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1. Introduction 

The generally accepted meaning of the term efficiency is that it refers to the effectiveness 

with which the production process in the firm converts valuable inputs into valuable outputs. In 

practice, however, efficiency is often conceived as a physical rather than a value concept. It is 

useful to label such physical measures of efficiency as measures of “technical efficiency”. 

Koopmans (1951) provided a definition of technical efficiency: a producer is technically efficient 

if, and only if, it is impossible to produce more of any output without producing less of some 

other output or using more of some input.  

What we usually call inefficiency is a residual concept and the interpretation of this residual 

is influenced by one’s view of the world. Given a strong enough faith in optimising behaviour, 

measured inefficiency must represent the effects of unmeasured inputs (Stigler, 1976). Advocates 

of optimising behaviour and no systematic differences among firms would be likely to interpret 

the residual, aside form statistical noise, as measurement error in either inputs or outputs and raise 

questions about whether all inputs and outputs have been captured.  

On the other hand, some people argue that inefficiency is a pervasive fact of life (Schmidt, 

1985). People make mistakes, and people manage firms. Their mistakes have consequences and 

those can be measured.  

Therefore, the debate can be focused upon the existence or not of systematic differences in 

performance among firms, and upon the interpretation given to such differences. In this survey I 

assume that differences might exist, that differences might reflect inefficiencies, and that these 

inefficiencies can be measured. 

2. The frontier 
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An efficiency measure is the distance of firm’s observed practice to the frontier.
1
 Of course, 

the task of measuring efficiency would be greatly simplified if this frontier were known. 

Unfortunately, usually the frontier is unknown and thus it has to be estimated. There are a number 

of choices to be made in order to be able to estimate a frontier, and these options will potentially 

give rise to different performance evaluations.  

The first decision is how to construct the frontier. There are two alternatives: (i) a 

theoretically defined function based on engineering knowledge of the process of the industry, or 

(ii) an empirical function constructed from estimates based on observed data. Farrell (1957), in 

his path-breaking paper, argues in favour of the latter:  

“In a first place, it is very difficult to specify a theoretical efficient 

function [...]. Thus, the more complex the process, the less accurate is the 

theoretical function likely to be. Also, partly because of this, and partly 

because the more complex the process, the more scope it allows to human 

frailty, the theoretical function is likely to be wildly optimistic. If the 

measures are to be used as some sort of yardstick for judging the success 

of individuals plants, firms, or industries, this is likely to have 

unfortunate psychological effects; it is far better to compare 

performances with the best actually achieved than with some unattainable 

level” (Farrell, 1957, p. 255). 

Following Farrell’s suggestion, in this work I analyse individual performance in relation to 

best-observed practice. If efficiency is measured against best observed practice the result would 

be a measure of relative efficiency, where the firm is being compared with the other firms in the 

                                                        
1 Other performance measures are partial productivity indices or output/input ratios. Most technologies, however, 

employ several inputs or produce many outputs, or both; therefore, improvement in a partial productivity index might 

be explained by input-output substitution, and not necessarily by an efficiency improvement in input usage or output 

production. 
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sample. Therefore, being found fully efficient does not imply that a firm cannot enhance its 

performance; it just means that no other firm in the sample is performing as well as it is.  

The following decision is about the kind of technological relationship that is going to be 

estimated. Technology can be described in terms of a production frontier (output distance, input 

distance, production function, input requirement), or in terms of an economic frontier (cost 

function, profit function, revenue function). Technical efficiency is defined in terms of distance to 

a production frontier, and economic efficiency in terms of distance to an economic frontier. 

Whereas technical efficiency is a purely physical notion that can be measured without recourse to 

price information and without having to impose a behavioural objective on producers, economic 

frontiers require both price information and the imposition of an appropriate behavioural 

objective on producers. In this paper I focus on production frontiers because of absence of price 

data. 

The measurement of productive efficiency is often oriented in some way, in the sense that 

either inputs or outputs are considered exogenous–outside the control of the firm. An input 

oriented efficiency measure indicates the ability of a firm to reduce the input consumption for a 

given level of output. Conversely, output orientation measures the ability of a firm to increase 

output for a given level of inputs. Which is adopted depends on the characteristics of the industry 

under analysis.  

A remaining choice involves the estimation technique. The two competing paradigms are 

parametric and non-parametric techniques. Parametric methods estimate the frontier by means of 

econometric tools, whereas non-parametric methods use linear programming techniques.  

