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Abstract 
 

This thesis studies how energy and agricultural commodities are linked together and 

in particular how they form a network between each other. Cash traded commodities 

are substituted by their closest exchange traded alternative. The network is presented 

in the form of Minimal Spanning Trees and Hierarchical Trees. It is considered under 

various frequencies and periods that allow us to determine how the network is 

affected by those factors and what the implications are for a biofuels trader. It is 

shown that the networks form two clusters that are connected via soybean oil. An 

analysis is made on the effects of the food and financial crises on the energy and 

agricultural commodities used for the production of biodiesel. In this context, it is 

shown that the co-movement of energy and agricultural commodities increased during 

the crises period and that the network is denser after than before the crises. Finally, it 

is argued that substituting the cash markets with their closest exchange traded 

alternative does change the network’s dynamics. 
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1 Introduction	  

This paper is motivated by the increased usage of biofuels for the world’s energy 

supply and how this affects the price transmission network of regular food and energy 

commodities. The complex network of food and energy commodities is presented 

using methods of graph theory and taxonomy. Thus clearly identifying the 

relationships between components of the system without imposing the structural and 

distributional assumptions that other methods demand. The price transmission 

network is analysed under different market phases and time horizons. With these 

results, the effects of the introduction of biofuels to the price transmission between 

agricultural and energy commodities can be better understood. 

  The rapid, policy driven, expansion of the use of biofuels since the end of the 

20th century has, in combination with high commodity prices during the period of 

2007-2008, fuelled a debate about the effects of the introduction of biofuels that is 

polemic. Biofuels are produced from agricultural products and the economics of the 

industry is driven by both the price that the end product may fetch as well as the price 

of the feedstock to produce it. Consequently, biofuels can be seen to bridge the food 

and energy sectors.  The scare of a socioeconomic effect of the increased importance 

of biofuels has spurred a vast amount of research to be done on the economics of 

biofuels.  

 The two articles by (Zilberman et al. 2012) and (Janda, Kristoufek and 

Zilberman 2012) summarize the latest findings from the research of the economics of 

biofuels. From this meta analysis it is clear that the simulation models, and partial and 

general equilibrium models rely on the assumption of a relationship between the 

prices of food, biofuels and energies. So far, the empirical research has been 

inconclusive as to this matter (Kristoufek, Janda and Zilberman 2012). 

 The currently published empirical papers have used many different methods to 

establish a statistical relationship between food, biofuels and energy. To name but a 

few, the spectrum spans from Markowitz portfolio theory (Zhang, Lohr and Wetzstein 

2008), to various applications of co-integration (Serra, Zilberman and Gil 2011) and 

(Serra, Zilberman, et.al. 2011), to investigations of the volatility using co-integration, 

vector error correction model (VECM), and multivariate generalized autoregressive 
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conditional heteroskedasticity (MGARCH) models (Zhang, Lohr and Escalante, et.al. 

2009), to volatility spillover using Bayesian Markov Chain Monte Carlo methods to 

estimate the model’s parameters (Du, Yu and Hayes 2011). The methods that have 

been used are sophisticed and they impose structural and distributional assumptions 

between the prices of biofuels and related commodities that does impair their 

flexibility (Kristoufek, Janda and Zilberman 2012). In this paper, the problem of 

assumptions is completely circumvented by the use of Minimal Spanning Trees 

(MSTs) and Hierarchical Trees (HTs) to map the network of price transmissions. 

 MSTs and HTs have been widely used to map networks in distinct fields of 

science, everything from biology to physics. More recently, econophysicists have 

begun to apply the method in their field in order to map and understand the complex 

networks that they investigate. MSTs and HTs have for example been used to map the 

networks of: stocks connections (Bonanno, et.al. 2004), foreign exchange (Wang, 

et.al. 2012), term structure of interest rates (Tabak, Serra and Cajueiro 2009) and 

commodities (Tabak, Serra and Cajueiro 2010) .  

 In this paper, we apply MST and HT analysis to the network of biofuels and 

commodities that one would suspect are related to their production i.e. agricultural 

and energy commodities. The benefit of using MST and HT analysis is that we are 

able to simultaneously analyse a great number of commodities without blurring the 

picture by being too complex. In other words, even though the web may consist of 

many nodes one may identify clusters and individual connections clearly. 

Furthermore, bootstrapping the data indicates how strong the respective links are as 

well as the strength of the network on its own. This fundamental analysis may then 

serve as a spring board for further in-depth analysis of individual price connections 

using traditional econometrical methods such as co-integration and mean revertion. 

 Applying MSTs and HTs to the biofuels sector has been done before in 

(Kristoufek, Janda and Zilberman 2012). In their analysis they show that the two 

clusters are formed: one for bioethanol and another for biodiesel. This makes sense as 

bioethanol is used in blends with gasoline and biodiesel for blends with diesel and as 

such their demand is distinct. Not even the feedstock is the same; bioethanol is 

produced from agricultural commodities high in sugar content such as corn, sugar 

cane and wheat whereas biodiesel is mainly produced from vegetable oils. Here we 

will focus on the biodiesel space. 
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 Biodiesel is produced from vegetable oils that can be derived from many types 

of feedstock. Some of the most common ones are rapeseed, soybean and oil palm 

from which Rape Methyl Ester (RME), Soy Methyl Ester (SME) and Palm Methyl 

Ester (PME) are produced. There are other variations as well, such as Fatty Acid 

Methyl Ester (FAME) and advanced biofuels but the original feedstock is vegetable 

oil.  

 These products are traded Over-the-Counter (OTC) and therefore the current 

literature on price transmission of biofuels, agricultural products and energy 

commodities, such as (Peri and Baldi 2013), (Peri and Baldi 2008), (Kristoufek, 

Janda, and Zilberman 2012) to name a few, all consider illiquid or untradeable price 

indices in the course of their analysis. By definition, such indices are not traded on an 

exchange. 

 What makes this paper different from previous research is that we substitute 

these illiquid indices/products with the closest related exchange traded commodity. 

As an example, MATIF Rapeseed and Winnipeg Canola substitute rapeseed and 

canola oil respectively as the oil is only traded in the cash market whereas the seed is 

traded on an exchange.  By doing so we aim to understand the dynamics of the web of 

liquid tradable financial assets related to biodiesel. 

 In order to explore the network, we want to analyse the behaviour of this 

group of exchange-traded commodities under different time frequencies (daily, 

weekly and monthly) as well as before, during and after the financial and food crises. 

Through such thorough analysis we want to establish the network’s short-/long-term 

structure as well as whether there have been any structural changes due to amended 

regulations and/or new technological advances. The hypothesis is that the substitution 

of untradeable indices and illiquid commodities by their closest liquid alternative does 

not change the dynamics of the network that represents the biodiesel space. This 

hypothesis is not confirmed as the network does not demonstrate the attributes that 

were expected. Instead we find that the food and energy space moved closer together 

during the crises period and that it has remained closer after the crises. Furthermore, 

we find that short-term shocks can cause temporary distortions to the network but that 

it reverts again in the medium- to long-term unless there has been a structural or 

macro-economical change that may be regulatory driven.   

