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Resumen

Si bien la mayor parte de la literatura econométrica sobre diseños de regresión discontinua se enfoca en

el caso de un solo cutoff (valor de corte), frecuentemente se analizan programas o poĺıticas en los que

distintas observaciones enfrentan distintos umbrales. El presente trabajo introduce la idea de selección a

cutoffs y estudia identificación de efectos de tratamiento cuando unidades enfrentando distintos cutoffs

pueden diferir en variables observables y no observables. El resultado principal provee condiciones bajo

las cuales es posible identificar y estimar un efecto de tratamiento fuera del cutoff. Los resultados son

ilustrados usando datos de Oportunidades, un programa anti-pobreza de gran escala en México en el cual

elegibilidad a nivel de hogar fue basada en un ı́ndice de pobreza con distintos cutoffs según la región

geográfica.
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“Extrapolation in multiple-cutoff regression discontinuity designs”

Abstract

Although the bulk of the econometric literature on Regression Discontinuity Designs (RDDs) focuses on

the case of a single cutoff, researchers frequently study programs or policies in which different observations

face different thresholds. This paper introduces the idea of selection into cutoffs and studies identification

of treatment effects when units facing different cutoffs are allowed to differ in both observable and unob-

servable characteristics. The main result provides conditions under which it is possible to identify and

estimate a treatment effect away from the cutoff. The findings are illustrated using data from Oportu-

nidades, a large-scale anti-poverty program in Mexico in which household eligibility was based on a poverty

index with cutoffs varying across geographical regions.
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1 Introduction

The Regression Discontinuity Design (henceforth, RDD) is currently one of the most widely used

methodologies to estimate the effect of programs and policies in the social sciences, and is ap-

plied in a broad range of fields including Economics, Political Science, Education and Criminology

and others. Originally proposed by Thistlethwaite and Campbell (1960), this methodology ex-

ploits a discontinuity in the probability of assignment to a program or treatment around a known

threshold, inducing variation in participation that is (locally) unrelated to potential confounders.

In general, the RDD is an appealing method whenever the probability of treatment assignment

jumps discontinuously when a score exceeds a threshold.

Although the most basic application of RDDs involves a single cutoff, frequently researchers

study more complicated programs or policies where assignment rules are based on multiple thresh-

olds. For example, Brollo, Nannicini, Perotti, and Tabellini (2013), De la Mata (2012) and Cerqua

and Pellegrini (2014) use RDD approaches to analyze the impact of programs where the cutoff

changes over geographical sites. On the other hand, Benavente, Crespi, Figal Garone, and Maffioli

(2012) use data from a subsidy policy implemented over a period of 15 years in Chile where the

cutoff changes every year. Black, Galdo, and Smith (2007) study a reemployment program in Ken-

tucky in which the cutoff changes by week and local employment office. Angrist and Lavy (1999)

exploit discontinuities generated by class size caps at each multiple of 40 to estimate the effect of

class size on academic achievement. In Political Economy and Political Science, the analysis of

incumbency advantage represents a case where multiple cutoffs are pervasive. Starting with Lee

(2008), researchers have estimated the effect of incumbency advantage on different outcomes by

looking at elections where the margin of victory (i.e. difference in vote shares) is small. Since

different elections have different number of competing parties, the threshold varies across elections.

While this situation is common in practice, the methodological and econometric literature pro-

vides little, if any, guidance on how to adapt the RDD to the case of multiple cutoffs. Applied

researchers have used a variety of approaches to deal with this situation in practice. A common

strategy is to reduce the problem to a single cutoff by looking at distance to the cutoff and pooling

all the samples together (see Cattaneo, Keele, Titiunik, and Vazquez-Bare, 2016, for a compre-

hensive list of studies adopting this strategy). Other studies try to account for heterogeneity in

treatment effects by calculating estimates at each cutoff separately (Brollo, Nannicini, Perotti,

and Tabellini, 2013; De la Mata, 2012). In other cases, researchers calculate the treatment effect

at each threshold and then construct some type of weighted average of the estimates (see e.g.

Black, Galdo, and Smith, 2007; Cerqua and Pellegrini, 2014). In all cases, the question remains

of whether there is a better way to exploit variability in cutoffs.

1



The purpose of this paper is to derive identification results in RDDs with multiple cutoffs,

henceforth, multi-cutoff RDDs. We extend the results in Cattaneo, Keele, Titiunik, and Vazquez-

Bare (2016) and study conditions under which the availability of multiple cutoffs can be exploited

to estimate treatment effects over different parts of the distribution of the running variable. The

main idea of the paper is that, although multiple thresholds provide valuable information to un-

cover heterogeneity in treatment effects, direct comparisons between estimates at each cutoff may

not be sensible when units have control on which cutoff they face. We introduce the idea of selec-

tion into cutoffs and study conditions under which potential biases introduced by this phenomenon

can be dealt with.

The remainder of the paper is organized as follows. Section 2 discusses the econometric frame-

work and briefly reviews the existing literature on multiple-cutoff RDDs. Section 3 discusses

parameters of interest and provides the main identification results. Section 4 illustrates the iden-

tification results using data from a well-known poverty-alleviation program in Mexico (Oportu-

nidades). Section 5 concludes.

