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“Robots y Offshoring” 

Resumen: Analizamos el impacto del aumento de la robotización en la industria manufacturera 

sobre el offshoring, definido como la participación de bienes intermedios importados. 

Construimos un panel de 71 países y siete sectores manufactureros para el período 1993-2015 

usando datos del stock de robots y del comercio de bienes intermedios. Encontramos que los 

sectores que experimentan un incremento en la densidad de robots presentan un crecimiento 

menor del offshoring. Curiosamente, el efecto es mayor para el comercio entre países 

desarrollados y la mayoría del efecto ocurrió antes de la crisis financiera global, por lo que no 

encontramos evidencia de que la robotización sea responsable del lento crecimiento del 

offshoring posterior a la crisis. Es importante resaltar que los resultados no están impulsados 

por la industria automotriz.  

 

Palabras clave: Densidad de robots, automatización, offshoring, manufacturas, comercio de 

bienes intermedios. 

 

“Robots and Offshoring” 

Abstract We examine the impact of increased robotization in manufacturing on offshoring, 

defined as the share of imported intermediate inputs. We construct a panel dataset of 71 

countries and seven manufacturing sectors for the period 1993-2015 using data on robot stocks 

and on intermediate goods’ trade. We find that sectors that experienced increased robot 

densification, experienced slower offshoring growth. Interestingly, the effect is stronger for 

trade within developed countries and most of the effect took place before the global financial 

crisis, so we do not find evidence that robotization is responsible for the post-crisis sluggish 

growth in offshoring. Importantly, results are not driven by the auto industry. 

 

Keywords: Robot density, automatization, offshoring, manufacturing, intermediate goods’ 

trade. 
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1 Introduction

The increasing ability of robots to perform tasks previously performed by humans is

transforming the manufacturing industry around the world. Robots were already widely

employed in the OECD countries’ automotive industry since the 1980s, but in recent

years they spread to other industries and to emerging countries. This expansion was

facilitated by an expansion of robots’ capabilities–robots are now able to perform tasks

like welding, painting, and packaging–as well as by a marked decline in their prices.

There is widespread concern about the impacts on the economy of the transformations

brought by robots–as well as by other related technologies, such as 3D printing or

Artificial Intelligence–. Most of the debates and analyses focus on the direct impact that

robot adoption can have on productivity and on the labor market by replacing workers

(Graetz and Michaels, 2018; Acemoglu and Restrepo, 2019).

However, robotization can also affect the economy indirectly, through international

trade. In the past two decades global production became increasingly fragmented,

with countries specializing in different stages of production and the offshoring of tasks

becoming increasingly relevant (Hummels, Ishii, and Yi, 2001; Johnson and Noguera,

2012). This process was arguably facilitated by the massive decrease in communication

costs brought by ICTs (Baldwin and Martin, 1999; Baldwin and Venables, 2013; Fort,

2017). With increased automation, the cost advantage of offshoring certain tasks could

vanish, leading to a decrease in trade in intermediates globally.

In this paper, we exploit variation in the adoption of robots across countries and

sectors, to explore if robot densification–i.e. an increase in the number of robots per

worker–has negatively impacted offshoring, defined following Feenstra and Hanson

(1999) as an industry’s share of imported inputs. To this end, we construct measures of

offshoring and robot density for a panel of 71 countries and seven manufacturing sectors

for the period 1993-2015 using data from the International Federation of Robotics (IFR)

and from the Eora Multi-Region Input Output Matrix.

Identifying causal effects in this context is challenging since there can be omitted fac-

tors varying at the country and sector level that affect offshoring, such as organizational

or management changes, or the adoption of other technologies, that we do not observe.

In addition, there could be reverse causality emerging from shocks to offshoring that

lead to increased robot adoption as a defensive response. To deal with these issues, we

adopt an instrumental variable approach. We use a shift share instrument defined as the
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change in aggregate robot density within countries for 1993–2015 times the initial share

of the world robot density in the sector. We also use variation across sectors in the degree

of replaceability of human tasks by robots, as defined in Graetz and Michaels (2018) to

instrument for changes in robot density, which leads to qualitatively similar results.

We estimate a negative impact of robotization on offshoring over the 1993–2015

period. Given that we use variation at the country and sector level and that offshoring

showed an upward trend during our sample period, our results can be interpreted

in the following way: country-sector pairs that experienced larger increases in robot

density, experienced as a consequence slower offshoring growth. More precisely, moving

a country-sector pair from the lowest to the highest percentile of changes in robot

density, implies an annual average decrease in offshoring of 2.62 over the 1993-2015. We

interpret this results as indicative that the adoption of robots induces the substitution of

tasks produced domestically for imported tasks. Our results are robust to the inclusion

of country and sector trends as well as other controls, such as changes in wages and in

tariffs. Importantly, we check that our results are not driven by the transport equipment

sector, which is the sector that accounts for the largest share of robots in the world.

In addition, we decompose our measure of offshoring into within and between sector

offshoring to determine if the substitution of tasks happens within the same sector

or across sectors. Within sector offshoring corresponds to the definition of narrow

offshoring by Feenstra and Hanson (1999) and is equal to the share of imported inputs

from the same sector of destination while between-sector offshoring corresponds to

the difference between total offshoring and within offshoring. We find results to be

similar across both definitions of offshoring, but more precisely estimated for between

offshoring.

We also explore heterogeneity across levels of development of both importing and

exporting countries. We find the negative impact of robot density on offshoring takes

places across all levels of development but tends to be higher for trade flows occurring

between developed countries. Although this might seem contrary to intuition –it is

expected that developed countries will show a higher replacement on imports from

developing countries–, it is consistent with the evidence on the impact of ICTs on

fragmentation provided in Fort (2017). She finds that high technology industries are

more likely to source from high human capital countries.

Our paper speaks to the literature that studies the relationship between trade and

technology. Several papers explore the impact that trade shocks have on technology
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adoption. Bloom, Draca, and Van Reenen (2016) and Bernard et al. (2018) find evidence

in favor of trade-induced technical change, Bustos (2011) reaches similar conclusions

studying the MERCOSUR impact on Argentinian firms, Dorn et al. (2016) find a negative

relationship between import competition and innovation and, similarly, Pierce and

Schott (2018) findings suggest that exposure to an increase in import competition reflects

in relative declines in investment in the industry. A related set of papers explores the

other direction of causality–from technological change to trade–. Fort (2017) finds that

a firm’s adoption of communication technology is associated with an increase in its

probability of fragmentation. Steinwender (2018) estimates that that the introduction

of the transatlantic telegraph generated an efficiency gain in trade between the United

States and the United Kingdom equivalent to 8 percent of export value. We contribute

to this literature by studying how an automation technology like robots can impact the

fragmentation of production.