The rest of this paper is organized as follows. Section 2 includes a brief 

historical background to the biofuels industry as well as the presentation of a handful 
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of papers that are important for this paper. In section 3 we account for the methods 

used in this paper. Section 4 introduces the data and includes a graphical presentation 

of the price series. The results are presented and analysed in section 5. Finally, section 

6 concludes and discusses shortcomings as well as suggestions for future research. 

2 Background	  and	  Previous	  Research	  

The usage of agricultural products as fuel is nothing new. On the contrary, the French 

Otto Company reportedly ran a diesel engine on peanut oil at the 1900 World’s Fair in 

Paris. Allegedly, the French government wanted to find an energy source for their 

tropical colonies that was produced locally in order to avoid shipping in coal and 

liquid fuels. Research continued and in 1937 the Belgian G. Chavanne filed the patent 

422.87 for what was probably the world’s first biodiesel and in 1938 it was put to 

commercial use on a bus line between Brussels and Louvain (Leuven) with a 

satisfactory result (Knothe 2011). During World War II many countries experimented 

with the use of vegetable oils, as fuel was scarce due to the limited, and controlled, 

supply of mineral oil (Yergin 2008).  After the war, mineral oil was made available in 

abundance and the interest in vegetable oil as fuel declined until the oil crisis of the 

1970s when the technology was rediscovered (Knothe 2011). 

 The reintroduction of biofuels was led by ethanol inclusion in the US and 

Brazil during the 1970s. Ethanol subsidies were introduced in the US Energy Tax Act 

of 1978 as the US had ‘the desire to reduce dependence on imported fossil fuels; to 

reduce greenhouse gas (GHG) emissions; and to increase demand for domestic farm 

commodities serving as raw material for biofuels.’ Similar subsidies for biodiesel 

were only introduced with the Conservation Reauthorization Act in 1998 (Janda, 

Kristoufek, and Zilberman 2012). 

The Energy Policy Act of 2005 under the Renewable Fuel Standard (RFS) 

introduced mandates expressed in volumetric terms. For 2006, the objective was to 

incorporate 4 billion gallons of renewable fuels, to be increased to 7.5 billion gallons 

by 2012. With the Energy Independence and Security Act of 2007 the RFS was 

expanded to reach 36 billion gallons by 2022 of which 1 billion gallons biodiesel 

(Trujillo-Barrera, Mallory, and Garcia 2012). It is this volumetric Ethanol and 

Biodiesel Excise Tax Credits that lately has provided the largest subsidies (Janda, 

Kristoufek, and Zilberman 2012). 
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 The European bioenergy revolution started with the Common Agricultural 

Policy (CAP) in 1992. The CAP was an attempt to stop the overproduction of 

agricultural goods in Europe. As a part of this process, arable land was supposed to be 

converted to non-food use such as energy-crop production (Pelkmans et al. 2007).  

Additionally, in the beginning of the 21st century the EU had a new energy 

agenda that promoted reduced greenhouse gas (GHG) emissions, energy security and 

the reduction of urban pollution while at the same time improving the financial 

situation for farms (OECD 2008). In order to achieve these goals EU decided to use 

both a blending mandate as well as a tax relief (Peri and Baldi 2013). 

 These incentives were first introduced with the 2003 Biofuels Directive 

(2003/30/EC) which mandated that 2% of all the transport fuel should come from 

renewable resources by 2005 and that it should gradually increase to 5.75% biofuels 

inclusion by 2010. Via the Energy Taxation Directive (2003/96/EC) Member States 

were allowed to promote biofuels inclusion through tax exemption under the 

conditions that: 

 

• The tax exemption or reduction must not exceed the amount of taxation 

payable on the volume of renewable used; 

• Change in the feedstock prices are accounted for in order to avoid 

overcompensation; 

• The exemption or reduction authorized may not be applied for a period 

of more than six consecutive years. This is renewable. 

(Pelkmans et al. 2007) 

  

In the beginning the Fuel Quality Directive restricted the biofuels inclusion to 

5% for both bioethanol and biodiesel (Pelkmans et al. 2007). In 2009, the Renewable 

Energy Directive (R.E.D.) (2009/28/EC) raised the bar by setting 10% biofuels 

inclusion as a goal for 2020. 

At the same time, the EU continued to work on how to improve the farmers’ 

finances by developing the CAP. In 2004, a EUR 45/ha incentive was introduced to 

induce farmers to grow energy-crops all while there also existed another payment for 

cultivating non-food crops on set-aside land.  
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With the financial crisis the objectives of the EU changed and in 2009 both 

incentives were abolished following the 2007 Health Check reform (Peri and Baldi 

2013). 

Before their abolition, the above mentioned political subsidies led to artificial 

high profitability in the biodiesel sector during the period from the Biofuels Directive 

in 2003 till 2006, when many tax incentives were abandoned in favour of blending 

mandates. As a textbook example of supply and stimulated demand, the high profits 

attracted new entrants. Which, in turn, led to an explosive expansion of the production 

capacity in Europe and today the EU is the world’s largest biodiesel producer (Jung et 

al. 2010). 

Figure 1, on the next page, illustrates the relationship between the expansion 

of production and the increase in demand for the period 2003-2011 (European 

Biodiesel Board 2014). One can see that the addition of production capacity outpaced 

the increase in demand ever since 2006 and that the decrease in utilization was drastic 

between 2006 and 2007.  

It has been argued that the rapid production decrease from 2006 to 2007 was a 

consequence of a change from tax incentives to mandatory blending requirements. 

These changes, effectively, erased much of the regulatory protection that producers 

had enjoyed up until then (Peri and Baldi 2013). Since this policy change, the 

European biodiesel industry has been burdened with overcapacity that has kept 

returns oscillating from negative to slightly positive even though the yearly 

production increased every year until 2010. 
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Figure 1 : European Biodiesel : Production vs. Capacity 2003-2011 (European Biodiesel Board 2014) 

 
Worldwide, this continuous increase in regulatory demand for biofuels created 

additional demand for agricultural commodities. We will concentrate on biodiesel, 

which is produced from vegetable oils. Vegetable oils are a source of the essential 

nutrient fat. As such, vegetable oils are an important food staple that should be readily 

available to the world’s population. The additional demand from the energy sector has 

arguably changed the relationship between vegetable oils and crude oil and its 

derivatives (Peri and Baldi 2013). 

 The additional demand from the biofuels sector has spawned a vibrant food vs. 

fuel debate, as there is concern that additional demand from the energy sector has 

inflated the food prices and made food increasingly difficult to obtain for the poor. 