The most widely used non-parametric approach is the so-called Data Envelopment Analysis 

(DEA), introduced by Charnes, Cooper, and Rhodes (1978). In this methodology, firms are 

considered efficient if there are no other firms, or linear combination of firms, which produce 

more of at least one output (given the inputs) or use less of at least one input (given the outputs).  
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The principal advantage of non-parametric approaches is that no functional form of the 

frontier is imposed a priori on the data. Parametric approaches, in turn, require the specification 

of a particular functional form for the technology, which implies that they might label 

inefficiency something that actually reflects a misspecification of the model. The empirical 

evidence, however, suggests that this problem is not very relevant when flexible functional 

forms—like the translog—are used in the analysis (Coelli and Perelman, 2001). 

Non-parametric methods generally estimate the efficient frontier without making any 

assumption about the distribution of the error term, which makes hypothesis testing difficult. 

Parametric methods permit the testing of hypotheses such as those relating to the significance of 

included environmental variables (variables beyond the firms’ control), technical change, and so 

on.  

3. Parametric approach 

For convenience, in what follows I use an input requirement function formulation. An input 

requirement function is the correct specification when firms use one dominant input to produce an 

exogenous output bundle. Any result for the input requirement model has a counterpart for the 

production function model or the input distance function model by one or more appropriate 

changes of sign. Density and log likelihood functions are only shown for models of cross-

sectional data; panel data models are extensions of cross-sectional ones. The latter can be found in 

the original references or in Kumbhakar and Lovell (2000). 

The simple deterministic input requirement frontier can be defined as  

i i iL Y   ,                                                                 (1.1) 

where iL  denotes the appropriate function (e.g., logarithm) of the input for the i-th sample firm 

 1,...,i N , iY  is a  1 k  vector of appropriate functions of the outputs associated with the i-th 

sample firm (the first element would be generally be one for all firms), and   is a  1k   
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unknown parameter vector to be estimated (which includes 0 , the intercept). The error term 

0i iu    represents technical inefficiency of the i-th firm, in the sense that it measures the 

excess of input from its minimal possible value given by the frontier. 

Under the assumption that the error term is uncorrelated with the regressors, ordinary least 

squares (OLS) estimates of the parameters in (1.1) are consistent (with the exception of the 

constant term), though not efficient.
2
 The constant term can be consistently estimated by shifting 

the estimated frontier downwards until all residuals except one are positive. This procedure is 

called corrected ordinary least squares (COLS) and gives corrected residuals 

ˆ ˆ ˆmini i i iu e e  , 

where îe  are the OLS residuals. Proof of the consistency of the COLS estimator appears in 

Gabrielsen (1975) and Greene (1980).  

In general, technical efficiency can be calculated as the ratio of estimated (minimum 

feasible) to observed input. In most applications the log of the input variable appears on the left-

hand side of the estimating equation. In those cases technical efficiency measures are 

exp( )i iTE u  .                                                           (1.2)     

When the frontier is deterministic every discrepancy between the individual firm 

performance and the frontier is considered due to inefficiency, ignoring the possibility of a firm 

performance being affected not only by inefficiencies in the management of its resources but also 

by factors beyond its control and not considered as regressors. This is often considered a serious 

drawback of deterministic approaches. Besides, deterministic approaches are very sensitive to the 

presence of outliers since a single outlier observation can have strong effects on the estimated 

efficiency measures.  

                                                        
2 If the distribution of 

i
  were known, the parameters in equation (1.1) could be estimated more efficiently by 

maximum likelihood. 
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Deterministic techniques are, in a sense, polar opposites of OLS estimates: OLS attributes 

all variation in input not associated to variations in outputs to random shocks, whereas 

deterministic approaches attribute all variation in input not associated to variations in outputs to 

technical inefficiency. An alternative to these polar cases would be a model that attributes 

variation in input not associated to variations in outputs to some combination of random shocks 

and technical inefficiency. 

Following this idea, Aigner, Lovell, and Schmidt (1977) and Meeusen and van de Broeck 

(1977) proposed the so-called stochastic frontiers, which are based on the idea that deviations 

from the frontier could be partially out of the control of the firm. In such specifications, the input 

of each firm is bounded below by a frontier that is stochastic in the sense that its placement is 

allowed to vary randomly across firms. From an economic standpoint this technique permits firms 

to be technically inefficient relative to their own frontier. Inter-firm variation of the frontier 

presumably captures the effects of exogenous shocks beyond the control of the firm. Intra-firm 

variation captures randomness under the control of the firm, i.e. inefficiency (Schmidt and Lovell, 

1979). 

The stochastic production frontier specification is similar to the one given by equation (1.1), 

with the difference that now i i iv u     is a composite error term, where iv  is an unrestricted 

variable representing random noise and iu  is the (non-negative) inefficiency term. All 'v s  and 

'u s  are assumed to be independent of each other, and of the regressors. The iu  component 

cannot be directly observed; therefore it has to be inferred from the composite error term. In order 

to perform this decomposition and establish which part of the composite term corresponds to 

random noise and which part to inefficiency, it is necessary to assume some distribution for both 

components. The noise component is usually assumed to be independently and identically 

distributed 2(0, ) .vN   For the inefficiency term, several functional forms have been proposed: 
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half-normal (Aigner, Lovell, and Schmidt, 1977), exponential (Meeusen and van den Broeck, 

1977), truncated normal (Stevenson, 1980), and gamma (Greene, 1990).  