The two most closely related papers to ours are De Backer et al. (2018) and Artuc,

Bastos, and Rijkers (2018). These authors in independent research also explore the

relationship between robot adoption and international trade. First, De Backer et al.

(2018) estimate the impact of the growth of the robot stock on several outcomes such

as offshoring, forward linkages, and backward linkages. Our study complements De

Backer et al. because it examines a longer period (1993-2015 vs. 2000-2015). We also

use robot density instead of robot stock, to account for the disparities relative to the size

of countries, and a more demanding specification along with an instrumental variable

approach to address the potential endogeneity of this robot density. Second, Artuc,

Bastos, and Rijkers (2018) estimate the impact of an increase in robotization in the north

on trade with the south. Our study is different in that it incorporates robotization in

the south as well as north-north and south-south trade in the analysis and uses data on

imports by the industry that is automating and not aggregate country-level imports as in

Artuc et al. (2018). Our data allows us to study a bigger sample of countries (71 vs 24).

Our paper also contributes to the small but growing literature that estimates the

impacts of robotization in the economy. Graetz and Michaels (2018) find that increased

robot use contributes to annual labor productivity growth, while raising total factor

productivity and lowering output prices. Acemoglu and Restrepo (2019) present evi-

dence that suggests that the introduction of robots may reduce employment and wages.

A related set of papers studies the determinants of robot adoption (Abeliansky and

Prettner (2017) and Acemoglu and Restrepo (2018) associate demographic change–lower
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population growth/aging–to greater adoption of automation technologies, including

robots, leading to more robotics-related activities.

The paper is organized as follows. Section 2 states our empirical strategy, section 3

describes data sources and shows descriptive statistics, and section 4 presents the results

of our estimation. Finally, section 5 concludes.

2 Empirical strategy

We empirically examine the impact that increased robot density has had on offshoring,

using variation in changes in robot density across sectors and countries. Our baseline

specification is:

∆ lnOffshoringcs = βf (∆RDcs) +γControlscs + δc +ψs + εcs (1)

where the difference operator refers to changes between 1993 and 2015. Offshoringcs is

the share of imported intermediate inputs in total (manufactured) intermediate inputs

demand in country c and sector s.1 RDcs is the robot density in country c and sector s,

which is equal to the ratio of the robot stock per thousand of workers. f (x) is a function

where percentiles are calculated upon the distribution of changes in robot density, taking

into account weights, as in Graetz and Michaels (2018). These weights are based on

the share of country–industry employment in each country’s total employment for the

year 1990. Since the number of workers can respond endogenously to changes in other

variables in the model, when we calculate the long difference of offshoring, we keep

employment fixed at its 1990 value, this is: ∆RDcs = RDcs,2015−RDcs,1993
Lcs,1990

. We also include

control variables (Controlscs) that vary at the country and sector level, such as changes

in tariffs and wages. Since the model is in differences, country and sector effects are

differenced out. However, we include country and sector fixed effects in our baseline

model to account for country and sector trends. In all our specifications we cluster

standard errors by country i.

The intuition behind our specification is the following. Sector s in country i imports

a share of its manufacturing inputs from other countries, this is what we call offshoring.

1We follow the definition of outsourcing by Feenstra and Hanson (1999) but we call it offshoring since
outsourcing can occur within national borders but offshoring is the type of outsourcing that takes place
across national borders.
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A fall in robot prices will induce the substitution of robots for workers in some country-

sector cells, given that robots can perform tasks previously performed by workers but at

a cheaper price. Some of these tasks are embedded in imported inputs. Therefore, an

increase in robotization can induce some industries to locally produce parts that were

previously imported, reducing the degree of offshoring.

Our baseline specification faces some challenges for the identification of the casual

effect of robotization on offshoring. First, we make certain assumptions about deprecia-

tion and imputations to the robot data, as described in section 3.1 that could generate

measurement error. This can compound with the fact that we estimate our model in

changes, generating an attenuation bias. Second, omitted variables that vary at the

country and sector level could cause bias in any direction. Third, an important source of

concern is the potential reverse causality between robotization and trade. More precisely,

we cannot rule out that the decision to acquire robots is not taken as a response to a

decrease in offshoring caused by something else, such as a shock to offshoring costs.2

To address this possible sources of endogeneity, we use an instrumental variables ap-

proach. We use a shift share instrument defined as the change in aggregate robot density

within countries for 1993–2015 times the initial share of the world robot density in the

sector. We also perform robustness checks using a different instrument, replaceability of

human tasks by robots as defined in Graetz and Michaels (2018).

Our main identification strategy is a Bartik shift share instrument proposed in Graetz

and Michaels (2018). This instrument is constructed calculating the change in aggregate

robot density from 1993–2015 for each country, and the global robot density in 1993 for

each industry. Then, both measures are multiplied and we computed the percentile rank

of the product weighted by 1990 within-country employment shares, exactly as with the

dependent variable.

The other instrumental strategies tested is an industry-level measure of replaceability
defined in Graetz and Michaels (2018). This instrument measures how likely it is that an

occupation from the 1980 US Census will be replaced by robots. To do so, we checked if

the 2000 Census three-digit occupations included in its name any of the applications the

IFR distinguishes among robots. If they match, the occupation is giving a replaceability

2As mentioned in the introduction, there is evidence that suggests that technology adoption could be
affected through different channels and in different directions by trade fluctuations. (Bernard et al. (2018),
Bloom, Draca, and Van Reenen (2016), Bustos (2011), Dorn et al. (2016), Fort (2017), Pierce and Schott
(2018), Steinwender (2018)).

5



value of one. We then need to compare the 2000’s occupations with the 1980 ones. This

is possible using the 1990 Census occupational classification as an intermediate step,

given that is also provided for both the 1980 and 2000 censuses. There are some cases

where different 2000 occupations map into the same 1990 occupation. The later will be

consider as replaceable if at least one of the 2000 occupations mapping is considered as

replaceable. Next, these variables are assigned to each individual in the 1980 IPUMS

Census based on their reported 1990 occupation. According to their occupation and the

1990 Census industry classification, each individual is assigned an Eora MRIO industry3.

Finally, the sum product of replaceability and annual hours worked is divided by the

total sum of hours worked (applying individual weights in the 1980 IPUMS Census).