Therefore, there is an abundance of literature available which either focus on the 

relationship between the food and fuel prices or concentrates on the impact of the 

introduction of biofuel on commodity food prices (Zilberman et al. 2012). The latter 

perspective is more political in the sense that it considers what the effects are of the 

introduction of biofuels on a socioeconomic level. This is a field on its own and of 

great interest to politicians but not for traders and will not be considered here. A 

handful of relevant research is presented below. For a thorough meta analysis, please 

refer to (Zilberman et al 2012) and (Janda, Kristoufek and Zilberman 2012). 
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 (Kristoufek, Janda, and Zilberman 2013) set the theoretical framework for this 

article. They show that the biodiesel market can be considered as a market where the 

price is determined by the supply and demand of the commodity with technological 

and regulatory constraints that distort the prices and consequently the economics of 

the industry. From this theoretical framework they analyse the price transmission 

between biofuels and related commodities. The authors find that both ethanol and 

biodiesel prices are responsive to their production factors and that the food and 

financial crises significantly increased the strength of this transmission.  

 (Peri and Baldi 2013) combines a multiple structural change approach with 

rolling co-integration. The authors analysed the long-run price relationship between 

rapeseed oil and fossil diesel prices on the FOB Amsterdam-Rotterdam-Antwerp 

(ARA) market, which is the most liquid cash market in Europe, for structural breaks 

over the period 1 January 2001 to 27 April 2010. They identified four structural 

breaks, all of which were closely related in time to either policy changes or macro-

economical events. The authors conclude that rapeseed oil prices are affected by 

policy events and that the rapeseed oil prices rapidly converge to the economics 

driven by the fossil diesel prices. Finally, they note that the introduction of such a link 

may pose future problems for the farmers, as they may not be used to the volatility of 

the energy sector. 

 (Peri and Baldi 2008) used a threshold vector error correction model to 

investigate whether an asymmetric dynamic adjustment process existed among: 

rapeseed oil, sunflower oil, soybean oil and diesel prices. The authors used weekly 

data from January 2005 to November 2007 and all prices were Amsterdam-

Rotterdam-Antwerp. They found that sunflower oil and soybean oil were not 

influenced by diesel prices during the period. Rapeseed oil on the other hand was 

found to have a strong link with diesel. They suggest that this was due to the high 

quota of EU biodiesel produced from rapeseed oil (80%) during the period. 

 The above works are mainly concerned with econometrics and price 

relationships. Another method that has been used is that of volatility spill over but so 

far only in Brazil and the United States when analysing biofuels (Zilberman et al. 

2012). 

As an example, (Trujillo-Barrera, Mallory, and Garcia 2012) analyses 

volatility spill over in the United States from crude oil to ethanol and corn. The 

authors use a trivariate model to find volatility linkages from crude oil to corn and 
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ethanol during 2006-2011. This was a time when about 25-35% of all corn usage went 

to the ethanol industry. Their findings imply that the volatility of energy commodities 

spill over into the agricultural market once a certain threshold of the supply is used for 

energy markets. The effect thereof is found to be 15% on average and that it peaked at 

45% when volatility was high. The authors point out that this may cause concerns for 

the risk management of agricultural commodities.  

 (Kristoufek, Janda, and Zilberman 2012) applied graph theory to a number of 

North American and European commodities that they deemed interesting for the 

analysis of the relationship between energy and agricultural commodities. The authors 

find that the analysis is almost inconclusive in the short-term but that it provides 

meaningful insights in the medium- to long-term as two separate branches form. They 

find that the food and financial crises altered the relationship between the 

commodities analysed. 

 Previous research found that the introduction of biofuels affect the commodity 

markets (Zilberman et al. 2012) and some papers, such as (Peri and Baldi 2013) and 

(Kristoufek, Janda, and Zilberman 2013), have found that there is a price transmission 

from energy to agricultural commodities. What makes this paper different is that it 

explores the possibility to substitute the cash markets with futures. This ensures that 

the network of commodities is tradable and by doing so we explore the commodities 

interchangeability. 

3 Methodology	  

There is a three-step process to generate minimal spanning trees (MST) and 

hierarchical trees (HT) consisting of concerned commodities: First, we need to define 

a way to map the correlations to a suitable measure space. Secondly, we must find a 

way to construct the trees. Finally, we must verify that the links we found are 

sufficiently stable to be used in our work. With this in hand, we can set out to analyse 

the material.  

 The method we use was outlined in (Kristoufek, Janda, and Zilberman 2012). 

Part of the method was originally introduced in (Mantegna 1999) and the additional 

test of the strength of links was added in (Tumminello et al. 2007).  
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3.1 Mapping	  the	  Correlation	  Matrix	  to	  the	  Distance	  Matrix	  

In order to graphically express the interconnections between our time-series, we must 

find a suitable topological space. Normally, interconnections between various time-

series are represented using a correlation matrix ℂ. ℂ does not possess the properties 

that we need to express the interconnections graphically. To resolve this we construct 

a measure 𝑑!" that will map ℂ to another distance space and the distance matrix 𝔻. In 

the distance space, the distance between the nodes represent the level of correlation. 

In this process, we first define the correlation matrix ℂ and discuss some important 

properties. We then proceed to define what a measure is and construct the measure 

that will map ℂ to 𝔻. Finally, we discuss the properties of the measure 𝑑!". 

3.1.1 Correlation	  Matrix	  

For a set 𝑆, with cardinality 𝑆 = 𝑛, of weak stationary time-series i.e. all possess 

well-defined means and variances. The correlation matrix ℂ consist of the sample 

correlations of all possible combinations of time-series. To formalize, for a pair of 

time-series 𝑖 and 𝑗 with respective values 𝑋!" and 𝑋!" and 𝑡 = 1,… ,𝑇.  Define the 

sample correlation coefficient 𝜌!" as: 

 

 
𝜌!" =

(𝑋!" − 𝑋!!
!!! )(𝑋!! − 𝑋!)

(𝑋!" − 𝑋!!
!!! )! (𝑋!" − 𝑋!!

!!! )!
  , 

 

( 1 ) 

 

 

where 𝑋! =   
!!"!

!!!
!

 and 𝑋! =   
!!"!

!!!

!
 are the respective time-series averages 

(Kristoufek, Janda, and Zilberman 2012). As is usual, ℂ consist of 𝑛(𝑛 − 1) 2 pairs 

of correlation where 𝜌!" ∈ {𝑥:ℝ ∧−1 ≤ 𝑥 ≤ 1}.  A value of 𝜌!" = −1 represents 

perfect anti-correlation, 𝜌!" = 1 perfect correlation, and 𝜌!" = 0 no correlation 

whatsoever. 

3.1.2 Distance	  Measure	  

Logically, the measure we define should map highly correlated pairs as short 

distances and anti-correlated pairs as long distances. Most importantly this distance 
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space should be a sub-space of ℝ! ∪ {0} as negative distances are contradictory. 

Define the mapping: 

 

 𝑑!" = 2(1− 𝜌!") 