2 Framework and existing literature

The statistical framework in this paper will be the usual potential outcomes framework, and we

will follow closely the notation in Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016). Let Xi

be the running variable (score) for unit i, which is assumed to be continuous with a continuous

density fX(x). Unlike a single-cutoff RDD, the cutoff faced by unit i will be a random variable

Ci taking values in a finite set C = {c0, c1, ..., cJ}. Intuitively, Ci can be thought of as a group

indicator. For example, consider a policy that is implemented in regions A and B, where the cutoff

is 100 in region A and 120 in region B. Then Ci = 100 for all units in region A and Ci = 120

for all units in region B. Importantly, the cutoffs are mutually exclusive, in the sense that each

unit can face only one cutoff. The conditional density of the running variable at each cutoff will

be denoted fX|C(x|c) for each c ∈ C. The treatment indicator is Di ∈ {0, 1}, which is a function

of both the running variable and the cutoff, Di = Di(Xi, Ci). For instance, in a sharp RDD,

Di = 1(Xi ≥ Ci) where 1(.) is the indicator function. The re-centered running variable will be

X̃i = Xi − Ci. Finally, Y1i and Y0i denote the potential outcomes of unit i under treatment and

control, respectively, and Yi = Y1iDi + Y0i(1−Di) is the observed outcome. The treatment effect

for unit i is defined as τi = Y1i − Y0i.

In this setup, Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016) study identification when

the running variable is re-centered to normalize all cutoffs to zero, thus reducing the problem to
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a single cutoff. This approach, common among applied researchers, is referred to as the “pooling

approach”. The authors show that the pooled RD estimand identifies a weighted average of average

treatment effects at different cutoffs, where the weights depend on the conditional density of the

running variable at each cutoff and the proportion of the sample facing each cutoff. Formally, the

pooled estimand is defined as:

τp = lim
x↘0

E[Yi | X̃i = x]− lim
x↗0

E[Yi | X̃i = x]

Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016) assume the following conditions:

1. (sharp RD): lim
x↘c

E[Di | Xi = x,Ci = c] = 1 and lim
x↗c

E[Di | Xi = x,Ci = c] = 0, for all

c ∈ C.

2. (continuity of the regression functions): E[Y0i | Xi = x,Ci = c] and E[Y1i | Xi =

x,Ci = c] are continuous in x at x = c for all c ∈ C.

3. (continuity of the conditional density): fX|C(x|c) is continuous in x at x = c for all

c ∈ C.

Under these assumptions, Lemma 1 in the paper shows that the pooled estimand can be written

as:

τp =
∑
c∈C

E[τi | Xi = c, Ci = c]ω(c) (1)

where

ω(c) =
fX|C(c|c)P[Ci = c]∑

c∈C
fX|C(c|c)P[Ci = c]

(2)

One important difference with the single-cutoff RDD is worth discussing. While in single-cutoff

RDD the the regression functions depend on Xi alone, in a multi-cutoff RDD the regression func-

tions are allowed to depend on the cutoff Ci. This additional notation is conceptually relevant as it

highlights two sources of heterogeneity: the treatment effect may change accross cutoffs because it

is evaluated at different values of the running variable, but also because individuals exposed to dif-

ferent cutoffs can have different responses, for example, when units can self-select into cutoffs. This

will be one of the main points of this paper and will be discussed in detail in the following sections.

This second source of endogeneity, namely, that units exposed to different cutoffs may be het-

erogeneous in both observed and unobserved characteristics, has been studied by Hotz, Imbens,

and Mortimer (2005) and later by Allcott (2015) in the context of randomized trials implemented

across different sites. Their setting is similar to ours, since RDDs can be seen as local randomized

experiments (Lee, 2008; Cattaneo, Frandsen, and Titiunik, 2015). The approach followed by the

authors is to assume unconfoundedness, i.e. that sites can be made comparable by controlling
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for observed differences. We will consider selection on observables in section 3.2 and extend the

results to cases in which this assumption fails in section 3.3.

A somewhat recent and closely related literature analyzes RDD under multiple running vari-

ables, which occurs, for example, when a scholarship is assigned based on the results in two different

exams (Keele and Titiunik, 2015; Imbens and Zajonc, 2011; Papay, Willett, and Murnane, 2011;

Wong, Steiner, and Cook, 2013). This setup is conceptually different to the one considered in this

paper, although as shown in Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016), both designs

can be subsumed under a single general framework.

3 Identification results

As suggested in the previous section, in a multi-cutoff RDD pooling all subsamples ignores vari-

ability in cutoffs and may hide important heterogeneity in average treatment effects across groups.

In other words, the pooling approach wastes valuable information that may be useful to identify

average treatment effects at different points of the distribution of the running variable. At first

glance, this problem seems easy to overcome, as one can always estimate a single-cutoff RDD for

each available cutoff so long as the sample size allows it. It might be tempting in this case to

compare these different estimates to see how the treatment effect changes with the value of the

score. However, we argue that the comparison between estimates across cutoffs may not be a fair

comparison when selection into cutoffs is possible.

To understand this point, it is instructive first to define some parameters of interest in the

context of multi-cutoff RDDs. The most obvious magnitude of interest is the average treatment

effect at some cutoff c ∈ C for the subpopulation facing that particular cutoff:

τ(c, c) := E[τi | Xi = c, Ci = c] (3)

This parameter can be recovered by estimating a single-cutoff regression discontinuity for each

group, which will be consistent under the usual RDD conditions given for example in Hahn, Todd,

and van der Klaauw (2001) or Lee (2008).

Another relevant parameter is the average treatment effect for the group facing cutoff c ∈ C
but with the score evaluated at some other cutoff c′ ∈ C:

τ(c′, c) := E[τi | Xi = c′, Ci = c] (4)

Intuitively, this magnitude captures the effect that the subpopulation facing cutoff c would have
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experienced had it faced cutoff c′ instead. Because this is a counterfactual magnitude, in a single-

cutoff RDD, this parameter is not identified unless one is willing to impose strong parametric

assumptions on the shape of the conditional expectation. However, in section 3.3 we will provide

conditions under which this quantity is nonparametrically identified when multiple cutoffs are

available.