The choice of assumption implies a trade-off between flexibility and simplicity. The (two -

parameter) truncated normal and gamma distributions are more flexible than the (one-parameter) 

half-normal and exponential distributions. This greater flexibility, however, comes at a cost. As 

pointed out by Ritter and Simar (1997), there are difficulties associated with the estimation of the 

two parameters of these distributions when the sample size is not big enough.  

In the applied literature, the vast majority of the papers use the half-normal distribution,
3
 

though recently there is an increasing tendency to use the more flexible truncated normal 

distribution.  

The density function of the half-normal distribution, iu  distributed as the absolute value of a 

2(0, ) uN  variable,
4
 is  

2

2

2
( ) exp

22

HN

uu

u
f u



 
  

 
, 0u  . 

The density of the truncated normal distribution, iu distributed as a 2( , ) uN   variable truncated 

below at zero,
5
 is  

2

2

1 ( )
( ) exp

2
1 2

TN

u

u

u

u
f u








 
  
    
   

  

, 0u  , 

where (.)  represents the standard normal cumulative density function. 

The half-normal distribution assumes that the mode of inefficiency is equal to zero, and that 

the likelihood of inefficient behaviour decreases monotonically with inefficiency. In order to 

relax these assumptions, a truncated normal distribution can be used. Fortunately, it is not 

                                                        
3 Bauer (1990a), Bravo-Ureta and Pinheiro (1993), and Coelli (1995) have also made this observation.  
4 For notational simplicity, I drop the observation subscript “i” in this and the following density functions.  
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necessary to chose a priori between (one of) them: given that the half-normal distribution is a 

particular case of the truncated normal ( 0  )  it is possible to test one against the other. 

The noise component, iv , is assumed to be distributed as 2(0, ) :  vN    

2

2

1
( ) exp

22 v

v
f v




 
  

 
. 

Given that iv  and iu  are assumed independent, the joint probability density function of iv  

and iu is the product of their individual densities: 

2 2

2 2

1
( , ) exp

2 2

HN

u u

u
f u

 




   

 
   

 
, 0u   

and 

2 2

2 2

1 ( ) ( )
( , ) exp

2 2
1 2

TN

u

u

u

u
f u





 


 
 



 
   
    
   

  

, 0u   

for the half-normal and truncated normal distributions respectively. 

Making the transformation i i iv u  , the joint distribution of iu and i is 

2 2

2 2

1 ( )
( , ) exp

2 2

HN

u u

u u
f u

 




   

 
   

 
, 0u   

in the half-normal case, and 

2 2

2 2

1 ( ) ( )
( , ) exp

2 2
1 2

TN

u

u

u

u u
f u





 


 
 



  
   
    
   

  

, 0u   

in the truncated normal case. 

The density functions of i , obtained by integrating ( , )i if u  over the range of iu , are 

                                                                                                                                                                                    
5 Or 

2
( , ). 

uiu N  

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/ 2
( ) 1N HNf

 
 

  

     
     

    
 

and 

1

/ 1
( ) 1 1N TN

u

f
    

 
    



       
           

       
 

for the normal/half-normal case and normal/truncated normal, respectively, where (.)  represents 

the standard normal density, 2 2 2

u      and /u v   . If the assumptions made about iv  and 

iu  are correct the shape of the estimated error must be positively skewed in both cases.  

Direct estimates of the stochastic frontier with cross-sectional data may be obtained by 

either modified ordinary least squares (MOLS) or maximum likelihood (ML) methods.  

MOLS estimation requires two steps. The first step is independent of the assumption made 

for the inefficiency term and it consists basically in an OLS estimation of the model, which gives 

consistent and unbiased estimates for the slope parameters, but biased estimates for the constant 

term. This can be seen more clearly if the stochastic frontier is rewritten as  

    * *

0 0( ) ( )i i i i i i i iL E u Y u E u Y              ,                        (1.3) 

where the vector   does not include the intercept. The error term *

i  has zero mean, and 

therefore OLS estimates of (1.3) gives consistent estimates of  . 

The second step involves the estimation of the parameters 0 , 2

u , and 2

 . At this stage it 

is necessary to make an assumption about the distribution of iu . MOLS can be applied by using 

each of the four distributions mentioned above (and eventually other non-negative distributions). 