 

( 2 ) 

 

We know from before that 𝜌!" ∈ {𝑥:ℝ ∧−1 ≤ 𝑥 ≤ 1}. Consequently, 𝑑!" ∈ {𝑥:ℝ ∧

0 ≤ 𝑥 ≤ 2}  which is a sub-space of ℝ! ∪ {0}. In particular, 𝑑!"   → 0 as  𝜌!" → 1   and 

𝑑!"   → 2 as 𝜌!" → −1. In other words: the stronger the correlation, the shorter the 

distance and 𝑑!" fulfils the first part of our pre-requisites. It remains to be proven that 

𝑑!" is a measure. 

 

The mapping 𝑑!! is a measure if and only if: 

 

 i. 𝑑!" = 0 if and only if 𝑖 = 𝑗; 

ii. 𝑑!" = 𝑑!"; 

iii. 𝑑!" ≤ 𝑑!" + 𝑑!" ,∀𝑘 ∈ 𝑡. 
 

( 3 ) 

 

 

Proof  that d is a measure (Mantegna 1999): 

i. 𝑏𝑦  𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 :  𝑑!" ≠ 0 ⇒ 𝜌!" ∈ 𝑥:ℝ ∧−1 ≤ 𝑥 < 1 ⇒ 𝑖 ≠ 𝑗  

𝑖 = 𝑗   ⇒   𝜌!" = 1   ⇒   𝑑!" = 0  

ii. The correlation coefficient matrix ℂ is symmetric by definition ⇒ the distance 

matrix 𝔻 is symmetric. 

iii. Consider Euclidean distance between two vectors 𝑌! and 𝑌! whose components 

are the time-series values of the time-series 𝑌! and 𝑌!. The vector’s unitary 

norm is constructed by subtracting to each record the average value of and by 

normalizing it to its standard deviation. 

 

𝑄.𝐸.𝐷. 



 12 

3.2 Minimal	  spanning	  tree	  and	  hierarchical	  tree	  

The construction of the minimal spanning tree (MST) will be done following the 

method outlined in (Mantegna 1999). The MST then serves as a mapping to map the 

distance matrix 𝔻 to the subdominant ultrametric space and the matrix 𝔻!. In turn, 

the subdominant ultrametric matrix 𝔻! forms the foundation for the hierarchical tree 

(HT).  

3.2.1 Constructing	  the	  minimal	  spanning	  tree	  

The MST is derived from the Euclidean distance matrix 𝔻. As a first step, discard the 

diagonal elements that are zero by definition. We use Kruskal’s algorithm, outlined 

below, to sort and graph the remaining elements of 𝔻.  

 

“Perform the following step as many times as possible: Among the 

[distances] of [𝔻] not yet chosen, choose the shortest [distance] which 

does not form any loops with those edges already chosen.”  

(Kruskal 1956) 

Kruskal proved that this is the minimal spanning tree for 𝔻 and that it will 

have 𝑛 − 1 connections instead of 𝑛(𝑛 − 1) 2 that we had in the correlation matrix. 

This filtering results in a graph that is easier to read and analyze. 

To illustrate the procedure, consider the distance matrix 𝔻!"#$%&! that reflects 

the connections between the time-series in the set 𝐴,𝐵,𝐶,𝐷 . The respective distance 

metrics are: 𝑑!" = 0.1,𝑑!" = 0.2, 𝑑!" = 0.5,𝑑!" = 0.6,𝑑!" = 0.8,𝑑!" = 1 . The 

shortest distance is 𝑑!" = 0.1 and we adjoin 𝐴 and 𝐵 by this edge. The second 

shortest edge is 𝑑!" = 0.2 and we adjoin 𝐶 to the already existing growing tree by 𝐵. 

The third shortest edge is 𝑑!" = 0.5 but if we were to add this edge we will have a 

loop so it is ignored. Then we follow this procedure until we have connected the 𝑛 

nodes as can be seen in Figure 2 below. 
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Figure 2 : Example MST 

 

 

3.2.2 Constructing	  the	  hierarchical	  tree	  

The HT is constructed from the MST by mapping the distance matrix 𝔻 to the 

subdominant ultrametric matrix 𝔻! according to Mantegna’s method. 

  

“Let 𝑑!"!  be the subdominant ultrametric distance between 𝑖 and 𝑗 as the 

maximum value of any Euclidean distance 𝑑!" detected by moving in 

single steps from 𝑖 to 𝑗 through the shortest path connecting 𝑖 and 𝑗 in 

the MST.” 

(Mantegna 1999) 
 

To illustrate we use the example matrix 𝔻!"#$%&! and map it using 𝑑!"!  to 𝔻!. 

Consider the connection from 𝐴 to 𝐶, this will have the distance 𝑑! = 0.2 as it is the 

largest edge that needs to be traversed in the associated MST. At the same time, the 

Euclidean distance is 0.5 but this distance is ignored in the construction of HT. In 

Figure 3 you see HT for the example matrix. 
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Figure 3 : HT Example 

3.3 Stability	  of	  links	  

One of the problems when we construct the MST from a sample of time-series of 

finite length is that there is uncertainty as to whether the links are statistically 

significant or not (Tumminello et al. 2008). One way to circumvent this problem is to 

apply the bootstrap technique invented by (Efron 1979) and then popularized as a 

phylogenetic hierarchical tree evaluation method in (Felsenstein 1985). This method 

of so-called bootstrap weights of the respective vertices gives us guidance to both the 

global reliability of the graph as well as that of the individual edge (Tumminello et al. 

2008).  

3.3.1 Bootstrap	  -‐	  a	  way	  to	  measure	  link	  reliability	  

Consider a matrix 𝑿 consisting of 𝑛 time-series all of the length 𝑇 that are assumed to 

be weak stationary. So 𝑿 is a 𝑛×𝑇 matrix. From this matrix we derive the correlation 

matrix ℂ that serves as the foundation for the construction of the MST. To ensure 

ourselves that the results we achieve are not mere statistical arbitrations we apply 

bootstrap procedure. Let us run a number of 𝑟 = 1000 replicas of the original matrix 

𝑿. Each replica 𝑿𝒊∗ is constructed by randomly selecting rows of 𝑿 until we have 

achieved a total of 𝑇 whilst allowing for repetition. In other words, some rows of 𝑿 

may be repeated whereas others are absent in the replica 𝑿𝒊∗. For each replica 𝑿𝒊∗, the 

associated correlation matrix ℂ!∗ is found and the MST is calculated. The result is a set 
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consisting of 𝑟 MSTs {𝑀𝑆𝑇!∗,… , 𝑀𝑆𝑇!∗}. This set of MSTs is used to find the 

bootstrap value for each link.  

The bootstrap value is defined as the normalized recurrence of one specific 

link from the original MST in the group of replicated MSTs. To illustrate, say that 

nodes A and B are connected in the original MST. In the collection of replicated 

MSTs we find it in 750 out of 1000 cases. Then the bootstrap value is 0.750. It is this 

normalized value that will allow us to decide the link’s stability. 