Finally, the difference between 3 and 4 captures the change in the average treatment effect for

the group facing cutoff c when the score is switched from c′ to c:

δ(c, c′) = E[τi | Xi = c, Ci = c]−E[τi | Xi = c′, Ci = c] (5)

Now, the difference between two estimates at cutoffs c, c′ ∈ C is consistent for:

∆(c, c′) = E[τi | Xi = c, Ci = c]−E[τi | Xi = c′, Ci = c′] (6)

Hence, the above parameter is capturing the difference between average treatment effects at

different values of the running variable, but for different subpopulations. Although depending on

the context this could be a policy-relevant parameter, it has to be interpreted with caution as the

comparison is not ceteris paribus. For instance, consider an anti-poverty program implemented

in two different regions where each region has a different cutoff, and suppose that the running

variable is a poverty index. In this case, each estimate captures the average treatment effect

with the poverty index evaluated at the cutoff for each of the two regions. If the two regions

differ in, say, the proportion of ethnic minorities, the treatment effects will vary not only because

they are evaluated at different values of the poverty index but also because of the different ethnic

composition in each region. In terms of the above parameters, we have that:

∆(c, c′) = E[τi | Xi = c, Ci = c]−E[τi | Xi = c′, Ci = c′]

= E[τi | Xi = c, Ci = c]−E[τi | Xi = c′, Ci = c]

+E[τi | Xi = c′, Ci = c]−E[τi | Xi = c′, Ci = c′]

= δ(c, c′) +E[τi | Xi = c′, Ci = c]−E[τi | Xi = c′, Ci = c′]

This shows that ∆(c, c′) can be written as δ(c, c′) plus an additional term that captures the dif-

ference in average treatment effects between subpopulations facing cutoffs c and c′.

Although the fact that different RDDs are not directly comparable is not new (see e.g. De la

Mata, 2012, footnote 21), to our knowledge it has not been addressed rigorously before. To for-

malize these ideas, we will define selection into cutoffs in the following way:
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Definition 1 (selection into cutoffs) Let c, c′ ∈ C and define:

B(x, c, c′) := E[Y0i | Xi = x,Ci = c]−E[Y0i | Xi = x,Ci = c′]

There is selection into cutoffs if B(x, c, c′) 6= 0 for some c, c′ ∈ C, c 6= c′ and for some x in the

support of Xi.

The idea of selection into cutoffs is analogous to site selection bias in the context of multiple

randomized trials suggested by Allcott (2015). Intuitively, it means that for the same value of

the running variable, average potential outcomes under control status differ across cutoffs because

sorting generates imbalances in characteristics between units exposed to different thresholds. As

a simple example, consider the separable model:

Y0i = g(Xi) + ui

where g(.) is some unknown continuous function and ui includes all individual unobserved char-

acteristics besides the score. For simplicity, suppose ui is independent of Xi. Then selection into

cutoffs means that

E[ui | Ci = c] 6= E[ui | Ci = c′]

That is, unobserved individual characteristics differ across units exposed to different cutoffs. This

would occur, for example, if more informed or more motivated individuals could self-select into

lower thresholds to increase the likelihood of receiving the treatment.

In what follows, we will consider different settings under which variability in cutoffs can be

exploited to obtain parameters of interest at different parts of the distribution of the running

variable. For the sake of simplicity, we will assume that there are only two cutoffs, C = {c0, c1}
with c0 < c1. Additionally, we will consider a sharp design at each cutoff:

Assumption 1 (sharp design) lim
x↘c

E[Di | Xi = x,Ci = c] = 1 and lim
x↗c

E[Di | Xi = x,Ci =

c] = 0, for all c ∈ C.

We also assume continuity of regression functions at each cutoff, which means that the treat-

ment effect can be identified at each cutoff separately using a single-cutoff RDD:

Assumption 2 (continuity of regression functions) E[Y0i | Xi = x,Ci = c] and E[Y1i |
Xi = x,Ci = c] are continuous in x at x = c for all c ∈ C.

6



Assumption 1 and 2 are sufficient to identify E[τi | Xi = c, Ci = c] for all c ∈ C (see e.g. Hahn,

Todd, and van der Klaauw, 2001). The next two subsections provide conditions under which we

can identify a cutoff-free parameter, in the sense that Ci can be dropped from the conditioning,

while the last subsection discusses what parameters can be identified when these conditions do

not hold.

3.1 Mean-independent cutoffs

The simplest scenario occurs when cutoffs can be seen as randomly assigned conditional on Xi,

meaning that there is no selection into cutoffs (except for possible selection through Xi). Formally,

assume the following:

Assumption 3 (mean-independent cutoffs)

E[Ydi | Xi = x,Ci = c0] = E[Ydi | Xi = x,Ci = c1] = E[Yid | Xi = x]

for any x ∈ [c0, c1] and d ∈ {0, 1}.

This condition can be interpreted intuitively as a randomized experiment stratified on Xi, that

is, an experiment that randomly assigns units with the same score to the low or high cutoff. When

this assumption holds, the difference between the treatment effects across cutoffs is:

∆(c0, c1) = E[τi | Xi = c0, Ci = c0]−E[τi | Xi = c1, Ci = c1]

= E[τi | Xi = c0]−E[τi | Xi = c1]

which is independent of Ci. Hence, under assumption 3 the selection term is zero and this differ-

ence can be interpreted as the change in the average treatment effect when the cutoff is reduced

from c1 to c0.

Assumption 3 gives a much stronger result because it assumes that mean independence holds

for all x ∈ [c0, c1], not only at the endpoints. The usefulness of this condition is that units with

the same score but facing different cutoffs can be compared to identify an average treatment effect

at any value of the score between the two cutoffs. This intuition is formalized in the following

result:

Proposition 1 Under assumptions 1 and 3, for any x0 ∈ (c0, c1),

E[τi | Xi = x0] = E[Yi | Xi = x0, Ci = c0]−E[Yi | Xi = x0, Ci = c1]
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The proof of all the propositions in this paper can be found in the appendix. Note that in fact

this result does not exploit in any sense the RDD, so continuity of the regression functions does

not play any role whenever the endpoints c0 and c1 are omitted. If assumption 2 holds as well, it

follows that the treatment effect E[τi | X = x] is identified over the whole closed interval [c0, c1]:

the effect in the open interval (c0, c1) comes from proposition 1, the boundary points from a single-

cutoff RDD at each cutoff.