Greene (1993, 1997) discusses this method for the normal/exponential and normal/gamma 

specifications, and Harris (1992) does so for the normal/truncated normal model. Here I apply the 
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method of moments approach to the normal/half-normal model analysed by Olson, Schmidt, and 

Waldman (1980). 

Assuming that iu  follows a half-normal distribution, then the mean of i  is 

1/ 2

/ 2
( ) ( )

N HN

i i uE E u 


 
   

 
, 

and the second and third moments are  

 2 2 22
i u vE


  




   

and 

  
1/ 2

3 32 4
1i uE  

 

   
     

   
. 

Since ( )iE u  is a constant, *

i  has the same second and third moments as i . Therefore, the 

moments of the OLS residuals can be used to obtain consistent estimates of 2

u  and 2

v . Then, the 

biased OLS intercept is corrected using the estimated expected value of technical inefficiency: 

*

0 0
ˆ ˆ ˆ( )iE u   .

6
 

The frontier estimated with this procedure is simply the average response function shifted 

downwards, implying that the technological parameters of the frontier are the same as those of the 

average function.   

As first shown in Olson, Schmidt, and Waldman (1980), there are two potential difficulties 

(or indications of misspecifications) when using MOLS in a half-normal setting. The first one 

emerges when the skewness of the OLS residuals has the incorrect sign, which causes a negative 

estimate of u . In such cases it is common to set 2 0u   and consider a model with pure noise 

where all the firms are considered efficient. The second difficulty appears when the variance of 

                                                        
6 Expressions for the standard errors of the MOLS estimators of the intercept and the variance parameters are 

presented in Coelli (1995). 
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the OLS residual is smaller than the variance of iu ,
7
 thus rendering a negative estimate of v . In 

these cases it is usual to set 2 0v  , yielding a model where all the distance to the frontier is due 

to inefficiency.  

The second approach to the estimation of stochastic frontiers is ML. Introducing specific 

distributions for both components of the error term, assuming that iv  and iu  are independent, and 

that the regressors are exogenous, the asymptotic properties of the ML estimates can be proved in 

the usual way (Førsund, Lovell, and Schmidt, 1980). ML estimates are obtained by maximising 

the following log likelihood functions: 

   1 2

2
1 1

1
, , ln 2 ln ln

2 2

N N

i i

i i

N
L N       





 

       

and 

 

 

1

1

2 2

2
1

, , , ln 2 ln ln 1
2

1
ln 1 1

2

N

i

i

N

i

i

N
L N

N


        




  

 









   
        

   

  
       

  





 

for the half-normal and truncated normal distributions. In the empirical applications I use the 

parameterization proposed by Battese and Corra (1977):  2 2 2

u u     . The log-likelihoods 

are obtained replacing   by 
1




.  

Comparing the two approaches, ML estimates are asymptotically more efficient than MOLS 

estimates, provided the distributional assumptions used to obtain the likelihood function are 

correct. The impact of an error in the specification of the inefficiency distribution, however, is 

more important in ML estimates since the MOLS estimator introduces the assumption only in the 

                                                        

7 The variance of iu is 
22
u







 , not 

2

u . 
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second step and hence the estimation of the slope parameters is not affected by a misspecification 

of this distribution. ML estimates incorporate this information from the beginning, and therefore 

any misspecification of the distribution of iu  would affect the estimation of the slope parameters.
8
 

Once the frontier has been estimated, regardless of whether it is computed by MOLS or ML, 

the following step is to obtain the individual efficiency measures. The problem here is how to 

extract the information about the unobservable term iu  contained in the observable term i . 

Jondrow et al.  (1982) present a procedure for the half-normal model. The conditional distribution 

of  u  given   is 

 
 

 
 

2

* *

2

* **

, 1
exp 1

22

f u u
f u

f

  


  

     
       

     

. 

where 
2

2 2
* 2

u
v


 


  and 

2

* 2
u 


 . Since  f u   is distributed as  2

* *,N  
, either the mean 

or the mode of this distribution can serve as a point estimator for iu . The mean and the mode are 

given by 

  * *
*

* *

* *

( / ) ( / )

1 ( / ) 1 ( / )

i i i
i i i

i i

E u
        

   
     

   
      

      
 

and 

 

2

2    if 0,

0                   otherwise.

u
i i

i iM u


 



  
  

  



 

When output is in logs, individual technical efficiency scores can be obtained by 

substituting either  i iE u   or  i iM u   into equation (1.2).  

The intuition behind the above results is as follows. On one extreme case, when 2

u  is equal 

to zero there is no contribution from inefficiency and hence all firms are said to be fully efficient. 