By using the average of all the bootstrap values we can assess the reliability of 

the entire graph. Individual bootstrap values may allow us to identify communities 

within the graph. This technique does not require any knowledge of the data 

distribution. As such, it suits work with high dimensional systems where it can be 

difficult to infer the joint probability distribution (Tumminello et al. 2008). 

The error associated with the correlation coefficient 𝜌 roughly scales like 

(1− 𝜌!) 𝑇 for normally distributed random variables. This implies that the error 

decreases as the correlation increases. However, this does not imply that the reliability 

of the link behaves accordingly (Tumminello et al. 2008). 

4 Data	  

In this section we present the sets of commodities analyzed in this study. In particular, 

we present why these commodities were picked and how the data was gathered.  

4.1 Commodity	  selection	  

The commodities analyzed in this study were picked as they represent viable links 

between Energies and Vegetable Oils. In order to provide liquidity only exchange-

traded commodities were used, as the cash markets are non-accessible for most 

market participants.* To minimize the influence of adverse price movements that may 

be seen during the delivery period, the 2nd month futures were used. This will also 

ensure a liquid and tradable market. 

                                                
* The cash market is the OTC basis/premium market that trade between commodity 
traders. The market is non-regulated and the counter-party risk remains with the 
parties.  
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 The cross-section that we analyze consist of the daily, weekly and monthly 

prices† of Crude Oil-Brent (Brent), Crude Oil-WTI (WTI), Gasoil, Heating Oil (HO), 

Palm Oil (CPO), Soybean Oil (SBO), Canola seed (Canola) and Rapeseed for the 

period 13 Jan 2005-13 Jan 2014. The prices were pulled from Bloomberg and their 

respective exchanges, tickers and contract months are specified in Table 1. 

 

 

 

Commodity Exchange Ticker Contract type 

Crude Oil - Brent ICE CO 2 2nd month futures 

Crude Oil – WTI NYMEX CL 2 2nd month futures 

Gasoil ICE QS 2 2nd month futures 

Heating Oil NYMEX HO 2 2nd month futures 

Palm Oil BMD PO 2 2nd month futures 

Soybean Oil CBOT BO 2 2nd month futures 

Canola seed ICE RS 2 2nd month futures 

Rapeseed LIFFE – Paris IJ 2  2nd month futures 
Table 1: Selection of commodities analyzed. 

 

 Canola seed and Rapeseed substitute Canola Oil and Rapeseed Oil (RSO) 

respectively. Substituting the oil with the seed in an analysis of the returns is logical 

thanks to the economics of Canola seed/Rapeseed processing. When crushing Canola 

seed/Rapeseed, approximately 40-42% of the seed’s original weight is extracted as oil 

(The IntercontinentalExchange 2014). Typically, the value of the oil is much higher 

than that of the mid-protein that is the residual of the seed. Consequently, the bulk of 

the seed value is derived from the oil and the processors can be said to crush the seed 

for its oil. In other words, the crush margin depends to a great extent on the value of 

the oil and a strong link between the cash markets for oil and the exchange-traded 

seed should be expected in the deferred months.  

                                                
† The 212 trading days where one or more of the commodities did not trade were 
ignored.  
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4.2 Prices	  and	  Spreads	  

A graphical analysis of the charts shown in Figure 4, Figure 5 and Figure 6 indicates 

that all of the commodities’ prices moved in similar patterns during the period 

analysed. In particular, three sub-periods are identifiable with a distinctive break 

caused by the combination of the food and financial crises that struck the World 

2007-2010. These sub-periods are here identified as: 1) the pre-food/financial crises 

(13 Jan 2005-9 Jul 2007), 2) the crises period (10 Jul 2007-26 Jan 2010) and 3) the 

post-crises period (27 Jan 2010-13 Jan 2013). The crises period starts with the food 

crisis that has been said to commence on the 9 Jul 2007 (Kristoufek, Janda, and 

Zilberman 2012) and it ends with President Barack Obama proclaiming the end of the 

financial crisis on the 26 Jan 2010 (United States Department of the Treasury 2010). 

 

 

 
Figure 4 : USD per MT prices of Gasoil and Heating Oil 
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Figure 5 : SBO and CPO prices 

 
Figure 6 : Canola and Rapeseed Prices 

 During the pre-crises period prices increased with some minor corrections, 

once the food crisis or, perhaps better thought of as, commodity crisis commenced 

during 2007 the prices escalated fast and the correction during the financial crisis 

proved equally volatile. After the crises, the prices of the commodities have stabilized 

as well as the spreads between them.  

By analysing the spreads between commodities one can better understand the 

supply and demand differences between associated commodities that are present in 

the market. For example, the spread between Brent and WTI represent the 

International and North American crude oil market respectively. The spread between 

the two commodities has changed dramatically during the period analysed thanks to 
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the shale oil revolution in the United States (see Figure 7). All other spreads analysed 

have kept their dynamics intact. As an example, consider the HO-Gasoil spread in 

Figure 8. The construction of the MSTs and HTs is a way to identify which of the 

spreads in network of commodities may be worth to study further. 

 

 
Figure 7 : Brent - WTI spread 

 
Figure 8 : Heating Oil - Gasoil spread 
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4.3 Descriptive	  Statistics	  

The Minimal Spanning Trees and Hierarchical Trees are constructed from a set of 

data containing the logarithmic returns of the respective commodities. Define the 

logarithmic return as: 

 

 𝑟! = ln(𝑋! − 𝑋!!!) 
 

( 4 ) 

 

Where 𝑋! is the closing price of the commodity 𝑋 at the time 𝑡. 

Basic descriptive statistics for the daily logarithmic returns for the whole, pre-

crises, crises and post-crises periods are presented in Table 2, Table 3, Table 4 and 

Table 5 respectively.   

We note that an elevated volatility during the crises period. It is higher than 

both that of the pre- and post-crises periods. The skewness of the logarithmic returns 

changed during the period of analysis. Pre-crises, all commodities were positively 

skewed whereas both during and after the crises they were negatively skewed. The 

Ex. Kurtosis of the Canola seed increased after the crises. 