An important thing to take into account is that this means occupations are classified as

replaceable even if only part of their work can be done by robots and not the whole. In

other words, the replaceability values represent an upper bound to the share of hours

where work may be done by robots.

Our first stage is therefore:

f (∆RDcs) = αZcs +ωControlscs +χc + ρs + ζo + νcs (2)

3 Data and descriptive evidence

3.1 Data sources

To estimate the impact of robotization on offshoring, we combine data from the Interna-

tional Federation of Robotics (IFR), the Eora MRIO, and UNIDO.

We rely on IFR for data on the stock and on the incorporations of industrial robots by

4-digit ISIC revision 4 industry, country and year. The data comprises 6 sectors–with

the manufacturing sector being the only sector desagregated into 11 industries– and 75

countries for the period 1993–2015, but with gaps.4 According to IFR, a robot is ”an

3To make this conversion we had to map the 1990 Census industry classification with EU KLEMS
industries first. Then the concordance EU KLEMS - Eora was done. See Appendix B Table 9.

4As data on robot stock is not specified by industry for several countries in early years, imputations
at the industry-level is needed. Another limitation of the data comes from the North American region
as up to 2011 Canada, Mexico, and the US were combined in a single reported stock. Imputations at the
country-level for the pre-2011 period is therefore needed. Values are calculated using post-2011 shares.
We describe how we perform imputations in Appendix A. In addition, due to inconsistencies in the stock
of robots as a result of reclassifications, we also drop Japan from our sample. We also check that our main
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actuated mechanism programmable in two or more axes with a degree of autonomy,

moving within its environment, to perform intended tasks.” (International Federation of

Robotics (2017)), where autonomy refers to the ability to perform tasks without human

intervention. The IFR then distinguishes between two types of robots, according to their

intended application: service robots 5 and industrial robots. As the quality of data on

service robots is not the best and our study focuses in manufacturing industries, we

only use the industrial robots data which, naturally, are the ones used in industrial

automation application. IFR constructs the stock of robots by compiling information

reported by robot suppliers as well as from national robot associations and assumes that

the robot stock does not depreciate yearly but instead depreciates entirely in the twelfth

year after acquisition. Instead, we use a more realistic yearly depreciation rate of 10

percent.6

To obtain data on offshoring, we rely on the Eora Multi-regional Input Output Matrix

(Eora MRIO) in its 26-sector version (Eora 26), which is available for 189 countries

annually for the period 1990-2015.7 The number of countries as well as the period

spanned makes Eora much more complete than other databases. 8

We obtain industry-level employment and wage data from United Nations Industrial

Development Organization (INDSTAT2 (2017)). This dataset spans 171 countries for the

period 1963-2016, with some gaps.9

Finally, we use tariffs from a joint CESIfo Group-World Bank effort following the

methodology of Felbermayr, Teti, and Yalcin (2018).

The robot and offshoring data are at different industry classifications so we construct

a correspondence between the classifications in IFR and in Eora (see Table 7 in Appendix

results still hold when we use raw IFR data without performing any imputations.
5A service robot is a “robot that performs useful tasks for humans or equipment excluding industrial

automation application.”
6The same approach is used by Graetz and Michaels (2018)
7See Lenzen et al. (2012) and Lenzen et al. (2013) for details on the construction of this database.
8The IO tables are constructed using a variety of sources of data, which makes it quite reliable. The

sources are: (1) input–output tables and production data from national statistical offices; (2) IO from
Eurostat, IDE-JETRO, and OECD; (3) the UN National Accounts Main Aggregates Database; (4) the UN
National Accounts Official Data; (5) the UN Comtrade international trade database; and (6) the UN Service
Trade Statistics Database.

9Some data at the INDSTAT2 level is missing. In order to solve this problem we came up with a two
step solution: for the cases where the data was available at the INDSTAT4 level, the aggregated values was
used to fill in the blanks. If this data was also missing, imputations of the country-industry employment
were made by filling in with the previous value available. We describe how we perform imputations in
Appendix A.
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B), which yields seven sectors. The same process is done to match the employment and

offshoring data (see Table 8 in Appendix B). The final product is a database with the data

at the Eora industry classification level. In addition, Eora covers 189 countries whereas

IFR covers 75 countries. We only consider in our regressions 71 of the 75 countries in

IFR, however, we use the remaining countries in EORA to obtain imports for those 71

countries (see Table 10 Appendix C for a list of countries). As a consequence, our dataset

covers 71 countries and 7 manufacturing sectors for the 1993–2015 period. 10

3.2 Descriptive evidence

As mentioned in section 3.1, we focus on the impact of robot adoption on offshoring

across 71 countries in seven manufacturing sectors. By the end of 2015, the worldwide

robot stock in manufacturing accounted for 1,140,000 units 11, with Asia and Pacific

being the region with the largest share of the world’s stock, even when we exclude Japan.

At the region’s top of our sample of countries, China holds 161,430 robots, followed by

South Korea with 130,967. Only four countries in the world have a stock of more than

100,000 robots, and two of them belong to Asia and Pacific. The other two are United

States (126,173) and Germany (115,878).

There are 41 Non-OECD countries in our final data, with a mean robot density of

0.97 and a maximum of 5.64, corresponding to Czech Republic, as shown in Table 11.

The remaining 30 OECD countries have an average of 6.87 robots per thousand workers,

with a maximum of 22.79 corresponding to Korea. See Figure 1.

The global robot stock has been steadily increasing since 1993, driven initially by

OECD countries.12 In the Non-OECD group of countries growth in the robot stock has

spurred after 2009, led by China. The postcrisis period has encourage less developed

countries to adopt a higher amount of robots. In 2009, of a total of 537,740 robots, only

5.9 percent were owned by Non-OECD countries whereas at the end of year 2015 they

10The countries used in the study do not include Japan, North Korea, Uzbekistan and Puerto Rico. The
first one is excluded because its data presents some inconsistencies throughout time due to reclassification
of robots within the country. Given that the UNIDO dataset does not include data for North Korea and
Uzbekistan, computing the robot density for these countries was not possible. Finally, Puerto Rico does
not appear in the Eora dataset, so we have no idea of its offshoring for the period studied.

11This number include all the 75 countries of the IFR database, although we already explained why we
don’t use in our regressions Japan, North Korea, Uzbekistan and Puerto Rico.

