpendently of (s, x 1), it follows by Brown and Matzkin ( 1995) (see also Roehrig 
(1988)), that we can identify the function v•(l, ·) and the <listribution of w, from 
the joint distribution J(,,s,x 1 ), as long as 

v(l ·) _J. v'( l ·) =} Dv( l ,•,w) _J. 8v'(l,•,w') 
' -r ' 8(•,xi) -r 8(,,x,) 

where w and w' are such that y - v(l, s, x 1,w) = O and y -v'(l, s, x 1,w') = O. 
In other words, identification will hold if for any v( 1, •) f. v'( 1, •) there exist 

some (s, x 1 ,w,w') such that 

v(l s X w) v'(l s ') and 8v(l,,,x¡,w) _J. 8v(l,,,X¡,w') 
, , 1, = , ,x¡,w 8(,,xt) -r 8(,,:e¡) · 

This will hold by Assumption 7. Hence, we can i<lentify G•(w) and 
v·(t,s,x1,w). 

We now proceed to show that v•(j, ·) is identified for j = 2, ... , J. Since 
/•'•, G•, and v•(l,s,x1,w) have been shown to be identificd even whe11 the func
tions v·(j, ·) ( j = 2, ... , J.) are not, we can assumc from this point on that 
,,,., e·, a n<l v·( 1, s, Xt ,w) itfC known. 
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lf Assumption {8.i) is satisfied, Lhen subsLiLuLing cach Lime j = 1 by j = 
3, '1, .. . , J and following an analogous reasoning Lo LhaL use<l to show that v•(l, s, x1 , w) 
is i<lcnLifie<l, iL is easy Lo show Lhat v·(j, s, x;,w) (j = 3, ... , J) is idcntified. Sub
sLiLuting j = 2 by] and subsLiLuting j = 1 by j = 2, Lhc same reasoning yields 
LhaL v•(2, s, x 2 ,w) is idcnLifie<l. 

lf Assumption (8.ii) is satisfie<l, Lhen again u·(j, s, Xj,w) (j = 3, ... , J) can be 
shown to be i<lentified usi ng previous argumenLs. To show LhaL v•(2, s, x 2 , w) 1s 
idenLifie<l, we let 

"( = n2k(s,x2,xk,w) = u•(2,s , x2,w)- u"(k,s,xk,w). 
Since n 2k is sLricLly incrcasing in w, condiLional 011 (s, x2, xk), wc can use a 

similar argumenL as Lhc one repeate<lly usc<l abovc (using Teicher {1961) resulL) 
Lo show thaL the joinL disLribuLion J{'Y, s, x 2 , xk) is idenLificd. In particular, we 
can assume LhaL for ali t, Pr{'Y $ tls, x 2, Xk) is k11ow11. LeL m2k(s 1 x2, Xk, t) denote 
the in verse (uncLion of 1t2k, con<liLional 011 (s, :z;2, x¡_) . Thcn, for ali t, 

Pr('Y ~ t!s, x2, Xk) = Pr(n2k(s, x2, x¡_,w) ~ lis, x2, :i;k) 
= P r(w $ m2k{s, x2, :i;k, t)ls, x2, xk) 

Since G• is sLrictly increasing, it follows that 

Hence, m 2k{s, x2, Xk, t) is identifie<l, and therefore its in verse, n2k(s, x2, Xk,w) 
is i<lcntifie<l Loo. Sincc 

a.nd v•(k, s, Xk, w) is identifie<l, 

is identified. 

Finally, suppose Lhat Assumption (8.iii) is saLisfie<l . Then, we can use the 
i<lcntification of e· an<l F• to i<lentify, as in Lhe last argument, the diffcrencc 
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funcLions 

lf }M = l,Lhc11 usi11g Lhc idcnLificaLion of v·(M,·) Lo i<lc11Lify v•(!vf- l,·), 
using thc i<lcnLificaLion of v·(,W - 1,·) to idcntify v·(M - 2,·) 11sing n,\t-'lM-i, 

a.nd so on, c>11c can iclc11tify u·(j 1,-) 1 11·(12 1 ·) 1 ... ,v•(jM-i,·). 

lf ju = 2,Lhen using Lite fact LhaL \:/j \:/(s, Xj, w) 

one can idcnLify v·(j, s , :cj,w) since 
v•(j, s, Xj,w) = ni2(s, Xj, i2,w). 