 

DESCRIPTIVE STATISTICS FOR THE FULL PERIOD  

(13 JAN 2005-13 JAN 2014) 

Daily logarithmic returns 

Commodity Mean Min Max St. Dev. Skewness Ex. Kurtosis 

Crude Oil - Brent 0,0004 -0,1048 0,1288 0,0200 -0,1336 0,7514 

Crude Oil – WTI 0,0003 -0,1143 0,1278 0,0216 -0,1113 0,4890 

Gasoil 0,0004 -0,0902 0,1073 0,0182 0,0605 -0,6284 

Heating Oil 0,0003 -0,0968 0,0991 0,0199 0,0174 -0,7965 

Palm Oil 0,0003 -0,1090 0,0953 0,0176 -0,2398 1,0026 

Soybean Oil 0,0003 -0,0714 0,0808 0,0157 0,1202 -0,7473 

Canola seed 0,0002 -0,1404 0,0644 0,0139 -0,7336 5,6707 

Rapeseed 0,0002 -0,0763 0,0522 0,0107 -0,5738 1,9304 

Table 2 : Descriptive Statistics for the Full Period 
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DESCRIPTIVE STATISTICS FOR FOR PRE-CRISES PERIOD  

(13 JAN 2005-9 JUL 2007) 

Daily logarithmic returns 

Commodity Mean Min Max St. Dev. Skewness Ex. Kurtosis 

Crude Oil - Brent 0,0008 -0,0486 0,0563 0,0168 0,0581 -3,1101 

Crude Oil – WTI 0,0007 -0,0488 0,0638 0,0179 0,0474 -3,0026 

Gasoil 0,0008 -0,0617 0,0758 0,0186 0,0184 -2,3583 

Heating Oil 0,0007 -0,0486 0,0965 0,0205 0,3847 -2,2789 

Palm Oil 0,0011 -0,0668 0,0556 0,0118 0,0165 1,5548 

Soybean Oil 0,0010 -0,0618 0,0808 0,0146 0,4942 -0,6385 

Canola seed 0,0007 -0,0498 0,0605 0,0120 0,7877 0,5875 

Rapeseed 0,0006 -0,0247 0,0522 0,0073 0,6510 1,8643 

Table 3 : Descriptive Statistics for pre-crises period 

DESCRIPTIVE STATISTICS FOR CRISES PERIOD  

(10 JUL 2007-26 JAN 2010) 

Daily logarithmic returns 

Commodity Mean Min Max St. Dev. Skewness Ex. Kurtosis 

Crude Oil - Brent -0,0001 -0,1048 0,1288 0,0280 -0,0645 -0,8697 

Crude Oil – WTI 0,0001 -0,1143 0,1278 0,0300 -0,0777 -1,0095 

Gasoil -0,0001 -0,0902 0,1073 0,0238 0,1737 -1,3890 

Heating Oil 0,0005 -0,0486 0,0553 0,0183 -0,0098 -3,3093 

Palm Oil -0,0001 -0,1090 0,0953 0,0258 -0,1496 -1,6602 

Soybean Oil 0,0000 -0,0714 0,0744 0,0206 -0,0069 -1,9339 

Canola seed -0,0001 -0,0822 0,0644 0,0178 -0,5590 0,6786 

Rapeseed -0,0001 -0,0573 0,0495 0,0138 -0,3315 -1,1496 

Table 4 : Descriptive Statistics for the crises period 

DESCRIPTIVE STATISTICS FOR POST-CRISES PERIOD  

(27 JAN 2010-13 JAN 2014) 

Daily logarithmic returns 

Commodity Mean Min Max St. Dev. Skewness Ex. Kurtosis 

Crude Oil - Brent 0,0004 -0,0898 0,0679 0,0150 -0,3744 -0,3822 

Crude Oil – WTI 0,0002 -0,0895 0,0890 0,0168 -0,2374 -0,5045 

Gasoil 0,0004 -0,0620 0,0474 0,0131 -0,2356 -1,8282 

Heating Oil 0,0004 -0,0846 0,0619 0,0143 -0,2429 -0,9362 

Palm Oil 0,0000 -0,0951 0,0508 0,0137 -0,3608 -0,3698 

Soybean Oil 0,0000 -0,0486 0,0551 0,0123 0,1076 -1,8597 

Canola seed 0,0001 -0,1404 0,0509 0,0121 -1,8243 16,3240 

Rapeseed 0,0002 -0,0763 0,0421 0,0103 -1,0327 3,9922 

Table 5 : Descriptive Statistics for the post-crises period 
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4.4 Stationarity	  tests	  

The Minimal Spanning and Hierarchical Trees are constructed from the distance 

matrix 𝔻. The distance matrix, in turn, is mapped from the correlation matrix ℂ. As a 

condition the time-series must be weak-stationary (Mantegna 1999). 

 Table 6 show the results for the: 1) Augmented Dickey-Fuller Test with a 

Drift (ADF-ARD), 2) Augmented Dickey-Fuller without drift (ADF-AR) and the 3) 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests for the whole period of all the 

commodities. All tests indicate that the time-series are all stationary for the whole 

period. In other words, the crises period did not break the stationarity of the time-

series. 

 

STATIONARITY TESTS 

Daily logarithmic returns of the full period (13 JAN 2005-13 JAN 2014) 

Commodity ADF-ARD p-Value ADF-AR p-Value KPSS 

Crude Oil - Brent -50,9373 0,0001 -50,9297 0,0001 0,0534 

Crude Oil – WTI -49,5121 0,0001 -49,5142 0,0001 0,0415 

Gasoil -48,4804 0,0001 -48,4720 0,0001 0,0685 

Heating Oil -48,4826 0,0001 -48,4787 0,0001 0,0542 

Palm Oil -49,0359 0,0001 -49,0341 0,0001 0,0528 

Soybean Oil -46,9335 0,0001 -46,9277 0,0001 0,0628 

Canola seed -44,8082 0,0001 -44,8077 0,0001 0,0728 

Rapeseed -43,6577 0,0001 -43,6466 0,0001 0,0976 

Table 6 : Stationarity Tests 

5 Results	  

In this section, we present the Minimal Spanning and Hierarchical Trees associated 

with our data. The results are divided in four parts, each representing one of the 

periods analysed. Each section, in turn, is divided in three sub-sections that represent 

the daily, weekly and monthly returns. In the graphs, the distance 𝑑!" is presented in 

regular font and the bootleg value for the link is presented inside brackets. 

5.1 Whole	  Sample	  (13	  JAN	  2005-‐13	  JAN	  2014)	  

Figure 9, Figure 10 and Figure 11 present the MST and HT for the daily, weekly and 

monthly logarithmic returns respectively. For all frequencies there are two clusters. 

One consisting of the energy commodities Brent, WTI, HO and Gasoil and one of the 
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agricultural commodities Canola, CPO, Rapeseed and SBO. We will refer to them as 

the Energy and the Agriculture cluster respectively. The MSTs for all the frequencies 

infer that the two clusters are linked via SBO-Brent. This distance connecting the two 

clusters is the second longest for the daily returns and the longest for both the weekly 

and monthly returns. The same is true for the bootstrap values. This indicates that the 

two clusters are not that well connected and that the interconnection between the 

energies and agricultural commodities is not that prominent when analysing the whole 

period. 

 An analysis of the links within the energy cluster indicates that there are two 

sub-clusters, one for the crude oils: WTI and Brent and one for the fuels: Gasoil and 

Heating Oil. The connections between these two sub-clusters are from Brent to HO 

for all frequencies. One possible explanation is that Brent is now the de facto crude 

oil index of the world and that Heating Oil is a more liquid market than Gasoil. 