12We do not include Mexico and Chile in the OECD countries’group. We consider both countries
Non-OECD countries to keep all Latin America and Caribbean countries in the same group.
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held 21.6 percent of the global stock. Figure 2 reflects how this impacted on the robot

density by type of country.

The auto industry has experienced an early automation since the 1980s, being now

the sector with the highest amount of robots and, consequently, with the biggest robot

density as shown in Figure 3. Although the sectoral automation ranking behaves almost

the same comparing OECD and Non-OECD countries, the latter group has more Textiles

and Wearing Apparel robots than Wood and Paper ones, as shown in Figure 9. Explained

by the fact their economies have developed this sector relatively more. Still, it is almost

nothing comparing with other sectors. This shows one of the challenges robotization is

trying to surpass: there are some tasks in which it is still hard to replace human labor

with the current available technology and many of those belong to work in the textiles

sector.

When it comes to our dependent variables, Broad and Narrow Offshoring, the evi-

dence shows an increasing trend for the period of study -Figure 5-. This changes when

we analyze each sector separately, as in Figure 6, where Electrical and Machinery, Trans-

port Equipment, Petroleum Chemical and Non-Metallic Mineral Products and Metal

Products are the sectors with offshoring levels lower than the ones at the beginning of

the period. Again, disparities are found when taking into account the type of country

that is experiencing the automation. As shown in Figures 7 and 8, Non-OECD countries

are experiencing a decreased in offshoring whereas OECD countries’ trend is increasing.

4 Estimation results

In order to examine the impact of robotization on offshoring we present and analyze the

results of our a baseline model in section 4.1, then we move on to heterogeneous effects

across different exporting and exporting regions in section 4.2, and finally, we perform

robustness exercises in section 4.3.

4.1 Baseline results

We present our core estimates in Table 1. The first fourth columns show OLS estimates

including country and sector trends and controls for changes in wages and in tariffs in a

sequential manner. The most demanding specification in the fourth column yields an
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estimate of −0.21 (column 4), somewhat larger in magnitude than the ones corresponding

to specifications that do not include sector trends in the first and second column.

To address the potential endogeneity of changes in the robot density (explained in

section 2), we present in the fifth to seventh columns of Table 1 2SLS estimates. The

fifth column shows that when using replaceability–as calculated in Graetz and Michaels

(2018)–as an instrument the point estimate decreases somewhat in magnitude to −0.36

and is less precise. One disadvantage of this instrument is that it only uses variation at

the sector level, so in the sixth and seventh columns we report results using a shift-share

instrument, that allows to control for both country and sector trends. When we only

include country trends and controls, this instrument yields an estimate (column 6) that

is closer to OLS than the one in the fifth column. However, when we control in addition

for sector trends, the estimate is markedly higher, with a value of −0.86 (column 7).

There are at least two potential explanations to the fact that OLS estimates are smaller

than IV estimates. The first one is attenuation bias stemming from measurement error

in robot adoption which can be due to the fact that we calculate robot densities by

imputing data for some countries and years or to the fact that variation in robot stocks

does not necessarily reflect differences in robot capabilities and quality across sectors

and countries. The second are unobserved shocks to foreign productivity that lead to an

increase in the share of imported intermediates but also to domestic technical change. For

example, Bloom, Draca, and Van Reenen (2016) find evidence for Europe that offshoring

to China increases domestic IT intensity and productivity. This correlation between

unobserved shocks and robot adoption biases the (negative) OLS estimates upwards and

therefore, makes the estimated effect of the increase robot density on offshoring smaller

in absolute value than what it truly is.

Even though point estimates vary to some extent across specifications and methods,

the results in Table 1 unambiguously point to increases in robot adoption being related

to reductions in offshoring. The 2SLS estimates range from −0.36 (column 5) to −0.86

(column 7), which amounts, respectively, to a decrease in offshoring of 1.35 to 2.62

percent per year on average for a country-sector pair that moves from the lowest to the

highest percentile of changes in robot density, during the 1993–2015 period.13

13The values come from applying the formula 100× eβ̂−1/22, where 22 is the number of years elapsed
between 1993 and 2015.
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4.2 Heterogeneous effects

In the previous subsection we estimated the overall impact that robot densification has

on offshoring, but how does this impact vary across countries or sectors? In this section

we explore these issues.

First, we examine the varying effects of robotization across countries of different

levels of development. To this end, we construct the dependent variable distinguishing

if the country sourcing the imports (i.e. the partner country) is developed (OECD) or de-

veloping (non-OECD). Therefore, for each country-sector pair, we have two observations

for offshoring, one corresponding to the share of imported inputs from OECD countries

and the other to the share of imported inputs from non-OECD countries that we stack

in a single regression. Both values add up to offshoring as defined in section 4.1. In

addition, we can also distinguish for each of the (importing or reporter) countries if they

belong to the OECD or not. This yields the following estimating equation:

∆ lnOff ocs = β11f (∆RDcs)×OECDc ×OECDo + β12f (∆RDcs)×OECDc ×Non-OECDo

+ β13f (∆RDcs)×Non-OECDc ×OECDo

+ β14f (∆RDcs)×Non-OECDc ×Non-OECDo

+γ1Controlscs + δ1,c +ψ1,s + ξ1,o + ε1,cs

(3)

where o = {OECD,Non-OECD} is the region that is the origin of the imports, OECDc
and Non−OECDc are , respectively, indicator variables equal to one if the importing

country belongs to the OECD or not, OECDo and Non−OECDo are indicator variables

equal to one if the origin of the imports is the OECD or not, respectively, and ξo is an

origin-region fixed effect.

We instrument each interaction with the interaction of the instrument and the corre-

sponding dummies. Therefore the first stage corresponding to equation 3 is:
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f (∆RDcs) = α11Zcs ×OECDc ×OECDo +α12Zcs ×OECDc ×Non-OECDo

+α13Zcs ×Non-OECDc ×OECDo

+α14Zcs ×Non-OECDc ×Non-OECDo

+ω1Controlscs +χ1,c + ρ1,s + ζ1,o + ν1,cs

(4)

where Zcs is the instrumental variable.