3.2 Selection on observables

In most relevant applications, the assumption of mean-independent cutoffs may be overly strong.

In the previous anti-poverty program example, assumption 3 would require that all characteristics

are balanced, at least on average, across regions. One straightforward way to relax this condition

is to assume that the researcher can control for the variables that are unbalanced across groups.

In this case, mean independence of cutoffs can be recovered by conditioning on a set of covariates:

Assumption 4 (selection on observables) There exists a vector of observed covariates Zi such

that

E[Ydi | Xi = c, Ci = c0, Zi] = E[Ydi | Xi = c, Ci = c1, Zi] = E[Ydi | Xi = c, Zi]

for c ∈ {c0, c1} and d ∈ {0, 1}.
Moreover, for each c ∈ {c0, c1} there is a neighborhood (c − hc, c + hc) in which the conditional

density of Xi given Ci and Zi is positive, i.e.

fX|C,Z(x|c, z) > 0

for all x ∈ (c− hc, c+ hc) and for all z in the support of Zi.

The first part of assumption 4 is the usual conditional independence assumption (see e.g. Im-

bens, 2004). The requirement that the density be positive can be seen as an overlap condition

imposing that, for each possible value of Zi, there are observations at both sides of the cutoff.

In practice, it can be the case that overlap fails for some values of the covariates. For instance,

suppose Zi is a gender indicator. If for some subpopulation facing a particular cutoff all women

are above the cutoff and all men are below, clearly the effect conditional on Zi cannot be identified

at that cutoff. When overlap fails, it may be possible in some cases to overcome the problem by

focusing on the part of the support where overlap holds, although this changes the estimand. See

Crump, Hotz, Imbens, and Mitnik (2009) for a detailed discussion of overlap issues.
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Because the idea under selection on observables is to condition on Zi, assumption 2 needs to

be strengthened to hold conditionally on Zi. We restate the assumption as follows:

Assumption 2’ (continuity of regression functions) E[Y0i | Xi = x,Ci = c, Zi = z] and

E[Y1i | Xi = x,Ci = c, Zi = z] are continuous in x at x = c for all c ∈ C and for all z in the

support of Zi.

Under selection on observables, the following results holds:

Proposition 2 Under assumptions 1, 2’ and 4, for c ∈ {c0, c1}:

E[τi | Xi = c, Zi = z] = lim
x↘c

E[Yi | Xi = x,Ci = c, Zi = z]− lim
x↗c

E[Yi | Xi = x,Ci = c, Zi = z]

for any z in the support of Zi. Moreover,

E[τi | Xi = c] = E

{
lim
x↘c

E[Yi | Xi = x,Ci = c, Zi]− lim
x↗c

E[Yi | Xi = x,Ci = c, Zi]

∣∣∣∣Xi = c

}
where the outer expectation is with respect to the density of Zi conditional on Xi = c.

This result shows that when selection into cutoffs is based on observable characteristics, it

is possible to recover a cutoff-free parameter by conditioning on covariates and then averaging

with respect to the appropriate distribution. As in the previous subsection, assumption 4 can

be strengthened to hold in [c0, c1] in order to identify the treatment effect over the whole closed

interval.

Interestingly, the selection-on-observables assumption has testable implications that can pro-

vide empirical support for its validity. Under assumption 4,

E[Y0i | Xi = c0] = E{E[Y0i | Xi = c0, Zi] | Xi = c0}

= E{E[Y0i | Xi = c0, Ci = c1, Zi] | Xi = c0}

= E{E[Yi | Xi = c0, Ci = c1, Zi] | Xi = c0}

and thus if selection on observables holds, it must be true that:

E{E[Yi | Xi = c0, Ci = c1, Zi] | Xi = c0} = E

{
lim
x↗c0

E[Yi | Xi = x,Ci = c0, Zi]

∣∣∣∣Xi = c0

}
(7)

9



Intuitively, since under assumption 4 the cutoffs in the conditional expectations are interchange-

able, there are two alternative control groups: units facing the low cutoff c0 with score slightly

below c0, and units facing the high cutoff c1 with scores around c0 and the same values of Zi. This

fact suggests a way to assess the validity of the selection-on-observables assumption by simply

testing the equality in equation 7. The idea of comparing control groups was suggested by Hotz,

Imbens, and Mortimer (2005) in the context of multiple randomized trials.

Regarding implementation, the results from proposition 2 require the nonparametric estimation

of several regression functions that depend on the running variable and the covariates. These

magnitudes can also be written using inverse probability weighting methods. This idea is analogous

to the approach in Abadie (2005) for the case of semiparametric difference-in-differences estimators.

Start by defining the propensity score as:

p0(x, z) := P(Ci = c0 | Xi = x, Zi = z) (8)

Note that the second part of assumption 4 can be seen as a common support condition for the

propensity score around the cutoffs, since by Bayes’ rule it requires p0(x, z) to be non-zero at least

in a neighborhood of the cutoffs. This propensity score will be assumed to be continuous:

Assumption 5 (continuity of the propensity score) p0(x, z) is continuous in x at x = c for

c ∈ {c0, c1} for all z in the support of Zi and c ∈ {c0, c1}.

Assumption 5 can be interpreted as a McCrary test (McCrary, 2008) that ensures that the

probability of facing the low cutoff is does not jump at Xi = c0 for all values of the covariates.