Hence, v·(M - 1, ·) is i<lentificd, and this can be uscd to identify, as before, 
the preceding members in the sequence. Finally, to identify v•(2, ·) we can use 
the fact that n 21 (·) an<l v*(l, ·) are identifieJ. 

This completes the proof of Theorem 1. 

PROOF' OF THEOREM 2: We show the theorcm by showing that the as
sumptions necessary to apply thc result in Wald (1949) are satisfied. (See also 
I<iefer and Wolfowitz (1956).) For any (V, G, F) E (W x r'c x r F ), define 

J ' 
J(y, z , V, G, F) = f n p(jls, Zj V(•,w), F')Y, dG(w) 

j=l -

and for any p > O, define the function f'(y, z, V, G, F, p) by 

f'(y,z,V,G,F,p) = sup f(y,z,V',G',F'). 
- d[(V,G,F),(V 1,G1,F')]<p 

We first show that 
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1 , 

. ' 

(a)V(V,F,G) E (WxfpXfc)andVp> O, f'(y,z, V,G,F,p) isameasurable 

funclion of (y, z). 

Proof of (a.): Clearly, it. sufficcs t.o show t.hn.t. Íor ali j, 

supd[(V,G,F),(V'.G',F')l<P p(jls, z¡ V', F', G') is measurable in (s, z). 

To show t.his, we not.c t.hat sincc ( W x f F x l'c) is a compact space, t.here exists 
a count.able, dense subset. of (W x rF x re). Denote t.his subset by (vV x ['p x fe), 
By Assumplion 12. 

sup{p(jls,z;V',F',G') 1 d[(V,G,F),(V',G',F')] < p, (V',G',F') E (W x 

fp x fe)}= sup{p(jis,z;V',F',G') 1 d[(V,C',F),(\l',G',F')] < p, (V',G',F' 
- -

) E (vV x f'F x f'e)} 

Since, suppose lhal lhe lefl hand side is biggcr lhan lhe right hand side, then, 
lhcrc musl cxist. ó > O and (V', G', F') E ( W x l'p x l'e) such t.hat V( V", G", F 

- -
") E (l,V X I'p X fe), 

(i) p(jls,z; V',F',G') > ó > p(jls,z; V",F",G"). 
But, p,v X f'F X f'c) is dense in (W X rF X re), Hence, there exists a sequence 

{(Vi, F , Gk)} C (W x f'F x I'c)} such that d[(Vi, F , Gk), (V', F', G')] -1 O. 
- k - k -

Assumption 12 implies t.hen that p(jls, z¡ Vi, F , Gk) -1 p(Jls, z¡ V', F', G'), which 

conlradicts ( i) . 
-k -

Hence, since 
sup{p(jis,z; V',F',G') 1 d[(V,G,F),(V',G',F')] < p, (V',G',F') E (W x 

- -
fp x l'c)} = sup{p(jls,z; V',F',G') 1 d[(V,G,F),(V',G',F')] < p, (V',G',F' 

- - -
) E.(vV x fF x fe)} 

and V(V',G',!') E (W x f'F x fe),p(jls,z; V',F',G') is rneasurable in (s,z), 

i t follows that 
sup {p(j Is, z; V', F', G') 1 d[(V,G,F),(V',G',F')] < p, (V',G',F') E (W x 

- -
f F X fe) } 

is measurable in (s, z). 
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·1 

Next, we note that by Assumptions l2 and 14, 

(b) v{(vk,[/G,J}~=l ,(V,[,G) such that {(Vi,tk,Gk)}:1 C (W X rF X 

r a), (V, .f, G) E (W X rF X r o ), and d [(Vi, f / Gk), (V,[, a)] - o, one has that 

\l(y, z), except pcrhaps on a set of probabilily O, f(y, z , \lk , F , Gk) --1 f(y, z, V, F' 
- k -

,G). 

Next, we note thaL by Lhc <lcfi11iLio11 of f(y, z, V, G, F), 

an<l 

(d) \l(V,F,G) E (W x rF x f o ) a nd p > O sufficicntly sma ll, 

e [r(u, z, v·, e·, t··, p)] < oo. 

By (a)-(<l) and Assumption 11, it follows from Wald (1949) tha t 

This completes the proof of Theorem 2 . 
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