                                                        
8 In fact, MOLS estimates of inefficiency would be robust to misspecification of the distribution of iv . 
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Exactly the other extreme case arises when 2

v  is equal to zero. In this case there is no 

contribution from the noise term and, therefore, all differences between the frontier and the 

observed behaviour is considered inefficiency. Finally, there are in between cases in which some 

part of the observed residual is accounted as noise and the remainder as inefficiency. 

Battese and Coelli (1988) proposed an alternative point estimator for technical efficiency: 

  

*

*

*

*

2
* *

*

1
1

exp / exp
2

1

i

i

ii i iTE E u





 







  
  

            
  

   





. 

The Battesi and Coelli estimator is preferred to the Jondrow et al. estimator when iu  is not 

close to zero (Murillo-Zamorano 2004). In any case, whichever point estimator is used, all of 

them share an important defect: they are not consistent estimates of technical efficiency. It is 

possible, however, to get confidence intervals for any of the alternative technical efficiency point 

estimators commented above. Thus, Hjalmarsson, Kumbhakar, and Heshmati (1996) propose 

confidence intervals for the Jondrow et al. (1982) efficiency estimator, and Bera and Sharma 

(1996) for the Battese and Coelli (1988) one. 

Models for panel data 

In general, stochastic frontier models with cross-sectional data are subject to three serious 

drawbacks (Schmidt and Sickles, 1984). Firstly, the inefficiency term estimations are not 

consistent—in fact, there is only one observation available for each firm. Secondly, both model 

estimation and separation between inefficiency and noise call for specific assumptions to be made 

about the distribution of either term. Finally, it might be incorrect to assume that inefficiency is 

independent of the regressors. 

The preceding problems are potentially solvable using panel data. The first drawback can be 

handled if the number of observations on each firm is large enough. As pointed out by 
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Kumbhakar and Lovell (2000), however, this benefit can be overstated since in practice many 

panels are relatively short. Second, having access to panel data allows the researcher to avoid any 

assumption about the distribution of the inefficiency (though at the cost of assuming that 

inefficiency is time invariant). Finally, not all panel data estimation techniques require the 

assumption of independence of the technical inefficiency term from the regressors.  

The simplest panel data model, which assumes that inefficiency is time invariant, is   

it it it iL Y u      ,                                                   (1.4) 

where the sub-index i  represents firms (i = 1, ..., N), t the period of time (t = 1, ..., T), itL  denotes 

the appropriate function of the input, itY  is a vector of appropriate functions of the outputs,   and 

 are parameters of the model, it  is an independent and identically distributed random error with 

zero mean and constant variance  2

v  representing random events outside the firms’ control, and 

iu  is a non-negative random disturbance with constant variance  2

u  representing technical 

inefficiency. The random variables it  and iu  are assumed to be independent from each other.  

The above model can be re-expressed as 

it i it itL Y     ,                                                 (1.4’) 

where i iu   . 

The model in equation (1.4’) can be estimated using two different standard techniques. The 

first approach is called “fixed-effects” and considers the individual effect i  as a specific 

parameter of the firm. The second approach is called “random-effects” and considers the 

individual effect as a component of the random term of the model. 

The model (1.4’) can be estimated using OLS by treating the i ’s as parameters of dummy 

variables which identify each individual—usually called Least Square Dummy Variable (LSDV) 

estimator. That is,  
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N

it i i it it

i

L D Y     , 

where iD  is a dummy variable that takes the value of one if the observation corresponds to the i-

th individual and zero otherwise. Consistency of LSDV requires either (i)  , 0it itcorr Y v   and 

T  ; or (ii)  , 0 , .it iscorr Y v s t   Condition (ii) (strict exogeneity) rules out any feedback 

from past productivity shocks to current levels of outputs. 

In this setting, the estimation of the relative inefficiency measures uses the fact that the most 

efficient firm in the sample must have a value of iu  equal to zero, which implies min ( )i i  . In 

other words, the smallest estimated firm intercept is used to define the intercept parameter so that 

all firm effects are estimated to be zero or positive. Then, iu  can be estimated as 

ˆ ˆˆ min ( )i i i iu    .                                                     (1.5) 

The similarity of the fixed-effects model to the COLS model based on cross-sectional data 

should be apparent. If the input is expressed in logs, the individual efficiency measures are 

obtained by substituting the expression in equation (1.5) into equation (1.2). 

The properties of the estimators can be better understood by realising that the OLS estimator 

of   is equivalent to the OLS estimates of the model in deviations from individual-specific mean 

values (also called the “within model”): 

( ) ( )it i it i it iL L Y Y v v     ,                                           (1.6) 

where iL , iY , and iv  are individual means  
1

1
i.e., 

T

i is

s

L L
T 

 
 

 
 . In this case, the individual effects 

can be estimated as 

ˆˆ
i i iL Y   . 
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The estimator of i  is only consistent when T tends to infinity. That is, the consistent 

estimation of the firms’ efficiency measures requires a large number of time periods—i.e. a large 

number of observations on each of the firms. 