We report results from the estimation of equation 3 in Table 2. The first fourth

columns show OLS estimates including country and sector trends and controls for

changes in wages and in tariffs in a sequential manner. The point estimates are negative

across all combinations of reporters and partners, but are somewhat larger in absolute

value for the pairs that correspond to OECD reporters and partners. In the most demand-

ing specification in the fourth column the only coefficients that remain significant are the

ones corresponding to an OECD partner (i.e. exporter). In addition, in this specification

the effects are more negative for combinations of OECD reporter-OECD partner followed

by combinations of Non-OECD reporter-OECD partner. When using the shift-share

instrument as an IV for robot densification, we find that all four point estimates are

negative. As mentioned above, we have some concerns when introducing the sector fixed

effects in the 2SLS estimation, where the coefficients increase in a considerable amount,

a problem that does not occur when accounting only for country fixed effects. As in OLS,

this specification has the biggest effect for the pair OECD reporter-OECD partner when

controlling only for country trends. However, when sector fixed effects are included the

largest coefficient corresponds to the pair OECD reporter-Non-OECD partner. When us-

ing repleaceabilty, point estimates remain negative but the one corresponding to OECD

reporter-OECD partner is the largest in absolute value and is more precisely estimated

than the rest (column 5). As this instrument varies at the sector level only, we can not

control for sector trends so we do not experience the same problem as with the shift

share.

Second, we examine if robot densification in a country-sector cell has a differential

impact on the share of imported intermediates from the same sector (within-sector

offshoring) than on the share of imported intermediates from other sectors (between-

sector offshoring). To this end, we decompose offshoring into the share of intermediate

imports from the same sector that is importing them and the share of intermediates from
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sectors other than the importing sector. Within-sector offshoring corresponds to what

Feenstra and Hanson (1999) denominate narrow offshoring and the definition we used in

the baseline estimation (see section 4.1) corresponds to what they call broad offshoring.14

The sum of within-sector (or narrow) offshoring and between sector offshoring adds up

to broad offshoring. We stack both measures of offshoring in a single regression, which

means that for every country-sector change in robot density we have two observations of

offshoring, doubling the number of observations from the value we have in the baseline.

We estimate the following:

∆ lnOffwcs = β21f (∆RDcs)×Withins + β22f (∆RDcs)×Betweens

+γ2Controlscs + δ2,c +ψ2,s + ξ2,w + ε2,cs

(5)

where w = {within,between} is the type of offshoring, Withins and Betweens are,

respectively, indicator variables equal to one depending to which offshoring is being

tested and ξw is a fixed effect that accounts for the offshoring type.

As in the previous exercise, we instrument each interaction with the interaction of

the instrument and the corresponding dummies. Therefore the first stage corresponding

to equation 5 is:

f (∆RDcs) = α21Zcs ×Withins +α22Zcs ×Betweens

+ω2Controlscs +χ2,c + ρ2,s + ζ2,w + ν2,cs

(6)

Results for within and between-sector offshoring are shown in Table 3. The first

to fourth columns display OLS estimates. For the most demanding specification in

the fourth column, the estimated coefficients for within-sector and between-sector

offshoring are similar in magnitude and in precision. When using as an IV the interaction

between replaceability and the dummies for within and between sector offshoring, the

point estimate is larger for between-sector offshoring and imprecise for within sector

offshoring. However, when using the interaction between the shift-share instrument

and the dummies for within and between sector offshoring, the opposite happens: the

coefficient for within-sector is larger and relatively more precise. Given that OLS and

both IVs yield conflicting results, we remain agnostic about any differential effect for

14See also Wright (2014).
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within and between sector offshoring.

4.3 Robustness exercises

We perform a series of robustness exercises to verify the validity of our study. To our

discontent, we were not able to run a placebo test similar to the one in Graetz and

Michaels (2018) due to the lack of observations before our sample period.

4.3.1 Alternative definitions of Robot Density

The missing data for some specific sectors, countries or years obliged us to perform a

series of imputations. To check whether this imputations are biasing the results or not

we contrast different definitions of robot density with our baseline model. The results

shown in Table 6 allow us to determine that the conclusions are robust to different ways

of using the data.

4.3.2 Pre and Post Crisis

Our period of study includes the financial crisis of 2008, which certainly led to lower

levels of worldwide trade. To exclude the crisis effect from our analysis we divide the

time period in two: Pre-crisis 1993-2007 and Post-crisis 2010-2015, see Table 4. For the

pre-crisis period we encounter that results behave in the same way as before, maintaining

the negativity and significance. However, we find that for the post crisis period the

estimates lose significance in the most exigent OLS regressions. Even more, the sign of

the replaceablity instrument is positive in this case. These findings suggest that most of

the effect of automation over offshoring took place before the crisis. There is no enough

evidence to extract conclusions for the years after the crisis.

4.3.3 No Transport equipment

We were particularly concerned about the high concentration of robots in the Transport

equipment industry, as displayed in several figures. An important result we found is

that, when taking Transport equipment out from the sample, results hold. Table 5 shows

that point estimates behave accordingly with the previous results. We conclude that,

regardless of the disparity in the adoption of robots among sectors, the decrease of
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offshoring caused by automation is not only a phenomenon of the auto industry but it

happens across manufacturing sectors.

5 Conclusion

There is widespread concern about the effects of new technologies such as robots, artifi-

cial intelligence, and 3D printing in the economy. These technologies have the potential

to boost productivity but also to displace workers along the way. Most of the analyses

focus on the effects of automation of domestic industries on domestic employment. How-

ever, the effects of automation can be felt even if domestic industries do not automatize,

through the automation of trade partners. In the past decades, global production has

become increasingly fragmented, with countries specializing in producing certain tasks

leading to an expansion in intermediate goods’ trade. When a certain industry in a

country automatizes, it can start producing certain tasks domestically, decreasing its

offshoring of tasks to other countries. This reduces demand for intermediate goods in

those countries and can have negative consequences for workers in those economies,

even if they do not automatize.

In this paper, we explored how robot adoption affects offshoring, and therefore,

international trade in intermediate goods. To this end, we built a panel dataset of seventy-

one countries and seven manufacturing sectors for the period 1993-2015 that contains

information on offshoring–defined as the share of manufactured intermediate inputs–

and on the robot stocks. To address endogeneity concerns we used an instrumental

variable approach, a shift share variable that interacts the change in aggregate robot

density within countries with the global share of each industry at the beginning of the

period. We also used an alternative instrument based on the variation across industries

in the replaceability of humans by robots (Graetz and Michaels (2018)).

We find that industry-country pairs that increase their robot adoption relatively more,

experience a decrease in offshoring. Given that during our sample period offshoring

was on an upward trend, our results imply that increases in robotization lead to lower

offshoring growth. We also find that these effects behave differently when taking into

account North-North, North-South, South-North and South-South trade. We don’t see

any differential effect regarding within and between offshoring. The results remain

robust to different ways of defining robot density, not considering the years of the
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financial crisis or taking out the Automotive sector from the sample.