Although it is not technically a necessary condition for identification, a jump in the probability of

facing the low cutoff could be taken as evidence of selection beyond observable variables, and the

validity of the strategy would be hard to defend in this context.

Additionally, let Si indicate whether unit i faces the low cutoff, Si = 1(Ci = c0). The following

result gives the reweighted version of the estimand of interest.

Proposition 3 Under assumptions 1, 2’, 4 and 5,

E[τi | Xi = c0] = lim
x↘c0

E

[
YiSi

p0(c0, Zi)

∣∣∣∣Xi = x

]
− lim

x↗c0
E

[
YiSi

p0(c0, Zi)

∣∣∣∣Xi = x

]
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and

E[τi | Xi = c1] = lim
x↘c1

E

[
Yi(1− Si)

1− p0(c1, Zi)

∣∣∣∣Xi = x

]
− lim

x↗c1
E

[
Yi(1− Si)

1− p0(c1, Zi)

∣∣∣∣Xi = x

]

This result shows that under selection on observables, the treatment effect at each cutoff can

be recovered by using two single-cutoff RDDs after the observations have been reweighted by the

inverse of the selection probability. In practice, the propensity score is generally unknown and

needs to be estimated in a previous step.

Finally, the reweighted version of equation 7 is:

E

[
Yi(1− Si)

1− p0(c1, Zi)

∣∣∣∣Xi = c0

]
= lim

x↗c0
E

[
YiSi

p0(c0, Zi)

∣∣∣∣Xi = x

]
(9)

3.3 Extrapolating across cutoffs

Although assumption 4 relaxes the condition of randomized cutoffs, it is still a strong assump-

tion as it requires the researcher to observe all relevant variables driving the differences between

subpopulations facing different cutoffs. Access to this information may be unlikely in many ap-

plications. When the selection-on-observables assumption is not credible, it may not be possible

to identify cutoff-free parameters as in the previous section. As discussed above, in this scenario

cross-cutoff comparisons of treatment effects may not be valid. However, under some conditions it

may be possible to exploit information from different cutoffs to extrapolate the treatment effect to

different values of the running variable. Intuitively, the idea is to use a “diff-in-diff-like” strategy

to eliminate the selection bias. This strategy will rely on the fact that the selection bias term in

definition 1 is observed for any value of the score below the lowest cutoff.

To simplify the notation, since there are only two cutoffs, write B(x) := B(x, c0, c1). Then,

for any x < c0, we have that E[Yi | Xi = x,Ci = c] = E[Y0i | Xi = x,Ci = c] for c ∈ {c0, c1}. In

particular, the selection term at the low cutoff can be written as:

B(c0) = lim
x↗c0

E[Yi | Xi = x,Ci = c0]−E[Yi | Xi = c0, Ci = c1] (10)

The parameter of interest in this section will be E[τi | Xi = c1, Ci = c0], that is, the average

treatment effect for the subpopulation facing cutoff c0 but with the running variable evaluated
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at c1. Conceptually, this magnitude captures the treatment effect that the group facing the low

cutoff would have experienced had it been exposed to the high cutoff instead. For instance, in the

previous anti-poverty program example, suppose that region A is exposed to cutoff c0 and region

B is exposed to cutoff c1. Then, E[τi | Xi = c1, Ci = c0] is the average effect of the program for

units from region A, had they been exposed to cutoff c1. In general, this parameter is unobserv-

able since an RDD only identifies the effect at the cutoff to which each group was actually exposed.

To see how to recover this parameter, note that:

E[τi | Xi = c1, Ci = c0] = E[Y1i | Xi = c1, Ci = c0]−E[Y0i | Xi = c1, Ci = c0]

= E[Y1i | Xi = c1, Ci = c0]−E[Y0i | Xi = c1, Ci = c1]

+E[Y0i | Xi = c1, Ci = c1]−E[Y0i | Xi = c1, Ci = c0]

= E[Y1i | Xi = c1, Ci = c0]−E[Y0i | Xi = c1, Ci = c1]−B(c1)

Now, the first two terms on the right-hand side can be expressed in terms of observables, al-

though B(c1) is unobservable. However, if we assume that the bias at the high cutoff is equal to

the bias in the low cutoff, which can be obtained as described above, then E[τi | Xi = c1, Ci = c0]

is identified. The following assumption states this condition:

Assumption 6 (constant bias across cutoffs) The selection terms are equal across cutoffs,

i.e.,

B(c0) = B(c1)

The main result of this section can be summarized as follows:

Proposition 4 Under assumptions 1, 2 and 6, B(c0) is identified as in equation 10 and

E[τi | Xi = c1, Ci = c0] = E[Yi | Xi = c1, Ci = c0]− lim
x↗c1

E[Yi | Xi = x,Ci = c1]−B(c0)

The result from proposition 4 is depicted graphically in Figure 1. The picture shows the four

regression functions md(x, c) := E[Ydi | Xi = x,Ci = c] with d ∈ {0, 1} and c ∈ {c0, c1} for a

hypothetical case with c0 = 4 and c1 = 7. The dotted lines represent the part of each regression

function that is unobserved, and the dashed and solid lines are observed. The parameter of interest

is τ(c1, c0) := E[τi | Xi = c1, Ci = c0]. The idea is to replace the unobserved term B(c1) with the

observed term B(c0) and add this to E[Y0i | Xi = c1, Ci = c1] to obtain E[Y0i | Xi = c1, Ci = c0].

12
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Figure 1: extrapolating across cutoffs.
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This approach is similar in spirit to the “difference-in-discontinuities” proposed by Grembi,

Nannicini, and Troiano (2016). Their strategy consists on using the difference between RDD esti-

mates at different points time periods to correct for discontinuities in the conditional expectation

functions.