The fixed-effects model precludes the inclusion of time invariant regressors. In the presence 

of time invariant attributes that affect firms’ performance, the random-effects model can be used 

instead if one is willing to assume independence between the individual effects and the 

regressors. 

The estimation of equation (1.4) with OLS gives consistent estimates of the parameters of 

the model when the individual effects are not correlated with the explanatory variables. The 

covariance matrix, however, is not scalar; therefore, it is possible to get more efficient estimates 

using generalised least squares (GLS). In particular, for each individual   

2 2( )it i v uVar v u       

and 

2

1( , )it i it i uCov v u v u    , 

which are the result of the assumptions of independence between iu  and it , the absence of serial 

correlation of it , and the time invariance of iu . These assumptions imply the following (TT) 

covariance matrix for each individual: 

2 2 2 2

2 2 2 2

2 2 2 2

...

...

...

...

v u u u

u v u u

i

u u v u

   

   

   

 
 

  
 
 

  

. 

The individual effects are assumed uncorrelated across the individuals, that is, 

( , ) 0,it i jt k jCov v u v u k    . Therefore, the (NTNT) covariance matrix for all the individuals 

can be represented as 
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1

2

0 ... 0

0 ... 0

...

0 0 ... N

 
 


  
 
 

  

. 

The GLS estimator can be written as 

1 1 1ˆ ( ' ) ' ,GLS Y Y Y L       

where Y is the  NT K  matrix of regressors (K is the number of right-hand side variables) and L 

is the  1NT   dependent variable. 

In empirical applications, however, 2

  and 2

u  are unknown and GLS estimation is 

infeasible. A feasible estimator can be obtained by estimating 2

  as the variance of the within 

estimation (1.6), and realising that 
2

2 u

T



   is just the variance of the “between model” 

i i i iL Y v u     . 

An estimate of 2

u  can be recovered from both estimates. The inefficiency term can be 

estimated as 

ˆ

ˆ

T

it

t
iu

T






, 

where 

ˆˆ ˆGLS GLS

it it itL Y     . 

If the input is in logs, the individual efficiency measures can be calculated as in (1.2). 

In the unrealistic situation where 2

  and 2

u  are known, the estimates of the parameters of 

the model are consistent whenever N or T tends to infinity.
9
 When 2

  and 2

u  are unknown, the 

                                                        
9 If T is fixed, this again requires “strict exogeneity” or  , 0 , .it iscorr Y v s t   
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consistent estimation of 2

u  requires N  . On the other hand, a consistent estimate of the 

individual efficiency measures again requires T  . 

The consistency of the GLS estimates depends on the individual effects being uncorrelated 

with all the explanatory variables. This assumption can be tested using a Hausman test, which in 

this case is based on the significance of the differences between feasible GLS and within 

estimates. Under the null hypothesis of no correlation between the individual effects and the 

regressors both estimators within ( ˆW ) and GLS ( ˆ GLS ) are consistent. Therefore, under the null 

hypothesis of no correlation these estimators would not differ significantly: 

0 : 0W GLSH    . 

Under the null hypothesis the within estimator is inefficient, and under the alternative 

hypothesis of correlation between the individual effects and the explanatory variables the GLS 

estimator is inconsistent, which implies that in that case one should expect significant differences 

between both estimators ( 1 : 0W GLSH    ). The test of this hypothesis can be done using a 

Wald test: 

1ˆ ˆ ˆ ˆ( ) ' ( )W GLS W GLSW        , 

where 

ˆ ˆ ˆ ˆ( ) ( ) ( )W GLS W GLSVar Var Var        . 

This simple expression for the variance of the difference is one of the main results found in 

Hausman (1978): the variance of the difference between an inefficient and an efficient (under the 

null hypothesis) estimator is the difference between the variances. The Wald statistic has a chi-

squared distribution with degrees of freedom equal to the number of parameters that are being 

compared.  
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Summing up, the fixed-effects model does not require the assumption that the inefficiency 

term and the regressors are orthogonal to each other, but at the cost of not allowing the inclusion 

of constant regressors. In the presence of time invariant attributes of the firms that are omitted 

from the model, these would be captured in the fixed effects, mixing with the inefficiency term 

when they should be classified otherwise. The random-effects model, in turn, allows the inclusion 

of time invariant regressors in the model, although at the cost of having to assume that the 

inefficiency term is independent from all the regressors.
10

 This can be a strong assumption since if 

a firm knows its efficiency level this could affect its output choices. 