 Analysing the agricultural cluster points out that the distances between the 

nodes are greater than those for the energy cluster. On top of this, the bootstrap values 

are lower as well. As such, the cluster is looser for all frequencies. In particular, the 

connection for CPO with the other commodities changes when changing the return 

frequency. For the daily returns, CPO is connected to Rapeseed by the greatest 

distance in the graph but its bootstrap value is high. The MSTs and HTs for the 

weekly and monthly returns connect CPO directly to SBO. Intuitively, the link 

between CPO and SBO should be strong as both are vegetable oils and are, to some 

extent, interchangeable. That this is not the case for the daily returns may be 

explained by the fact that BMD (where CPO trades) is closed when CBOT (where 

SBO trades) is liquid. The markets in the United States are the most developed and 

can be seen to drive the prices across the globe. Consequently, CPO is expected to 

react to SBO’s price changes only the day afterwards. However, the effect of this lag 

should diminish when we change frequencies from daily to weekly and monthly. 

 By analysing the average distances and average bootstrap values we can 

deduce the reliability of the entire graph. The results in Table 7 unanimously show 

that the graph’s reliability increases as we go from daily to weekly and monthly 

returns. Most importantly the link between the clusters is at its strongest for the 

monthly returns (see Figure 11).  
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Figure 9 : MST and HT of Daily Returns for the Full Period 
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Figure 10 : MST and HT of Weekly Returns for the Full Period 
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Figure 11 : MST and HT of Monthly Returns for the Full Period 
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Period Frequency 𝒅!" 𝒃!" 

Whole period Daily 0.7702 0.8643 

 Weekly 0.6202 0.8896 

 Monthly 0.5156 0.9324 
Table 7 : Average Distances and Bootstrap Values for the Whole Period 

5.2 Pre-‐crises	  Period	  (13	  JAN	  2005-‐9	  JUL	  2007)	  

The MSTs and HTs for the pre-crises period differ in many ways from those of the 

whole period. One pattern that remains intact is the division of the commodities in 

two clusters: energy and agriculture. Whereas the two clusters were linked via the 

SBO-Brent vertex for all frequencies when analyzing the full period they now change 

as the frequencies change. SBO-Brent, SBO-Gasoil, SBO-WTI connect the clusters for 

the daily, weekly and monthly returns respectively. The connecting vertices are all 

longer during the pre-crises period than those for the whole sample. Furthermore, 

their bootstrap values are low. This combination indicates that the clusters were not as 

closely interconnected prior to the crises period as they were during the whole period. 

 Addressing the energy cluster, the same two sub-clusters of Brent-WTI and 

Gasoil-HO are present in the weekly and monthly HTs. For all the frequencies, the 

distances within the energy sub-cluster were greater during the pre-crises period than 

for the whole period. Further indicating that the commodities were less interconnected 

prior to the crises. 

 The looseness was present in the agricultural cluster as well. This is an 

indication that the agricultural commodities behaved more independently prior to the 

crises. 

 Within the agricultural cluster, CPO shows the same behaviour as for the full 

period. Again, the market hours may be one of the causes. Rapeseed proved to be 

quite loosely related to the rest in the group prior to the crises as well. 

 The average distances were greater for the pre-crises period than for the whole 

sample. Interestingly, the bootstrap values were higher too which indicates that their 

strength was greater even though the nodes were further from each other. This 

supports the theory that the commodities were less interrelated prior to the crises than 

they were during and after it. 
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Figure 12 : MST and HT of Daily Returns for the Pre-crises Period 
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Figure 13 : MST and HT of Weekly Returns for the Pre-crises Period 
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Figure 14 : MST and HT of Monthly Returns for the Pre-crises Period 
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Period Frequency 𝒅!" 𝒃!" 

Pre-crises Daily 0.8443 0.8283 

 Weekly 0.6044 0.7309 

 Monthly 0.6515 0.6497 
Table 8 : Average Distances and Bootstrap Values for the Pre-crises Period 

5.3 Crises	  Period	  (10	  JUL	  2007-‐26	  JAN	  2010)	  

The MSTs and HTs for the crises period form the same two clusters as we have seen 

before: energy and agricultural. The two clusters are linked via SBO-Brent, SBO-HO 

and SBO-Brent for the daily, weekly and monthly returns respectively. The links that 

connect the two clusters are on average shorter and stronger than those for the whole 

period and in particular than those for the pre-crises period. This indicates that the 

various commodities showed greater co-movement during the crises than they did 

before. 

 Looking at the energy cluster, we see the same two sub-clusters of crude oil 

and fuel as we have seen before. The HTs for the pre-crises and crises periods are 

similar for the energies. 

 The agricultural sub-clusters are denser than they were prior to the crises for 

all frequencies. The bootstrap values are on average slightly higher and in particular 

the link CPO-SBO is stronger. 

 For all frequencies, the average distances are shorter than those for the whole 

period as well as pre-crises. However, the bootstrap values are on average only better 

than those for the pre-crises period. This may stem from the smaller sample size. 
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Figure 15 : MST and HT of Daily Returns for the Crises Period 
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Figure 16 : MST and HT of Weekly Returns for the Crises Period 
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Figure 17 : MST and HT of Monthly Returns for the Crises Period 
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Period Frequency 𝒅!" 𝒃!" 

Crises Daily 0.7011 0.8027 

 Weekly 0.5334 0.8381 

 Monthly 0.4308 0.7113 
Table 9 : Average Distances and Bootstrap Values for the Crises Period 

5.4 Post-‐crises	  Period	  (27	  JAN	  2010-‐13	  JAN	  2014)	  

For the post-crises, the MSTs and HTs form the same energy and agricultural clusters 

as for the other periods. SBO-Brent, SBO-Gasoil and SBO-HO link the two clusters 

for the respective frequencies. The lengths of these vertices connecting the two 

clusters are longer than for both the whole and crises period. They are, however, 

shorter than those prior to the crises. The bootstrap values indicate that the links are 

stronger than they were before and during the crises but less so than for the whole 

sample. Which may be a consequence of the size of the sub-samples. 

 Within the energy cluster one thing has changed. WTI is on its own branch for 

all the MSTs and it is also separated in the HTs. This corresponds with the decoupling 

of the WTI-Brent spread that we have seen due to the shale gas revolution in the 

United States. 

 The structure of the agricultural cluster in the MST of daily returns has 

morphed. SBO is the closest connection to all the others. SBO is the most liquid of all 

the agricultural commodities analysed and may react to/drive the other commodities. 

The distances within the agricultural cluster are shorter than prior to the crises 

but longer than during it. The agricultural links’ bootstrap values are higher than both 

prior and during the crises. As such the graphs’ reliability are higher than for any 

other individual period analysed.   
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Figure 18 : MST and HT of Daily Returns for the Post-crises Period 
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Figure 19 : MST and HT of Weekly Returns for the Post-crises Period 
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Figure 20 : MST and HT of Monthly Returns for the Post-crises Period 
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Period Frequency 𝒅!" 𝒃!" 