Our results point to the importance of considering the automation of trade partners

when evaluating the effects on new technologies in the economy. Even if a country is not

undergoing a process of automation, the increasing trend of world’s adoption of robots

could affect its trade patterns.
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6 Figures

Figure 1: Robot density, 2015

Note: Map shows the manufacturing robot density for the year 2015. Robots data comes
from the IFR, assuming a yearly robot depreciation rate of 10%. Employment data comes
from UNIDO. Darker colors show a bigger robot density.
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Figure 2: Evolution of the Robot Density by type of country

Note: Time series for the weighted average of Robot Density by type of country. Robots
data comes from the IFR, assuming a yearly robot depreciation rate of 10%. Employment
data comes from UNIDO.
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Figure 3: Evolution of Robot Density by sector

Note: Time series for the weighted average of Robot Density by sector. Robots data
comes from the IFR, assuming a yearly robot depreciation rate of 10%. Employment
data comes from UNIDO.
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Figure 4: Evolution of Robot Density by sector without Transport Equipment

Note: Time series for the weighted average of Robot Density by sector, excluding
Transport equipment. Robots data comes from the IFR, assuming a yearly robot
depreciation rate of 10%. Employment data comes from UNIDO.
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Figure 5: Evolution of the total Offshoring

Note: Time series for the weighted average of total offshoring –Broad Offshoring– and
within industry offshoring –Narrow Offshoring–. Data comes from EORA.
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Figure 6: Evolution of the Broad Offshoring by sector

Note: Time series for the weighted average of total offshoring –Broad Offshoring– by
sector. Data comes from EORA.
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Figure 7: Evolution of Broad Offshoring by type of country

Note: Time series for the weighted average of total offshoring –Broad Offshoring– by
type of country. Data comes from EORA.
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Figure 8: Evolution of the Narrow Offshoring by type of country

Note: Time series for the weighted average of within offshoring –Narrow Offshoring– by
type of country. Data comes from EORA.
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Figure 9: Stock per industry
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7 Tables

Table 1: The impact of robot densification on offshoring. Baseline estimates.

OLS 2SLS

Replaceab Shift-share

(1) (2) (3) (4) (5) (6) (7)

f (∆RDcs) -0.165*** -0.180*** -0.214*** -0.212*** -0.355** -0.286*** -0.860***
(0.0517) (0.0542) (0.0709) (0.0719) (0.163) (0.0785) (0.303)

Country trends X X X X X X X
Sector trends X X X
Controls X X X X X
Observations 497 483 497 483 483 483 483
R-squared 0.791 0.783 0.799 0.791 0.774 0.780 0.734
F-statistic 73.51 232.5 70.20

The table shows OLS (columns 1–4) and 2SLS (columns 5–7) estimates of a model in long
differences (1993–2015) where the dependent variable is the logarithmic difference of off-
shoring, defined as the share of imported manufacturing inputs, and the independent is the
percentiles of the change in robot density. Percentiles are calculated upon the distribution
of changes in robot density, taking into account weights. These weights are based on the
share of country-industry employment in each country’s total employment for the year
1990, which is the year we used in our definition of robot density. Both variables are at
the country (N=71) and sector (N=7) level. Controls included are the logarithmic change
(between 1993 and 2015) of wages in manufacturing and of one plus the tariff rate. The
number of observations decreases when we include controls due to missing values in those
variables. The instruments are replaceability, defined as in Graetz and Michaels (2018) and
a shift-share corresponding to the initial share of the world robot density in the sector times
the change in the country-level robot density. All regressions are weighted by the same
weight we used to calculate percentiles, as in Graetz and Michaels (2018).
Standard errors are clustered by country. (***) p < 0.01, (**) p < 0.05, (*) p < 0.1.
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Table 2: Heterogeneous effects. OECD and Non-OECD trade.

OLS 2SLS

Replaceab Shift-share

(1) (2) (3) (4) (5) (6) (7)

f (∆RDcs)

OECD
reporter

OECD
partner

-0.106 -0.109 -0.253** -0.241** -0.439** -0.223** -0.903***
(0.0736) (0.0743) (0.107) (0.109) (0.173) (0.104) (0.340)

Non-OECD
partner

-0.103 -0.106 -0.156 -0.148 -0.191 -0.211* -0.947**
(0.0924) (0.0935) (0.137) (0.140) (0.204) (0.126) (0.388)

Non-OECD
reporter

OECD
partner

-0.109 -0.130* -0.213** -0.211** -0.299 -0.0487 -0.692**
(0.0745) (0.0774) (0.0816) (0.0815) (0.273) (0.127) (0.313)

Non-OECD
partner

-0.0884 -0.0930 -0.144 -0.134 -0.259 -0.174 -0.862**
(0.0775) (0.0817) (0.0904) (0.0911) (0.322) (0.130) (0.365)

Country trends X X X X X X X
Partner trends X X X X X X X
Sector trends X X X
Controls X X X X X
Observations 994 966 994 966 966 966 966
R-squared 0.879 0.877 0.885 0.883 0.872 0.876 0.856

The table shows OLS (columns 1–4) and 2SLS (columns 5–7) estimates of a model in long differences (1993–
2015) where the dependent variable is the logarithmic difference of offshoring, defined as the share of imported
manufacturing inputs, and the independent is the percentiles of the change in robot density. Percentiles are calculated
upon the distribution of changes in robot density, taking into account weights. These weights are based on the
share of country-industry employment in each country’s total employment for the year 1990, which is the year we
used in our definition of robot density. Both variables are at the country (N=71) and sector (N=7) level. Controls
included are the logarithmic change (between 1993 and 2015) of wages in manufacturing and of one plus the tariff
rate. The number of observations decreases when we include controls due to missing values in those variables. The
instruments are replaceability, defined as in Graetz and Michaels (2018) and a shift-share corresponding to the initial
share of the world robot density in the sector times the change in the country-level robot density. All regressions
are weighted by the same weight we used to calculate percentiles, as in Graetz and Michaels (2018). Variables are
interacted with dummies of OECD and Non-OECD reporter/partner. Partner trends controls for the type of origin
country.
Standard errors are clustered by country. (***) p < 0.01, (**) p < 0.05, (*) p < 0.1.
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Table 3: Heterogeneous effects. Within and Between Offshoring.