Clearly, assumption 6 is an identification assumption and hence it is not testable. However,

some evidence can be provided to reinforce its validity in a similar way in which it is done for

difference-in-difference models. A sufficient (but not necessary) condition for assumption 6 is that

the regression functions E[Y0i | Xi = x,C = c0] and E[Y0i | Xi = x,C = c1] are parallel over

the whole range of the running variable. Now, as noted previously, both regression functions are

estimable for any x ≤ c0. If these two regression functions are parallel for x ≤ c0, the assumption

that they will still be parallel at x = c1 seems more likely to hold. Thus, a simple graphical

strategy to support assumption 6 is to estimate the regression functions for units facing cutoffs c0

and c1 separately and plot them together to check whether they are parallel.

4 Empirical illustration

To illustrate the ideas presented in this paper, we will use data from the Oportunidades program

(formerly known as Progresa), a large-scale poverty alleviation program in Mexico. This program

consists of a series of interventions aiming at improving health, nutrition and schooling outcomes

in poor households through conditional cash transfers. Because assignment was randomized at the

locality level, the impacts of Oportunidades has been studied extensively (see the supplemental

appendix in Calonico, Cattaneo, and Titiunik, 2014b, and references thereof). The key feature

that makes this program interesting to illustrate our methods is the fact that household eligibility

was based on whether a poverty index exceeded a certain cutoff, and the cutoff was different across

regions.1 As explained in Buddelmeyer and Skoufias (2004) and Calonico, Cattaneo, and Titiunik

(2014b), this design leads to multiple sharp RDDs that identify an intention-to-treat parameter.

The cutoffs and sample sizes are shown in table 1.

The empirical illustration in this paper will initially consider the four rural regions with largest

sample sizes (regions 3, 4, 5 and 6). All the empirical analysis will exclude observations with score

outside the range (600,900). Cutoffs for these regions are 759.4, 753, 751.5 and 751, respectively.

The outcome of interest will be food consumption in t + 1, that is, one year after the program

started.

1The program started in 1998 targeting rural regions and was expanded to urban areas in 2003. See Calonico,
Cattaneo, and Titiunik (2014b) and references thereof for more details. This application will only consider rural
areas.
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Table 1: Cutoffs and sample sizes

Cutoff Obs. Treated Control
Region 3 759.4 933 618 315
Region 4 753 1189 810 379
Region 5 751.5 3116 2003 1113
Region 6 751 541 441 100
Region 12 569 78 40 38
Region 27 691 828 614 214
Region 28 853.3 175 157 18

4.1 Pooled RDD

We start the empirical analysis by considering the pooling approach explained in section 2 and

analyzed more detailedly by Cattaneo, Keele, Titiunik, and Vazquez-Bare (2016). We pool the

four regions under study by centering the running variable and estimate a single parameter. Table

2 shows the RD estimates2 for the pooled sample and for each region separately, together with

the weights assigned by the pooled estimate to each individual estimate (see equation 2).

Table 2: Pooled and separate RD estimates

Estimate s.e. Obs. Weights
Pooled 24.66 7.66 734
Region 3 31.64 12.91 119 .16
Region 4 15.12 17.05 270 .21
Region 5 24.42 9.54 474 .52
Region 6 27.98 24.65 63 .11

The results reveal substantial heterogeneity in the estimates for each region, with statistically

significant effects at the 5 percent level in regions 3 and 5. In terms of weights, region 5 accounts

for over half of the pooled estimate. To see what is driving these weights, we can decompose them

as in equation 2 into two factors: the proportion of the sample at each cutoff and the conditional

density of the re-centered score at 0. Figure 2 shows the kernel density estimate of the centered

running variable for each region. On the other hand, Table 3 shows the number and proportion of

observations at each cutoff. The difference in weights seems to be driven mainly by the different

sample sizes at each cutoff, as the conditional densities have similar values around the cutoffs

whereas the proportion of the sample at region 5 is notably larger.

2See the appendix for further details about implementation.
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Figure 2: density of the re-centered score.

Table 3: Sample sizes

Obs. Prop.
Region 3 607 .15
Region 4 850 .21
Region 5 2169 .53
Region 6 448 .11
Total 4074 1

As explained in the paper, the different estimates are not directly comparable since regions

may differ in both observable and unobservable characteristics. Table 4 shows the mean of a list

of covariates for each region, together with the p-value from an F -test of the regression of each

covariate against region indicators (omitting region 3). The table reveals significant differences in

most observed covariates. This issue will be addressed in the next subsections.

4.2 Selection on observables

To account for selection into cutoffs based on observable variables, we implement the reweighted

version of the estimand in proposition 3. In what follows, we restrict the analysis to regions 3

and 5 (see the appendix for a discussion on the choice of regions). In this case the low cutoff

corresponds to region 5 (C = 751.5) and the high cutoff to region 3 (C = 759.4). We start by

estimating the propensity score:

p0(x, z) = P[Ci = c0 | Xi = x, Zi = z]

16



Table 4: Covariate means by region

Region 3 Region 4 Region 5 Region 6 p-value
Head’s age 43 43.25 44.77 43.59 0
Head is male .92 .93 .94 .93 .04
Head’s education 2.58 3.01 3.43 2.63 0
Head is empployed .91 .92 .91 .93 .335
Children 0 to 5 1.17 1.09 1.03 1.43 0
HH size 6.27 6.19 6.25 6.63 0
Owns the house .96 .93 .96 .96 .001
Number of rooms 1.76 1.75 1.96 1.49 0
HH has water .52 .45 .32 .36 0
HH has toilet .6 .66 .7 .25 0
HH has cement floor .39 .38 .42 .26 0
HH has electricity .67 .7 .69 .77 0

using a flexible logit specification and the covariates in table 4, including various squares, cubes

and interactions. The results for the propensity score estimation are shown in table 10 in the

appendix. Using the predicted probabilities from this model, we estimate the weights:

θ̂0i =
Si

p̂0(Xi, Zi)
and θ̂1i =

1− Si

1− p̂0(Xi, Zi)

The estimates are obtained as differences of simple averages of the reweighted outcome on a

window around the cutoff. The window length is set to 23, which is the minimum (rounded to the

nearest integer) between the bandwidths chosen for regions 3 and 5 by the method explained in

Calonico, Cattaneo, and Titiunik (2014b). The standard errors are bootstrapped to account for

the variation of the estimated propensity score. Table 5 displays the results. As indicated in the

third column, the estimated parameters are Ê[τi | Xi = c0] = 23.86 and Ê[τi | Xi = c1] = 41.44,

both statistically significant at the 5 percent level.