Post-crises Daily 0.7849 0.8524 

 Weekly 0.6334 0.8496 

 Monthly 0.5432 0.9029 
Table 10 : Average Distance and Bootstrap Value for the Post-crises Period 

6 Conclusion	  

The aim of this thesis was to investigate whether the substitution of illiquid and non-

tradable indices/commodities with their closest exchange traded alternative would be 

a fair model to represent the price transmission network in the biodiesel space.  

During this process, we found that the commodities formed two sub-networks: 

one consisting of energy and the other of agricultural commodities. The two clusters 

were always linked together via soybean oil from the agricultural sub-network 

whereas the connecting energy commodity varied depending on period and data 

frequency. Furthermore, the length and strength of the node connecting the two 

clusters was also dependent on the frequency and data period. In general, the node 

connecting the two clusters as well as the rest of the network’s nodes strengthened as 

we moved from daily to weekly and to monthly price data. This indicates that shocks 

may distort the spreads between commodities in the short run but that their intra-

relationship should revert to that previously seen unless there has been a structural 

change.  

 Such structural changes can for example be caused by macro-economical 

events such as the food and financial crises or by regulatory change such as new 

biofuels legislation. During our sample period, there were examples of both and we 

saw that the length of the connecting vertex shrunk during the crises period but it did 

not reach its previous length once the crises were over. Not only the connecting 

vertex, but also the rest of the network got denser and stronger during the crises 

period and the network has so far remained denser than prior to the crises.  

 One possible explanation for the commodities’ increased co-movement during 

the crises period may be that many investors and commercials were forced to limit 

their risk due to the extreme market conditions and this may have made them close all 

of their positions no matter the commodity.  
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 That the network has remained denser than prior to the crises may be an effect 

of a continued risk averseness where commercials and other participants have started 

to trade premium/basis instead of flat outright. Increased premium/basis trading may 

also explain why we found soybean oil to be the centre of the agricultural sub-

network after the crises period as some may have started to price other commodities 

over the one that is the most liquid in order to be sure that they will be able to find a 

counter-part in the most difficult of markets. 

 In summary, the data does not confirm the hypothesis that the substitution of 

cash markets and indices with tradable cleared futures would be a fair representation 

of the intra-commodity links in the biodiesel space. We expected rapeseed and/or 

canola as the substitute for rapeseed/canola oil to have a much more prominent role. 

Instead, soybean oil, which is not as commonly used for biodiesel, proved to be the 

link between the two clusters.  

 To improve upon the results in the future there are a number factors that 

should be addressed. First of all, the usage of commodities that trade in different time 

zones made a small data loss necessary and time differences inevitable. Secondly, the 

fact that the commodities trade on different market places and in different currencies 

made them susceptible to foreign exchange risk, which in the case of e.g. Malaysia 

where the Palm Oil is traded may be severe. Thirdly, the geographical location of the 

market places only reflects the fact that the various commodities are found in different 

locations around the world that may be different from their main consumption areas. 

Consequently, the price of the freight should be considered when comparing FOB 

Malaysia with FOB Europe. Finally, substituting rapeseed and canola oil with their 

respective seed may have had disproportionate effects that weakened the link between 

energy and rapeseed/canola oil. 

 For future researchers it may be possible to circumvent these problems of time 

differences, foreign exchange, freight spreads and substitution of commodities by 

using data from the cash market in Europe. It would be interesting to see how the 

network formed if CIF Rotterdam Crude Palm Oil, Ex-Dutch Mill Rapeseed Oil and 

Ex-Dutch Mill Soybean Oil prices were used. ICE Gasoil would still represent the 

energy complex. However, by acknowledging the need to the trade the cash market 

only reaffirms our rebuttal of the original hypothesis that it is possible to keep a price 

transmission network of physical commodities intact by replacing cash markets with 

futures. 
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Appendix	  A MATLAB	  Code	  
 
The code used in this thesis. 

Appendix	  A.1 Minimal	  Spanning	  Tree	  –	  minSpanTree.m	  
A = input('Please enter an array > '); 
temp_labels = input('Please enter an array with the node names inside { } 
>'); 
  
temp_CorrMat = corr(A); 
temp_DistMat = tril(sqrt(2*(1-temp_CorrMat))); 
temp_UG=sparse(temp_DistMat); 
[temp_ST,pred] = graphminspantree(temp_UG,'Method','Kruskal'); 
view(biograph(temp_UG,temp_labels,'ShowArrows','off','ShowWeights','on')) 
view(biograph(temp_ST,temp_labels,'ShowArrows','off','ShowWeights','on')) 

Appendix	  A.2 Hierarchical	  Tree	  –	  hierTree.m	  
A = input('Please enter an array > '); 
temp_labels = input('Please enter an array with the node names inside { } 
>'); 
  
B=linkage(squareform(sqrt(2*(1-(corr(A))))),'single'); 
figure() 
dendrogram(B,'Labels',temp_labels) 
 

Appendix	  A.3 Bootstrap	  Values	  

Appendix	  A.3.1 mstBWeights.m	  
 
BootstrapCorr; %m script that generates the distance matrices 
  
num_myDistMatrices = size(myDist,3); 
num_pred = size(myDist,2); 
UG = zeros(1,1); %place to store my sparse for the undirected graph 
pred = zeros(num_myDistMatrices,num_pred); 
%bootstrapCorr = zeros(num_myDistMatrices, num_pred); 
  
for i=1:1:num_myDistMatrices 
    UG = sparse(myDist(:,:,i)); 
    [ST,pred(i,:)] = graphminspantree(UG,'Method','Kruskal'); 
end 
  
bootstrapCorr = mode(pred); 
bootstrapCert = zeros(1,num_pred); 
  
for j=1:1:num_pred 
    bootstrapCert(:,j) = sum(pred(:,j)==bootstrapCorr(j)); 
end 
  
  
node_num = 1:1:num_pred; 
  
A = [node_num; bootstrapCorr; (bootstrapCert/num_myDistMatrices)]; 
  
  
fprintf('\n'); 
fprintf('%8s %19s %19s \n','node','primary connection','bootstrap weight'); 
fprintf('%6.0f %12.0f %23.3f \n',A); 
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Appendix	  A.3.2 BootstrapCorr.m	  
 
A = input('Please enter an array > '); 
n = input('Please enter number of bootstraps > '); 
  
  
temp_corrMat = corr(A); 
num_rows = size(temp_corrMat,1); 
num_cols = size(temp_corrMat,2); 
  
[bootstat,bootsam] = bootstrp(n,'corr',A); 
num_cols_bootsam = size(bootsam,2); 
  
myArray = zeros(num_rows,num_cols,num_cols_bootsam); 
myDist = zeros(num_rows,num_cols,num_cols_bootsam); 
  
for i=1:1:num_cols_bootsam 
    myArray(:,:,i) = tril(corr(A(bootsam(:,i),:))); 
    
    myDist(:,:,i) = tril(sqrt(2*(1-myArray(:,:,i)))); 
end 
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