OLS 2SLS

Replaceab Shift-share

(1) (2) (3) (4) (5) (6) (7)

f (∆RDcs)

Within-
industry

-0.114* -0.133** -0.226*** -0.227*** -0.300 -0.222** -0.991***
(0.0577) (0.0595) (0.0769) (0.0778) (0.184) (0.0893) (0.344)

Between-
industry

-0.254*** -0.269*** -0.209*** -0.207*** -0.421*** -0.348*** -0.567*
(0.0575) (0.0597) (0.0647) (0.0655) (0.157) (0.0793) (0.295)

Country trends X X X X X X X
Type trends X X X X X X X
Sector trends X X X
Controls X X X X X
Observations 994 966 994 966 966 966 966
R-squared 0.767 0.757 0.778 0.769 0.750 0.755 0.723

The table shows OLS (columns 1–4) and 2SLS (columns 5–7) estimates of a model in long differences
(1993–2015) where the dependent variable is the logarithmic difference of offshoring, defined as the
share of imported manufacturing inputs, and the independent is the percentiles of the change in
robot density. Percentiles are calculated upon the distribution of changes in robot density, taking
into account weights. These weights are based on the share of country-industry employment in each
country’s total employment for the year 1990, which is the year we used in our definition of robot
density. Both variables are at the country (N=71) and sector (N=7) level. Controls included are
the logarithmic change (between 1993 and 2015) of wages in manufacturing and of one plus the
tariff rate. The number of observations decreases when we include controls due to missing values in
those variables. The instruments are replaceability, defined as in Graetz and Michaels (2018) and
a shift-share corresponding to the initial share of the world robot density in the sector times the
change in the country-level robot density. All regressions are weighted by the same weight we used
to calculate percentiles, as in Graetz and Michaels (2018). Variables are interacted with dummies of
Within and Between Offshoring. Type trends controls for the type of offshoring.
Standard errors are clustered by country. (***) p < 0.01, (**) p < 0.05, (*) p < 0.1.
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Table 4: Robustness exercises. No crisis.

OLS 2SLS

Replaceab Shift-share

(1) (2) (3) (4) (5) (6) (7)

Panel A: 2007-1993

f (∆RDcs) -0.0959** -0.106** -0.0940* -0.0976* -0.340** -0.209*** -0.641***
(0.0435) (0.0455) (0.0538) (0.0547) (0.156) (0.0728) (0.218)

Observations 497 483 497 483 483 483 483
R-squared 0.789 0.760 0.797 0.770 0.734 0.755 0.691
F-statistic 48.41 211.7 49.65

Panel B: 2015-2010

f (∆RDcs) -0.0129** -0.0100* -0.0140 -0.0131 0.0347 -0.0229** -0.0974
(0.00509) (0.00599) (0.0104) (0.00993) (0.0373) (0.0112) (0.0865)

Observations 497 483 497 483 483 483 483
R-squared 0.812 0.802 0.815 0.805 0.789 0.801 0.771
F-statistic 14.93 150.6 48.69
Country trends X X X X X X X
Sector trends X X X
Controls X X X X X

The table shows OLS (columns 1–4) and 2SLS (columns 5–7) estimates of a model in two
long differences, Panel A (1993–2007) and Panel B (2010–2015). The dependent variable is
the logarithmic difference of offshoring, defined as the share of imported manufacturing
inputs, and the independent is the percentiles of the change in robot density. Percentiles are
calculated upon the distribution of changes in robot density, taking into account weights.
These weights are based on the share of country-industry employment in each country’s
total employment for the year 1990, which is the year we used in our definition of robot
density. Both variables are at the country (N=71) and sector (N=7) level. Controls included
are the logarithmic change of wages in manufacturing and of one plus the tariff rate. The
number of observations decreases when we include controls due to missing values in those
variables. The instruments are replaceability, defined as in Graetz and Michaels (2018) and
a shift-share corresponding to the initial share of the world robot density in the sector times
the change in the country-level robot density. All regressions are weighted by the same
weight we used to calculate percentiles, as in Graetz and Michaels (2018).
Standard errors are clustered by country. (***) p < 0.01, (**) p < 0.05, (*) p < 0.1.
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Table 5: Robustness exercises. No Transport equipment

OLS 2SLS

Replaceab Shift-share

(1) (2) (3) (4) (5) (6) (7)

f (∆RDcs) -0.159*** -0.175*** -0.214*** -0.211** -0.381* -0.273*** -0.772**
(0.0584) (0.0609) (0.0782) (0.0800) (0.198) (0.0942) (0.309)

Country trends X X X X X X X
Sector trends X X X
Controls X X X X X
Observations 426 414 426 414 414 414 414
R-squared 0.799 0.792 0.807 0.800 0.781 0.790 0.760
F-statistic 48.37 211.7 69.39

The table shows OLS (columns 1–4) and 2SLS (columns 5–7) estimates of a model in long
differences (1993–2015) where the dependent variable is the logarithmic difference of
offshoring, defined as the share of imported manufacturing inputs, and the independent
is the percentiles of the change in robot density. Percentiles are calculated upon the
distribution of changes in robot density, taking into account weights. These weights are
based on the share of country-industry employment in each country’s total employment
for the year 1990, which is the year we used in our definition of robot density. Both
variables are at the country (N=71) and sector (N=7) level. Controls included are the
logarithmic change (between 1993 and 2015) of wages in manufacturing and of one plus
the tariff rate. The number of observations decreases when we include controls due
to missing values in those variables. The instruments are replaceability, defined as in
Graetz and Michaels (2018) and a shift-share corresponding to the initial share of the
world robot density in the sector times the change in the country-level robot density. All
regressions are weighted by the same weight we used to calculate percentiles, as in Graetz
and Michaels (2018). Transport equipment is excluded from the regressions.
Standard errors are clustered by country. (***) p < 0.01, (**) p < 0.05, (*) p < 0.1.
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Table 6: Robustness exercises. Different definitions of robot density

OLS

(1) (2) (3) (4) (5) (6) (7) (8)

f (∆RDcs) -0.212*** -0.196*** -0.193*** -0.196*** -0.175** -0.212*** -0.170*** -0.212***
(0.0719) (0.0669) (0.0725) (0.0669) (0.0688) (0.0717) (0.0628) (0.0717)