Both fixed-effects and random-effects models do not make any assumption about the 

distribution of the inefficiency term. If the researcher is willing to assume some distribution of the 

inefficiency term, and to assume independence between the efficiency effects and the regressors, 

a stochastic maximum likelihood estimate is feasible. This approach is widely used in empirical 

analysis and therefore is described in detail in what follows.  

The stochastic frontier input requirement function model with panel data is written as
11

 

it it itL Y    , 

where itL , itY , and  are defined as before. The error term is specified as it it iv u   . The itv  are 

assumed to be independently and identically distributed 2(0, ),  N  independent of the iu . The iu  

are assumed to be independently and identically distributed defined as the truncation (at zero) of 

the 2( , ) uN    distribution. In addition, it is assumed that itv  and iu  are independently distributed 

of the regressors.  

                                                        
10 There is a third alternative, not so much used in this literature, where only a subset of the regressors are correlated 

with the inefficiency disturbance and then a Hausman-Taylor (1981) estimator can be employed. 
11 This is an adaptation of Battese and Coelli (1988) production function model. 
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The parameters of the model can be consistently and efficiently estimated using ML, 

provided the assumptions regarding the distribution of inefficiency and the independence between 

technical inefficiency and the explanatory variables are correct.  

In order to obtain individual efficiency measures, iu  has to be inferred from the observable, 

it . Battese and Coelli (1988) provide the formula for this decomposition and show that the 

condition for consistency is again T  . The assumption that the firm effects are time-invariant, 

however, is unlikely to be realistic for a sufficiently long period of time; firms may discover, after 

a period of time, the extent of their inefficiency and adjust their practices to become more 

efficient (assuming they have the incentives to do so). 

In this context, the Hausman test can be used to contrast the distributional assumptions of 

the error components. Under the null hypothesis of correct distributional assumptions both 

estimators GLS and ML are consistent, though GLS is inefficient.
12

 Under the alternative, the 

Battese and Coelli (1988) stochastic frontier model is inconsistent (GLS is still consistent) and 

therefore there should be significant differences between the two estimators. 

Models with time varying technical efficiency 

Until now I have assumed that inefficiency is constant over time. This assumption, however, 

may not be as innocuous as it appears. In economics terms, the assumption implicitly implies that 

the agents do not realise the degree of their inefficiency or, if they do realise, they do not try to 

reduce it or they are not able to do it. In statistical terms, imposing this restriction without 

formally testing its appropriateness may result in inconsistency of estimators for the parameters of 

the model as well as for technical inefficiency (Kumbhakar, 1990).  

                                                        
12 The inefficiency of GLS is due to the non-normality of the composite error term. 
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The assumption of time-invariant inefficiency can be relaxed by imposing some structure on 

how the inefficiency evolves over time.
13

 One possibility is the Cornwell, Schmidt, and Sickles 

(1990) specification, which allows the individual effects to evolve over time as a quadratic 

function  

2

1 2 3it i i iu t t     . 

In this model the inefficiency term is a quadratic function of time, and the form may not be 

the same across firms. Cornwell, Schmidt, and Sickles propose three different estimators for this 

model, all of them being some variant of least squared: within, GLS, or Hausman-Taylor. Which 

one is actually selected depends on the number of assumptions the researcher is willing to make 

about the independence of the firm effects.  

The Cornwell, Schmidt, and Sickles specification is very flexible, but has two important 

disadvantages: it is very demanding in terms of data (the additional parameters to be estimated are 

3N) and it does not allow the separation of technical inefficiency changes (catching-up) from 

technical change (shifts in the frontier). 

Trying to solve these problems, Kumbhakar (1990) proposes a stochastic frontier model that 

allows inefficiency to change over time. Unlike Cornwell, Smith, and Sickles (1990), in 

Kumbhakar’s model the temporal variation of technical inefficiency is not modelled through the 

intercept of the frontier, but through an error component. The model specifies the inefficiency of 

firm i at time t as the product of a one-sided random variable, iu , and a given exponential 

function, ( )t : 

1
2

( )

( ) 1 exp( )

it iu t u

t bt ct








    

  

                                                        
13 An alternative is to model inefficiency as being statistically independent over time, treating the panel as cross-

sectional data. 
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where b and c are unknown parameters to be estimated, and iu  are assumed to be independent 

and identically distributed as truncations at zero of the 2( , ) N    distribution. The function ( )t  

can be monotonically increasing or decreasing, concave, or convex, depending on the sign and 

magnitude of  b and  c. 