Table 5: Estimated means

Estimate s.e. Difference s.e.
E[θ0iYi | Xi = c+0 ] 122.11 9.44
E[θ0iYi | Xi = c−0 ] 98.37 4.75 23.86 10.79
E[θ1iYi | Xi = c+0 ] 154.11 18.94
E[θ1iYi | Xi = c−0 ] 111.61 6.86 41.44 19.88

Equation 7 provides a specification test for the selection-on-observables assumption. The

estimated means and their difference are shown in table 6. It is clear from the table that selection

on observables does not hold in this context, at least for the set of covariates used in the estimation

of the propensity score. In this case, the estimates shown in table 5 may not be valid.

17



Table 6: Specification test

Estimate Difference s.e.
E[θ1iYi | Xi = c0 ] 143.19
E[θ0iYi | Xi = c−0 ] 98.37 44.83 3.74

4.3 Extrapolating across cutoffs

Figure 3 displays the estimated regression functions for regions 3 and 5 above and below their

respective cutoffs over the range (700, 800) of the score (that is, approximately 50 points below and

above the cutoffs). The regressions are estimated using a polynomial of degree 4 separately above

and below the cutoff for each region. The graph suggests positive effects on food consumption for

both regions separately, an observation that is confirmed by table 2.
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Figure 3: regression functions above and below cutoffs. Global polynomial of degree 4.

The parameter of interest in this section is E[τi | Xi = c1, Ci = c0]. Under the assumptions

stated in the paper, after some rearranging this expression can be written as:

Eτi | Xi = c1, Ci = c0] = E[Yi | Xi = c1, Ci = c0, ]− lim
x→c−1

E[Yi | Xi = x,Ci = c1]

+E[Yi | Xi = c0, Ci = c1]− lim
x→c−0

E[Yi | Xi = x,Ci = c0]

which can be estimated as a linear combination of four means. The same window length of 23 is

used in the calculations. The results are shown in table 7.

18



Table 7: Estimated means

Estimate s.e. Difference s.e.
E[Yi | Xi = c1, Ci = c0 ] 124.04 6.37
E[Yi | Xi = c−1 , Ci = c0] 110.00 17.38 14.04 18.51
E[Yi | Xi = c0, Ci = c1 ] 139.58 7.48
E[Yi | Xi = c−0 , Ci = c0] 97.22 9.24 42.36 11.89
E[τi | Xi = c1, Ci = c0 ] 56.40 22.00

The results show that the estimated treatment effect at the high cutoff for the low-cutoff region

is 56.40, significantly different from zero at the 5 percent level.

As suggested in section 3.3, a possible specification check is to test whether the observed

outcomes of each group are parallel below the lowest cutoff. One simple parametric way to test

this is to run the regression:

Yi = β0 + β1(Xi − c0) + β21(Ci = c0) + β3(Xi − c0) ∗ 1(Ci = c0) + ui

using only observations below c0 (and possibly in a small window) and test β3 = 0. We run this

regression using observations with 700 < score < 751.5.3 The results of this specification check

are shown in table 8.

Table 8: Specification check

Food consumption in t+1
Score -0.594

(0.485)
Low cutoff -5.087

(13.33)
Interaction 0.261

(0.538)
Constant 100.8∗∗∗

(11.67)
Observations 412

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table shows that the coefficient corresponding to the interaction is not significant, sug-

gesting that the outcomes follow parallel trends, although this can be due to lack of power.

Nevertheless, the results are consistent with the visual evidence provided in figure 3.

3The range of the data is restricted because trends need not be parallel over the whole range but just on a
small window below the cutoff. However, the regression using observations on the range (600,751.5) yields the same
qualitative results, with the p-value for the interaction term above 0.9.
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5 Concluding remarks

Although the theoretical and methodological literature on RDD focuses almost exclusively on de-

signs with a single cutoff, empirical researchers are increasingly facing applications where different

units face different thresholds. This paper extends the results in Cattaneo, Keele, Titiunik, and

Vazquez-Bare (2016) and suggests ways to exploit the variability in cutoffs in order to identify

parameters that are unidentifiable when only one cutoff is available. We introduce the idea of

selection into cutoffs, which emphasizes the possibility that units facing different thresholds dif-

fer in observable and unobservable characteristics. Two scenarios are considered. First, one in

which selection into cutoffs is based on observable variables. In this case, it is possible to identify

overall cutoff-free treatment effects by properly reweighting observations based on a propensity

score. Second, when selection potentially depends on unobservable variables, we suggest a “diff-in-

diff-like” strategy to extrapolate the treatment effect of a subpopulation outside the cutoff it faces.