Country trends X X X X X X X X
Sector trends X X X X X X X X
Controls X X X X X X X X
Yearly depreciation X X X X
Imputing unspecified X X X X
Breaking down North America X X X X
Observations 483 483 483 478 483 483 483 483
R-squared 0.791 0.783 0.790 0.791 0.789 0.791 0.789 0.791

The table contrasts OLS estimations for the baseline (column 1) with different definitions of robot density (columns
2–8).
Yearly depreciation refers to using a yearly depreciation rate of 10 percent for robot stocks, instead of IFR’s approach

where robots depreciate entirely after twelve years.
Imputing unspecified refers to when data on robot stock is not specified by industry for several countries in early
years and imputations at the industry-level is needed.
Breaking down North America refers to imputations at the country-level for the pre-2011 period for Canada, Mexico
and the US, where robot stock was reported under a single value. Values are calculated using post-2011 shares.
Standard errors are clustered by country. (***) p < 0.01, (**) p < 0.05, (*) p < 0.1.
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Appendix

A Imputations

A.1 IFR

As we are using a long difference approach, a complication in the analysis was the lack of

robot data in the beginning of our period (1993), for the following countries: Australia,

Austria, Belgium, Czech Republic, Denmark, Spain, United Kingdom, Hungary, Italy,

Rep. of Korea, Netherlands, Poland, Portugal, Russian Federation, Singapore, Slovenia,

Taiwan, United States of America. What’s more, this data was reported by the IFR

but not classified into any industry, the first robots of these countries were labeled as

“unspecified”. In order to break the data into industries within countries we calculated

the share of each country-industry-year robot stock in the total country-year stock (for

the years when data was available) and its yearly average. Finally, the product of this

average and the “unspecified” stock of robots is what forms the imputed stock.

A similar approach was used to impute the robots in North America for the years

previous to 2011. Apart from the lack of industry-level data (solved in the previous

paragraph) before 2011 Canada, Mexico and the United States were reported as a sole

country. The solution was to compute the share for each country-industry-year in the

regional-industry-year stock for the period going from 2011 to 2015. This allowed us to

distribute the data between countries, by multiplying the yearly average of this share

with the regional-industry-year stock for the first years.

A.2 UNIDO

The INDSTAT2 version of UNIDO dataset presents some gaps in employment values.

Although we tried filling this gaps with aggregated data from the INDSTAT4 version,

this observations only accounted for 1% of the imputations we needed to perform. To

replace the other 99% of missing values, we filled in the country-industry employment

using data from the nearest previous year available, as is frequently done.
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B Industry correspondence

To simplify our job, we converted all the industry classifications to the one provided by

the Eora MRIO. Below we show the concordance tables between Eora and ISIC Rev. 4

(used by IFR), between Eora and ISIC Rev. 3 (used by UNIDO) and between Eora and EU

KLEMS.

Table 7: Concordance table between EORA and IFR

EORA sector ISIC Rev. 4 IFR description

Food & Beverages 10-12 Food and beverages

Textiles and Wearing Apparel 13-15 Textiles

Wood and Paper
16 Wood and furniture

17-18 Paper

Petroleum, Chemical and
Non-Metallic Mineral Products

19-22 Plastic and chemical products
23 Glass ceramics stone mineral products (non auto)

Metal Products
24 Metal - Basic metals
25 Metal - Metal products (non automotive)

Electrical and Machinery
26-27 Electrical electronics

28 Metal - Industrial machinery

Transport Equipment
29 Automotive
30 Other vehicles
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Table 8: Concordance table between EORA and UNIDO

EORA sector ISIC Rev. 3 ISIC Rev. 3 description

Food & Beverages
15 Manufacture of food products and beverages

16 Manufacture of tobacco products

Textiles and Wearing

Apparel

17 Manufacture of textiles

18 Manufacture of wearing apparel; dressing and dyeing of fur

19 Tanning and dressing of leather; manufacture of luggage,

handbags, saddlery, harness and footwear

Wood and Paper

20 Manufacture of wood and of products of wood and cork, ex-

cept furniture; manufacture of articles of straw and plaiting

materials

21 Manufacture of paper and paper products

22 Publishing, printing and reproduction of recorded media

Petroleum, Chemical

and Non-Metallic

Mineral Products

23 Manufacture of coke, refined petroleum products and nuclear

fuel

24 Manufacture of chemicals and chemical products

25 Manufacture of rubber and plastics products

26 Manufacture of other non-metallic mineral products

Metal Products
27 Manufacture of basic metals

28 Manufacture of fabricated metal products, except machinery

and equipment

Electrical and

Machinery

29 Manufacture of machinery and equipment n.e.c.

30 Manufacture of office, accounting and computing machinery

31 Manufacture of electrical machinery and apparatus n.e.c.

32 Manufacture of radio, television and communication equip-

ment and apparatus

33 Manufacture of medical, precision and optical instruments,

watches and clocks

Transport Equipment
34 Manufacture of motor vehicles, trailers and semi-trailers

35 Manufacture of other transport equipment
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Table 9: Concordance EORA and EU KLEMS

EORA sector Industry EU KLEMS

Food & Beverages 15t16

Textiles and Wearing Apparel 17t19

Wood and Paper
20

21t22

Petroleum, Chemical and
Non-Metallic Mineral Products

23t25
26

Metal Products 27t28

Electrical and Machinery 30t33
Transport Equipment 34t35
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C List of countries

Table 10: List of countries

OECD sample Non-OECD sample

Australia Argentina Saudi Arabia
Austria Belarus Serbia
Belgium Bosnia-Herzegowina Singapore
Canada Brazil South Africa
Denmark Bulgaria Taiwan
Estonia Chile Thailand
Finland China Tunisia
France Colombia Ukraine
Germany Croatia United Arab Emirates
Greece Czech Republic Venezuela
Hungary Egypt Vietnam
Iceland Hong Kong
Israel India
Italy Indonesia
Latvia Iran
Lithuania Ireland
Netherlands Kuwait
New Zealand Macau
Norway Malaysia
Poland Malta
Portugal Mexico
Rep. of Korea Moldova
Slovakia Morocco
Slovenia Oman
Spain Pakistan
Sweden Peru
Switzerland Philippines
Turkey Quatar
United Kingdom Romania
United States Russian Federation
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D Descriptive stats

Table 11: Robot Density descriptive stats

RobotDensity max min mean sd countries

All 22.78634 0 3.477727 4.949143 71

Non-OECD 5.63992 0 .9981884 1.551943 41
OECD 22.78634 .1133257 6.86643 5.935481 30
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