Battese and Coelli (1992) extended Kumbhakar’s model in order to allow for unbalanced 

panel data.
14

  They specify the inefficiency as an exponential function  

 exp ( ) ,it iu u t T    

where iu  is independent and identically distributed  20, uN  , and   is the only additional 

parameter to be estimated. In this specification, since the exponential function,  exp ( )t T  , 

has a value of one when t=T,  the random variable iu  can be considered as the technical 

inefficiency effect for the i-th firm in the last period of the panel (but can be estimated even if 

firm i is not observed in period T). For earlier periods, the technical efficiency effects are the 

products of the technical inefficiency effect for the i-th firm in the last period of observation, and 

the value of the exponential function, which depends on the parameter   and the number of 

periods before the last observation. If   is positive then the model shows decreasing inefficiency 

effects, while if   is negative the inefficiency effects are increasing.  

The advantages of the Kumbhakar (1990) and Battese and Coelli (1992) specifications are 

that they are less data demanding than the Cornwell, Schmidt, and Sickles (1990) model, and that 

technical inefficiency changes over time can be distinguished from technical change.
15

 A 

disadvantage is that the ordering of the firms according to the magnitude of the technical 

inefficiency effects is the same at all time periods.  

                                                        
14 An unbalanced panel is one in which the group size differs across groups. 
15 Technical change can be incorporated by means of a time trend in the frontier, or by the inclusion of time dummy 

variables. 
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Trying to avoid this disadvantage Cuesta (2000) extended the Battese and Coelli (1992) 

representation by modelling the inefficiency term as  

 exp ( )it i iu u t T   ,  

where i  are firm specific parameters to be estimated. The Battese and Coelli (1992) model is 

nested in this model and therefore it is possible to impose the restrictions in order to test the 

hypothesis of a common pattern of inefficiency change across firms, 0 1 2: ... iH        . 

The ML estimator of Cuesta’s model, however, can be inconsistent since the number of 

parameters increases with the sample—the “incidental parameter” problem. 

Models incorporating exogenous influences on efficiency 

The analysis of technical efficiency has two components. The first is the estimation of a 

frontier that serves as a benchmark against which to estimate producers’ efficiency. The second 

component is equally important, although much less frequently explored. It concerns the 

incorporation of exogenous variables that can exert an influence on firms’ performance.  

The main difference between environmental variables and variables influencing efficiency is 

that the former are assumed to influence the structure of the technology by which inputs are 

converted into output, whereas the latter influence the efficiency with which inputs are converted 

to outputs. Unfortunately, there is no universal rule to distinguish both types of variables; thus the 

final decision depends on the researcher’s view of the world.  

Early empirical papers in which the issue of the explanation of inefficiency effects was 

raised include Pitt and Lee (1981) and Kalirajan (1981). These papers adopt a two-stage 

approach, first estimating the frontier and the firms’ efficiency levels, and afterwards regressing 

these efficiency levels on a vector of variables, say Z. The two-step procedure, however, gives 

biased results because the model estimated at the first step suffers from an omitted variable 

problem. More importantly, Wang and Schmidt (2002) show that the bias of the two-step 
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procedure is substantial and affects the estimates of both technological parameters and efficiency 

measures.  

This issue was first addressed by Kumbhakar, Gosh, and McGukin (1991) and 

Reifschneider and Stevenson (1991), who propose one-step stochastic frontier models in which 

the relationship between Z and technical efficiency is imposed in estimating the technology and 

the firms’ efficiency level.  

In this paper I use the Battese and Coelli (1995) specification of this one-step procedure, 

which extended the Kumbhakar, Gosh, and McGukin (1991) model in order to allow for panel 

data. In the Battese and Coelli model, the noise term is assumed to be independent and identically 

distributed  20, vN  . The itu  are non-negative random variables assumed to be independently 

distributed such that itu  is the truncation (at zero) of the normal distribution with mean it  and 

variance 2

u . The it  is defined by  

it itZ  , 

where itZ  is a  1 m  vector of explanatory variables associated with technical inefficiency and   

is a  1m  vector of unknown coefficients.
16

  

Technical efficiency of production for the i-th firm at the t-th time period is 

exp( )it itTE u  , and the prediction of the technical efficiencies is based on its conditional 

expectation, given the model assumptions. 

It is important to notice that estimates of the coefficients on the Z variables in the stochastic 

frontier model are not directly comparable to the coefficients obtained from an OLS regression 

with the same Z variables on the right hand side. The coefficient on kZ  in the inefficiency effects 

model of the stochastic frontier measures the amount that the mean of the normal distribution 

                                                        
16 Related to the previous section, one component of itZ  could be time (t). 
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prior to truncation shifts with kZ . This amount is not necessarily equal to the change in expected 

input use when changing kZ , which is more comparable to OLS estimates.  

As shown in Huang and Liu (1994) and Battese and Broca (1997),  

 

, ,

 it it
it

k it k it

ln LE
C

Z Z

 
 
 
 

 


 
, 

where  

1
1

it it

it

it it

C

 
  

 

 


 

    
           

         
     

 

and  and    represent the density and distribution functions of the standard normal random 

variable.  
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