Future work will extend these results in many dimensions. First, identification results will be

extended to the case of an arbitrary number of cutoffs, and possibly continuous cutoffs, which

occurs for example when using vote shares in party elections and the winning cutoffs depend on

the vote share of the third contestant. The findings will also be adapted to fuzzy designs. Finally,

estimation and inference in multi-cutoff RDDs raise many issues such as the choice of tuning

parameters (like the bandwidth) that need to be addressed more carefully in future research.
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Appendices

A Proofs

A.1 Proposition 1

By assumption 1, if x0 ∈ (c0, c1), Di(x0, c0) = 1 and Di(x0, c1) = 0. Then, using assumption 3,

E[Y1i − Y0i | Xi = x0] = E[Y1i | Xi = x0, Ci = c0]−E[Y0i | Xi = x0, Ci = c1]

= E[Yi | Xi = x0, Ci = c0]−E[Yi | Xi = x0, Ci = c1] �

A.2 Proposition 2

By assumptions 2’ and 4,

E[Y1i | Xi = c, Zi = z] = E[Y1i | Xi = c, Ci = c, Zi]

= lim
x↘c

E[Yi | Xi = x,Ci = c, Zi]

and similarly,

E[Y0i | Xi = c, Zi = z] = lim
x↗c

E[Yi | Xi = x,Ci = c, Zi]

from which

E[τi | Xi = c, Zi = z] = lim
x↘c

E[Yi | Xi = x,Ci = c, Zi = z]− lim
x↗c

E[Yi | Xi = x,Ci = c, Zi = z]

and the remaining result follows from E[τi | Xi = c] = E{E[τi | Xi = c, Zi] | Xi = c}. �

A.3 Proposition 3

By the law of iterated expectations,

E[YiSi | Xi, Zi] = E [Yi | Xi, Zi, Ci = c0] p0(Xi, Zi)

from which

E

[
YiSi

p0(Xi, Zi)

∣∣∣∣Xi, Zi

]
= E[Yi | Xi, Zi, Ci = c0]
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Hence, for ε > 0,

E[Y1i | Xi = co + ε] = E{E[Y1i | Xi = co + ε, Zi] | Xi = c0 + ε}

= E{E[Y1i | Xi = co + ε, Zi, Ci = c0] | Xi = c0 + ε}

= E{E[Yi | Xi = co + ε, Zi, Ci = c0] | Xi = c0 + ε}

= E

{
E

[
YiSi

p0(c0 + ε, Zi)

∣∣∣∣Xi = c0 + ε, Zi

] ∣∣∣∣Xi = c0 + ε

}
= E

[
YiSi

p0(c0 + ε, Zi)

∣∣∣∣Xi = c0 + ε

]
and by continuity,

E[Y1i | Xi = c0] = lim
x↘c0

E

[
YiSi

p0(c0, Zi)

∣∣∣∣Xi = x

]
A similar argument provides the remaining equalities. �

A.4 Proposition 4

This follows immediately from calculations done in the paper under the stated assumptions. �

B Implementation issues

B.1 Pooled RDD estimates

Estimation and window selection is performed using the rdrobust Stata command (Calonico,

Cattaneo, and Titiunik, 2014a). The estimation is performed using local constant regression.

Table 9 shows the bandwidth and sample sizes around the cutoff used for estimation.

Table 9: Bandwidth and sample size

Bandwidth Treated Control
Pooled 22.7 471 263
Region 3 22.91 76 43
Region 4 40.4 174 96
Region 5 28.3 291 183
Region 6 17.75 49 14

To calculate the weights shown in table 2, we use that under the assumption stated in the

paper,

ω(c) =
fX|C(c|c)P[C = c]∑
c∈C fX|C(c|c)P[C = c]

= P[C = c | X̃ = 0] (11)
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The rightmost expression is easier to estimate since it is simply the probability of facing cutoff

c for units with the re-centered score at 0. Thus, we calculate the proportion of the sample at

each cutoff on a window of the re-centered score around 0 where the bandwidth is the one chosen

by the rdrobust command for the pooled estimate.

B.2 Choice of regions for empirical analysis

For the ease of exposition, and because all the results in the paper are derived for the simple case of

two cutoffs, we will restrict the empirical analysis to only two regions. To select these two regions,

we will look at the estimated regression functions. The regression functions are estimated using

global polynomial regression of degrees 3 to 5 and cubic spline using the mkspline command. The

results are depicted in figure 4.
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Figure 4: regression functions below the cutoff. Global polynomials and cubic spline.

From figure 4, the regression functions for regions 3 and 5 look fairly parallel in all four

specifications. This suggests to use these two regions as it reinforces the validity the extrapolation

estimate, as explained in section 3.3.
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B.3 Estimation of the propensity score

The propensity score is estimated using a logit model with the covariates in table 4 and includes

square, cubes and interactions terms. The results are shown in table 10.

Table 10: Probability of facing low cutoff

Low cutoff

Score -0.000605

(0.000819)

Head’s age 0.0143

(0.102)

Head is male 0.619∗∗∗

(0.222)

Head’s education 0.401∗∗∗

(0.139)

Head is employed -0.625∗∗∗

(0.220)

Head’s age squared 0.00145

(0.00207)

Head’s age cubed -0.0000164

(0.0000135)

Head’s education squared 0.0135

(0.0159)

Head’s education cubed -0.000819

(0.000680)

Head’s education x age -0.00697∗∗∗

(0.00207)

Children 0 to 5 = 1 0.105

(0.502)

Children 0 to 5 = 2 0.171

(0.500)

Children 0 to 5 = 3 -0.00156

(0.500)

Children 0 to 5 = 4 0.0479

(0.522)

HH size = 4 0.153

(0.172)

HH size = 5 0.189
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(0.160)

HH size = 6 0.331∗∗

(0.161)

HH size = 7 0.275

(0.176)

Owns the house 0.127

(0.252)

Has one room -0.375∗∗

(0.151)

Has two rooms 0.117

(0.144)

Has water -1.317∗∗∗

(0.104)

Has toilet 0.458∗∗∗

(0.104)

Has cement floor -0.0481

(0.108)

Has electricity -0.434∗∗∗

(0.127)

Constant -0.267

(1.912)

Observations 2755

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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